
From Uniform Distributions to Benford’s Law
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Abstract

We provide a new probabilistic explanation for the appearance of Ben-
ford’s law in everyday-life numbers, by showing that it arises naturally
when we consider mixtures of uniform distributions. Then we connect
our result to the theorem of B. J. Flehinger (“On the probability that a
random integer has initial digit A”, Amer. Math. Monthly, 73:1056–1061,
1966), for which we provide a shorter proof and a speed of convergence.
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1 Introduction

1.1 Benford’s law

We define the mantissa (base 10) of a positive real number x as the unique real
number M (x) ∈ [1, 10[, such that

x = M (x)10k,

for some integer k ∈ Z. Benford’s law describes the probability distribution
of the mantissa: more precisely, it says that the proportion of numbers x > 0
which satisfy M (x) ∈ [a, b[ is, for any 1 ≤ a < b ≤ 10,

PBenford([a, b[) := log10 b − log10 a. (1)

In its most popular form, Benford’s law is stated in the particular case where
[a, b[= [i, i + 1[ for some i ∈ {1, . . . , 9}, and it gives the proportion of numbers
whose first significant digit D1 is i:

log10

(

1 +
1

i

)

.

Here we must point out that the mathematical meaning of the word “propor-
tion” is not well defined: in fact, Benford’s law is just the description of the
distribution of the significant digits observed in large sets of empirical data.
The astronomer Simon Newcomb was the first to observe that the probability
of occurrence of digits is not uniform. The physicist Franck Benford, unaware
of Newcomb’s article ([8]), empirically rediscovered the law some 57 years later
([1]) and popularized it.
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Because it is not clear which law arbitrary data should follow, Benford’s law
is quite difficult to prove! However, many mathematicians have managed to give
various explanations to the natural appearance of Benford’s law in everyday-life
numbers. In particular, we have to mention scale-invariance (R. S. Pinkham,
[9]) and base-invariance (T. Hill [5, 6]). R. A. Raimi’s survey ([10]) also provides
several probabilistic interpretations, such as iterations of a mixture process,
which amounts to consider products of independent random variables. Berger,
Bunimovich and Hill ([2]) have also shown that Benford’s law arises when we
consider orbits of a large class of dynamical systems. Surprisingly, in spite
of the abundance of the litterature about Benford’s law, it seems that our
characterization, linking Benford’s law to mixture of uniform distributions, has
never been proposed yet.

1.2 Heuristics

As mentioned by Raimi, Benford had collected thousands of numbers from
twenty different tables. Some of them obeyed Benford’s law rather badly, while
others, such as the street addresses of the first 342 persons in American Men of
Science, did better. As noticed by Benford, the union of his tables is what came
closest to the predicted law: the more the datas come from various sources, the
better they fit the law. We propose to model these different sources by uniformly
distributed random variables bounded by an unknown maximum S depending
on the source. The first reason is that it is natural to introduce uniform distri-
butions to describe datas on which we do not know anything. Besides, we can
find many cases where the distribution of empirical datas are naturally mod-
elized by some mixture of uniform distributions. A simple one is constituted by
all the numbers describing the month and the day of the month for the birth-
days of a list of people: The month is well approximated by a uniform random
variable taking its values in {1, 2, . . . , 12}, and given the month the day itself
is uniformly distributed in {1, 2, . . . ,(number of days in this month)}. The ex-
ample of street addresses also presents this kind of phenomenon: Imagine you
only know that the numbers of the addresses in a given street vary between
1 and S. By the principle of indifference, picking a random address in this
street naturally gives rise to a random variable uniformly distributed between 1
and S. In other words, conditioned on the highest number S in the street, the
street numbers follow a uniform distribution on {1, . . . , S}. So the set of street
numbers used by Benford can be seen as a mixture of uniform distributions,
weighted by the law of the highest number of a street. A third example is the
first-page numbers of articles in a bibliography, which, conditioned on the size
S of the volume, can be considered uniformly distributed. Of course, not every
set of empirical datas is well described by uniform distributions. However it is
easy to check that averaging over many different such sets with varying laws
amounts to considering uniformly distributed variables.

What can we expect for the distribution of mantissae in such a model?
First, it is easy to observe that if X is uniformly distributed in [0, S], the
law of M (X) only depends on M (S) (see (2) below). Therefore if we want
to study the law of M (X) when X is distributed according to a mixture of
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uniform distributions, it only remains to answer the following question: Which
law should the mantissa of the source-depending maximum S follow? Now, let’s
assume that each time we collect a huge number of datas coming from numerous
origins, their mantissae are distributed according to a fixed distribution. Then,
since the maxima themselves come from various origins, we expect both the
mantissae of the whole datas and those of the maxima to conform to this fixed
distribution.

1.3 Brief description of the content

In Section 2, we derive from the preceding heuristics an equation which should
be satisfied by the law of the mantissa of X in our model. Then we prove
that it characterizes Benford’s law (Theorem 2.1). In Section 3, we construct
a Markov chain (Mn)n taking its value in [1, 10[, such that Mn+1 conditioned
on Mn follows the law of the mantissa of a uniformly distributed random vari-
able in [0,Mn]. By coupling techniques, we show that the law of Mn converges
exponentially fast to Benford’s law, which also provides an alternative proof of
Theorem 2.1. In the last section we use our results to give a simpler, proba-
bilistic proof of Flehinger’s Theorem about the initial digit of a random integer,
together with a speed of convergence.

It is to be noticed that our argument is given for the base 10, but carries
over automatically to other bases.

2 Characterization of Benford’s law via uniform dis-

tributions

In the sequel, we place ourselves on a probability space (Ω,A , P ). For any
S > 0, we denote by US the uniform distribution in [0, S]. Let us suppose X is
a random variable with law US . We can compute the probability distribution
of M (X) as a function of S. Let k be the greatest integer such that 10k ≤ S,
so that S = M (S)10k. We have

P (M (X) ≤ t) = P (M (X) ≤ t and X ≤ 10k) + P (M (X) ≤ t and X > 10k)

= P (X ≤ 10k)P (M (X) ≤ t|X ≤ 10k) + P (10k < X ≤ t10k).

Conditionally to X ≤ 10k, M (X) is uniformly distributed in [1, 10[. Therefore,
the probability distribution of M (X) only depends on M (S) and is given, for
t ∈ [1, 10[, by

P (M (X) ≤ t) =











1

M (S)

t − 1

9
+

t − 1

M (S)
if t ≤ M (S),

1

M (S)

t − 1

9
+

M (S) − 1

M (S)
if t ≥ M (S).

(2)

When S varies, this quantity oscillates between t−1
9 and 10

9
t−1

t
. As we proposed

in the previous section, our modelization consists in regarding S as a random
variable. That is to say, we now have two random variables X and S: X
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represents the generic data in our collection and S is the source-depending
maximum, so that X conditioned on S follows the uniform distribution US .

Let’s suppose that the mantissa of S follows some probability distribution
µ. Then, as mentioned at the end of section 1.2, we expect the mantissa of X to
behave in the same way. Therefore, for any t ∈ [1, 10[, the probability µ([1, t])
that M (X) ≤ t should satisfy

µ([1, t]) =

∫ 10

1
P

(

M (X) ≤ t | M (S) = a
)

dµ(a).

Using (2), we get

µ([1, t]) =

∫ t

1

(

1 −
t

y

)

dµ(y) +
10

9
(t − 1)

∫ 10

1

dµ(y)

y
. (3)

Theorem 2.1 Benford’s law is the unique probability distribution satisfying
equation (3). In other words, Benford’s law is the unique probability distribution
µ on [1, 10[ such that, if M (S) follows µ and X conditioned on S is uniformly
distributed on [0, S], then M (X) still follows µ.

Proof – Let µ be a probability measure on [1, 10[ satisfying (3). Consid-
ering the measure ν defined by dν

dµ
(y) = 1/y, (3) can be rewritten as

0 = −tν([1, t]) +
10

9
(t − 1)ν([1, 10[).

Therefore,

ν([1, t]) =
10

9

t − 1

t
ν([1, 10[),

hence ν has density proportional to y−2 with respect to the Lebesgue measure.
Since

dµ

dν
(y) = y,

we get that µ has density proportional to y−1 with respect to the Lebesgue
measure. Therefore µ is equal to Benford’s law.

Conversely, an easy computation yields

∫ t

1

(

1 −
t

y

)

dPBenford(y) +
10

9
(t − 1)

∫ 10

1

dPBenford(y)

y

= log10(t) = PBenford([1, t]). (4)

This means Benford’s law is the unique solution to (3). ❏

3 Construction of a Markov chain

Following the method developed in [3], we will now construct a Markov chain
(Mn)n taking its value in [1, 10[, such that Mn+1 conditioned on Mn follows the
law of the mantissa of a uniformly distributed random variable in [0,Mn].
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Let (Un)n∈N and (Vn)n∈N be two independent sequences of independent ran-
dom variables uniformly distributed in [0, 1]. We consider F : [1, 10[×[0, 1]2 →
[1, 10[, given by

F (m,u, v) =

{

um if um ∈ [1, 10[,

M (v) otherwise.

We now define a Markov chain (Mn)n∈N on [1, 10[ starting from M0 by

Mn = F (Mn−1, Un, Vn), for all positive integers n.

Observe that the transition probability of our Markov chain (Mn)n∈N is given,
for t ≥ 1, by

P (Mn ≤ t | Mn−1) = P (F (Mn−1, Un, Vn) ≤ t | Mn−1)

= P (M (Vn) ≤ t, Mn−1Un ∈ [0, 1[ | Mn−1)

+ P (Mn−1Un ≤ t,Mn−1Un ∈ [1, 10[ | Mn−1).

Since Un and Vn are independent and uniformly distributed in [0, 1], this ex-
pression can be rewritten as

P (M (Vn) ≤ t) P (Mn−1Un ∈ [0, 1[ | Mn−1)

+
t − 1

Mn−1
1Mn−1≥t +

Mn−1 − 1

Mn−1
1Mn−1<t,

which yields

P (Mn ≤ t | Mn−1) =











t − 1

9Mn−1
+

t − 1

Mn−1
if t ≤ Mn−1,

t − 1

9Mn−1
+

Mn−1 − 1

Mn−1
otherwise.

(5)

Comparing with (2), we see that the law of Mn given Mn−1 is exactly the
law of M (X), where X is a uniform random variable on [0,Mn−1]. Therefore,
a probability measure is invariant for this Markov chain if and only if it satisfies
(3). This is the case of Benford’s law.

Proposition 3.1 Let µ be an invariant measure for the Markov chain with
transition probability (5). Then, for any a ∈ [1, 10[ and any B ⊂ [1, 10[,

|P (Ma
n ∈ B) − µ(B)| ≤ (9/10)n,

where (Ma
n)n is the Markov chain with transition probability (5) and starting

from a.
Consequently, Benford’s law is the unique invariant probability measure for the
Markov chain with transition probability (5).

Proof – To prove unicity of the invariant measure and obtain an estimate
of the speed of convergence, we will use a coupling method inspired by [3],
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[11]. We consider two chains Ma
n and M b

n with same transition probability and
starting from a and b respectively: Ma

0 = a, M b
0 = b, and for any n ≥ 1,

Ma
n = F (Ma

n−1, Un, Vn), M b
n = F (M b

n−1, Un, Vn).

We point out the fact that the same sequences (Un)n≥1 and (Vn)n≥1 are used
in the definition of both Ma

n and M b
n. Let τa,b be the coupling time, that is the

first time the two chains Ma
n and M b

n meet:

τa,b = min{n ≥ 1|Ma
n = M b

n}

≤ min{n ≥ 1|UnMa
n−1 < 1;UnM b

n−1 < 1}.

Notice that for any n ≥ τa,b, Ma
n = M b

n. Moreover, we can check P (τa,b > n)
decreases exponentially fast in n:

P (τa,b > n) ≤ P (Uk max(Ma
k−1;M

b
k−1) ≥ 1, ∀1 ≤ k ≤ n)

≤ P (10 Uk ≥ 1, ∀1 ≤ k ≤ n)

= (9/10)n.

Let µ be an invariant probability distribution for the Markov chain. Then, for
any B ⊂ [1, 10[,

|P (Ma
n ∈ B) − µ(B)| =

∣

∣

∣

∣

∫ 10

1

(

P (Ma
n ∈ B) − P (M b

n ∈ B)
)

dµ(b)

∣

∣

∣

∣

≤

∫ 10

1
dµ(b)E

[∣

∣

∣
1Ma

n∈B − 1Mb
n∈B

∣

∣

∣

]

≤

∫ 10

1
dµ(b)E [1τa,b>n]

≤ sup
1≤b<10

P (τa,b > n) ≤ (9/10)n.

Hence,
sup
a,B

|P (Ma
n ∈ B) − µ(B)| ≤ (9/10)n. (6)

We have already seen in (4) that Benford’s law is invariant for the Markov
chain. Hence, (6) proves that for each a ∈ [1, 10[, the law of Ma

n converges
exponentially fast to Benford’s law, which is therefore the unique invariant
probability distribution. ❏

4 A probabilistic proof of Flehinger’s theorem

In [4], Flehinger is interested in the distribution of the first significant digit of
a random number in N \ {0}. She tries to make sense of the heuristic question
“What proportion of the positive integers have their initial digit less than or
equal to i, for i ∈ {1, . . . , 9}?” According to Benford’s law, this should happen
with probability

PBenford([1, i + 1[) = log10 (1 + i) .
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The set Li of the positive integers with initial digit less than i has no natural
density among positive integers:

P 1
n(i) =

1

n
|Li ∩ {1, 2, . . . , n}| =

1

n

n
∑

m=1

1Li
(m) (7)

oscillates between i/9 and 10 i/9(i + 1) as n varies. Flehinger thus proposes to
iterate this averaging process (Cesaro average). For k ≥ 1, she considers

P k
n (i) =

1

n

n
∑

m=1

P k−1
m (i).

She then proves that the amplitude of the oscillations of the functions P k
n (i)

decreases and the averaging process converges to Benford’s law in the following
way.

Theorem 4.1 (Flehinger)

lim
k

lim inf
n

P k
n (i) = lim

k
lim sup

n
P k

n (i) = log10(1 + i).

Now, we will show how P k
n (i) corresponds to k steps of our Markov chain

with transition (5). Heuristically, this appears quite natural when considering
that the iteration of the Cesaro averaging in Flehinger’s process amounts to a
repeated, inductive drawing of uniform discrete random variables.

Note that (7) works out to

P 1
n(i) =











i

9n
(10j+1 − 1) if n ∈ [(i + 1)10j , 10j+1[ for j ∈ N,

1 −
(9 − i)(10j − 1)

9n
if n ∈ [10j , (i + 1)10j [ for j ∈ N.

Let us consider integers n with a “fixed” mantissa: this means that we fix a
real a ∈ [1, 10[, and we consider n of the form ⌊a10j⌋ (integer part of a10j).

P 1
⌊a10j⌋(i) =















i

9M (⌊a10j⌋)

10j+1 − 1

10j
if M (⌊a10j⌋) ≥ i + 1,

1 −
(9 − i)

9M (⌊a10j⌋)

10j − 1

10j
if M (⌊a10j⌋) < i + 1.

As j goes to infinity, the above term converges to

Q1(a, i) =











10i

9a
if a ≥ i + 1,

1 −
(9 − i)

9a
if a < i + 1.

We recognize the expression (2) with t = i + 1 and S = a10j . Hence,

Q1(a, i) = lim
j→∞

P 1
⌊a10j⌋(i) = P (Ma

1 < i + 1),
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where Ma
1 has been defined in the statement of Proposition 3.1.

In the same way, Flehinger defines Qk(a, i) by

Qk(a, i) = lim
j→∞

P k
⌊a10j⌋(i),

and proves (see [4], p. 1059) that for any k ≥ 2,

Qk(a, i) =
1

a

[

1

9

∫ 10

1
Qk−1(u, i)du +

∫ a

1
Qk−1(u, i)du

]

. (8)

Proposition 4.2 For all k ≥ 1 and all a ∈ [1, 10[,

Qk(a, i) = P (Ma
k < i + 1),

where Ma
k has been defined in the statement of Proposition 3.1.

Proof – We already have the result for k = 1. It is then enough to establish
that P (Ma

k < i + 1) satisfies a recursive equation analogous to (8). For k ≥ 2,
conditioning on Ma

1 and denoting by µ1 the law of Ma
1 , we have

P (Ma
k < i + 1) =

∫ 10

1
P (Ma

k < i + 1|Ma
1 = u) dµ1(u).

¿From (5), we can write

dµ1(u) =

{

1
9a

du if u ≥ a,
(

1
9a

+ 1
a

)

du if u < a.

Finally, using the fact that

P (Ma
k < i + 1|Ma

1 = u) = P (Mu
k−1 < i + 1),

we get

P (Ma
k < i + 1) =

1

a

[

1

9

∫ 10

1
P (Mu

k−1 < i + 1) du +

∫ a

1
P (Mu

k−1 < i + 1) du

]

❏

By Proposition 2.1 we obtain an estimation on the speed of convergence of
Flehinger’s averaging process.

Corollary 4.3

sup
i,a

∣

∣

∣
Qk(a, i) − log10 (1 + i)

∣

∣

∣
≤ (9/10)k .

Since lim infn P k
n (i) = min1≤a<10 Qk(a, i) and lim supn P k

n (i) = max1≤a<10 Qk(a, i),
this implies in particular the result stated in Theorem 4.1.
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Remark

In [7], D.E. Knuth proves a slight generalization of Flehinger’s theorem, stating
that the proportion of the positive integers whose mantissa is less than r ∈ [1, 10[
is log10 r. More precisely, Knuth considers

P 1
n(M ≤ r) =

1

n
|{m ∈ {1, . . . , n} : M (m) ≤ r}|,

and iterates a similar averaging process, setting inductively

P k
n (M ≤ r) =

1

n

n
∑

m=1

P k−1
m (M ≤ r).

Knuth’s result states that

lim
k

lim inf
n

P k
n (M ≤ r) = lim

k
lim sup

n
P k

n (M ≤ r) = log10(r).

A straightforward adaptation of our argument above also gives a speed of con-
vergence in that case : For all k ≥ 1

sup
r∈[1,10[

∣

∣

∣
lim inf

n
P k

n (M ≤ r) − log10(r)
∣

∣

∣
≤ (9/10)k ,

and

sup
r∈[1,10[

∣

∣

∣

∣

lim sup
n

P k
n (M ≤ r) − log10(r)

∣

∣

∣

∣

≤ (9/10)k .
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