On the covering by small random intervals

Ai-Hua Fana,b,1, Jun Wua,b,2

a Department of Mathematics, Wuhan University, Wuhan, Hubei, 430072, PR China
b LAMFA, CNRS, UMR 6140, University of Picardie Jules Verne, 33, rue Saint Leu, 80039, Amiens, France

Received 15 May 2002; accepted 15 July 2003

Abstract

Consider the random intervals $I_n = \omega_n + (0, \ell_n)$ (modulo 1) with their left points ω_n independently and uniformly distributed over the interval $[0, 1) = \mathbb{R}/\mathbb{Z}$ and with their lengths decreasing to zero. We prove that the Hausdorff dimension of the set $\lim_n I_n$ of points covered infinitely often is almost surely equal to $1/\alpha$ when $\ell_n = a/n^\alpha$ for some $a > 0$ and $\alpha > 1$. © 2003 Elsevier SAS. All rights reserved.

Résumé

Considérons des intervalles aléatoires $I_n = \omega_n + (0, \ell_n)$ (modulo 1) dont les extrémités gauches ω_n sont indépendantes et uniformément réparties sur l’intervalle $[0, 1) = \mathbb{R}/\mathbb{Z}$ et dont les longueurs décroissent vers zéro. Nous montrons que la dimension de Hausdorff de l’ensemble $\lim_n I_n$ des points infiniment recouverts est presque sûrement égale à $1/\alpha$ quand $\ell_n = a/n^\alpha$ avec $a > 0$ et $\alpha > 1$. © 2003 Elsevier SAS. All rights reserved.

MSC: 60D05; 52C17; 28A80

Keywords: Random covering; Uniform sample spacing; Hausdorff dimension

1. Introduction

Let $\{\ell_n\}_{n \geq 1}$ be a sequence of positive real numbers which is decreasing to zero and let $I_n(\omega) = (\omega_n, \omega_n + \ell_n)$ (modulo 1) be a random interval where $\{\omega_n\}_{n \geq 1}$ is a sequence of independent random variables uniformly distributed over the unit interval $I = [0, 1)$ which is identified with the circle \mathbb{R}/\mathbb{Z}. We consider the set $E_\infty(\omega) = \lim_n I_n$ of those points which are covered infinitely often.

It is easy to see that $E_\infty(\omega)$ is almost surely (a.s. for short) a set of Lebesgue measure 0 or 1 according to $\sum_{n=1}^{\infty} \ell_n < \infty$ or $\sum_{n=1}^{\infty} \ell_n = \infty$. A. Dvoretzky [2] asked the question when $E_\infty(\omega) = [0, 1)$ a.s. or not. There was a series of contributions (for references and related topics see [5] for information before 1985 and [6]...
for recent information). A complete answer was obtained by L. Shepp [7]: $E_{\infty}(\omega) = [0, 1]$ a.s. if and only if
\[\sum_{n=1}^{\infty} \left(1/n^{2} \right) \exp(\ell_1 + \ell_2 + \cdots + \ell_n) = \infty. \]
It is the case for $\ell_n = a/n$ if and only if $a \geq 1$.

We address to the study of $E_{\infty}(\omega)$ when the covering intervals I_n are small in the sense
\[\sum_{n=1}^{\infty} |I_n| \leq \infty. \]
As we mentioned above, in this case the set $E_{\infty}(\omega)$ is of Lebesgue measure zero. However, it is a.s. of second category in Baire sense (see [5, p. 55]). We will determine the Hausdorff dimension of $E_{\infty}(\omega)$ in the case $\ell_n = a/n^{\alpha}$ with $a > 0, \alpha > 1$.

Theorem. Suppose $\ell_n = a/n^{\alpha}$ for some $a > 0$ and $\alpha > 1$. Then
\[\dim E_{\infty}(\omega) = \frac{1}{\alpha} \text{ a.s.} \]

As we shall see from the proof of the theorem, $\ell_n = O(n^{-\alpha})$ implies $\dim E_{\infty}(\omega) \leq 1/\alpha$ and $n^{-\alpha} = O(\ell_n)$ implies $\dim E_{\infty}(\omega) \geq 1/\alpha$. It follows that $\dim E_{\infty}(\omega) = 1/\alpha$ a.s. when the following limit exists:

\[1 < \alpha = \lim_{n \to \infty} \frac{-\log \ell_n}{\log n}. \]

We point out that a similar result holds for random coverings on trees [3].

Back to the theorem. The inequality $\dim E_{\infty}(\omega) \leq 1/\alpha$ is easy to see. It even holds for every ω. Because $\{I_n(\omega)\}_{n \geq N}$ is a δ-cover of $E_{\infty}(\omega)$ with $\delta = \ell_N$ and for any $\varepsilon > 0$
\[\sum_{n=N}^{\infty} |I_n|^{1/\alpha + \varepsilon} = a^{1/\alpha + \varepsilon} \sum_{n=N}^{\infty} n^{1-\varepsilon \alpha} < \infty. \]

In order to prove the inverse inequality, we will construct a random Cantor subset of $E_{\infty}(\omega)$ by using known results due to D.A. Darling on random spacings of uniform random samples. Before our proof of the theorem, let us give some preliminaries including Darling’s results and a construction of Cantor set.

2. Preliminaries

Let $X_1, X_2, \ldots, X_n \ (n \geq 2)$ be a set of independent random variables uniformly distributed over the unit interval $I = [0, 1]$. We call it a random sample of size n. Reordering the n points X_1, X_2, \ldots, X_n in their natural order from left to right, we get n new random variables which will be denoted by X_1, X_2, \ldots, X_n. The intervals $[X(k), X(k+1)]$, $0 \leq k \leq n$, are called the subspaces and their lengths are denoted by L_k, $0 \leq k \leq n$ (by convention, $X_0 = 0$ and $X_{n+1} = 1$). There is a vast literature on the distributions of (L_0, L_1, \ldots, L_n) and related statistics. We will only need the following results among others due to D.A. Darling [1]. Suppose $h : I \to \mathbb{R}$. Let

\[W_n = \sum_{j=0}^{n} h(L_j). \]

The first two moments of W_n are expressed by the following Darling formulas:

\[\mathbb{E}W_n = n(n + 1) \int_{0}^{1} (1 - t)^{n-1} h(t) \, dt. \quad (1) \]

\[\mathbb{E}W_n^2 = n(n + 1) \int_{0}^{1} (1 - t)^{n-1} h^2(t) \, dt + n^2 (n^2 - 1) \int_{D} (1 - x - y)^{n-2} h(x)h(y) \, dx \, dy. \quad (2) \]
where $D = \{(x, y) : x \geq 0, y \geq 0, x + y \leq 1\}$. We need to know how many subspacings with given length fall into a fixed subinterval. Let $J \subset I$ be a subinterval of length ℓ and let $0 < s_1 < s_2 < 1$. We denote by $M = M_n(\ell, s_1, s_2)$ the number of subspacings in J whose lengths are between s_1 and s_2. Using the Darling formulas, J. Hawkes [4] obtained explicit expressions of the first two moments of M:

$$EM = n\ell \left(\left(1 - \frac{s_1}{\ell} \right)(1 - s_1)^{n-1} - \left(1 - \frac{s_2}{\ell} \right)(1 - s_2)^{n-1} \right) + (1 - s_1)^n - (1 - s_2)^n.$$

(3)

$$EM^2 = EM + S(n, \ell, s_1) + S(n, \ell, s_2) - 2S(n, \ell, (s_1 + s_2)/2)$$

(4)

where

$$S(n, \ell, s) = n(n-1)\ell^2 \left(1 - \frac{2s}{\ell} \right)^2 (1 - 2s)^{n-2} + 2n\ell \left(1 - \frac{2s}{\ell} \right)(1 - 2s)^{n-1}.$$

Proposition 1. Suppose $0 < c_1 \leq c_2 \leq 1/2$, $0 < \ell < 1$ and $n \geq 3$. Let $J \subset [0, 1)$ be a subinterval of length ℓ and let n be the sample size. Denote by M the number of subspacings in J having length in $[\frac{c_1\log n}{n}, \frac{c_2\log n}{n}]$. Then there exist constants γ and C only depending on c_1 and c_2 (independent of ℓ and n) such that

$$P(M < \gamma n^{1-c_1} \ell) \leq \frac{C}{n^{c_2-c_1}}$$

for all n such that $n^{1-2(c_2-c_1)\ell} \geq \log^4 n$.

Proof. We claim that

$$EM = \ell n^{1-c_1} + O(\ell n^{1-c_2})$$

(5)

$$EM^2 = EM + \ell^2 n^{2(1-c_1)} + O(\ell^2 n^{2(1-c_2)}).$$

(6)

where, and in the sequel, the constants involved in $O(1)$ depend only on c_1 and c_2 and is independent with ℓ and n. First notice that

$$\left(1 - \frac{c \log n}{n} \right)^n = \frac{1}{n^c} \left(1 + O\left(\frac{\log^2 n}{n} \right) \right).$$

(7)

$$\frac{1 - \frac{c \log n}{\ell n}}{1 - \frac{c \log n}{n}} = 1 + O\left(\frac{\log n}{\ell n} \right).$$

(8)

$$\left(\frac{1 - \frac{c \log n}{\ell n}}{1 - \frac{c \log n}{n}} \right)^2 = 1 + O\left(\frac{\log n}{\ell^2 n} \right).$$

(9)

The equalities (8) and (9) hold under the condition $n\ell \geq c \log n$ which is ensured by the hypothesis made in the proposition. Let $s = \frac{c \log n}{n}$. Using (7) and (8), we get

$$\left(1 - \frac{s}{\ell} \right)(1 - s)^{n-1} = \frac{1}{n^c} \left(1 + O\left(\frac{\log^2 n}{\ell n} \right) \right).$$

Then, by the formula (3), we obtain

$$EM = \ell n^{1-c_1} + O(n^{-c_1} \log^2 n) = \ell n^{1-c_1} + O(\ell n^{1-c_2}).$$

Thus we have proved (5). Using (7) and (9), we get
\[
\left(1 - \frac{2s}{\ell}\right)^2 (1 - 2s)^{-2} = \frac{1}{n^{2s}} \left(1 + O\left(\frac{\log^4 n}{\ell^2 n}\right)\right).
\]

Then
\[
S(n, \ell, s) = n^{2(1-s)} \ell^2 + O(\ell n^{1-2s} \log^4 n).
\]

Notice that \(\ell n^{1-2s} \log^4 n\) is dominated by \(n^{2(1-s)} \ell^2\) if \(n \ell \geq \log^4 n\). So the main term in \(S(n, \ell, s)\) is \(n^{2(1-s)} \ell^2\).

Also notice that \(\ell n^{1-2s} \log^4 n\) is dominated by \(n^{2(1-s)} \ell^2\) if \(\ell n^{1-2(c_1+c_2)} \geq \log^4 n\) (this is the hypothesis). So we get (6).

As a consequence of (5) and (6), we have the following estimate of the variance of \(M\):
\[
\text{Var}(M) = \mathbb{E}M + O(\ell^2 n^{2-(c_1+c_2)}) = O(\ell^2 n^{2-(c_1+c_2)}).
\]

By Chebyshev inequality,
\[
P\left(M \leq \frac{\mathbb{E}M}{2}\right) \leq P\left(|M - \mathbb{E}M| > \frac{\mathbb{E}M}{2}\right) \leq \frac{4\text{Var}(M)}{(\mathbb{E}M)^2} = O\left(\frac{1}{n^{c_2-c_1}}\right). \quad \Box
\]

Consider now a construction of generalized Cantor sets on \([0, 1]\). Let \(\{n_k\}_{k \geq 1}\) be a sequence of integers satisfying \(n_k \geq 2\). Let \(\{\rho_k\}_{k \geq 1}\) and \(\{d_k\}_{k \geq 1}\) be two sequences of positive real numbers. Assume that for any \(k \geq 1\), we have a collection \(\mathcal{J}_k\) of closed subintervals of \([0, 1]\). Each interval in \(\mathcal{J}_k\) is called a \(k\)-interval. Suppose

1. Each \(k\)-interval is of length \(\rho_k\) and contains \(n_{k+1}\) intervals;
2. Each \((k+1)\)-interval is contained in some \(k\)-interval;
3. The gap between any two \(k\)-intervals is at least \(d_k\).

Let \(C_n = \bigcup_{J \in \mathcal{J}_k} J\) and \(C_\infty = \bigcap_{k=1}^\infty C_n\). We call \(C_\infty\) a generalized Cantor set.

Proposition 2. Consider the generalized Cantor set \(C_\infty\) constructed above. Suppose that there is a number \(a \geq 1\) such that \(n_{k+1}d_{k+1} \geq \rho_k^a\) (\(\forall k \geq 1\)). Then we have
\[
\dim C_\infty \geq \liminf_{k \to \infty} \frac{\log (n_1n_2 \cdots n_k)}{-a \log \rho_k}.
\]

Proof. Define a probability measure \(\mu\) on \([0, 1]\) (concentrated on \(C_\infty\)) by
\[
\mu(J_k) = \frac{1}{n_1n_2 \cdots n_k},
\]
where \(J_k\) represents an arbitrary \(k\)-interval contained in \(C_k\). Let \(s\) be the lim inf. Since \(n_1n_2 \cdots n_k \rho_k \leq 1\), we have \(s \leq 1/a \leq 1\). Suppose \(s > 0\). By the Frostman lemma, we have only to prove that for any \(0 < t < s\) and any open interval \(U\) we have \(\mu(U) \leq 2|U|^t\) (\(|U|\) denotes the length of \(U\)). Without loss of generality, we assume that \(n_1n_2 \cdots n_k \rho_k^a \geq 1\) for all \(k \geq 1\). Choose \(k_0\) such that \(\rho_{k_0+1} < |U| < \rho_{k_0}\). We distinguish two cases:

(a) The case \(|U| < d_{k_0+1}\). Then \(U\) intersects with at most one \((k_0 + 1)\)-interval. So
\[
\mu(U) \leq \frac{1}{n_1n_2 \cdots n_{k_0+1}} \leq \rho_{k_0}^a \leq |U|^a \leq |U|^t.
\]
(b) The case \(|U| \geq d_{k_0+1}\). Then \(U\) intersects with at most \(\min(n_{k_0+1}, \frac{2|U|}{\rho_{k_0}})\) \((k_0 + 1)\)-intervals. So
3. Proof of theorem

We only consider the case \(\ell_n = a/n^a \) with \(a = 1 \). As we shall see, only the order \(a \) of \(n^a \) plays the role. So, we may also assume that \(I_n \) is the closed interval \([0, \ell_n] \).

Fix two constants \(0 < c_1 < c_2 < 1/2 \) verifying the condition of Proposition 1. Take a large integer \(\Delta \). Define \(m_k = \Delta^k \) \((k = 1, 2, \ldots)\). For \(k \geq 1 \), let

\[
\begin{align*}
\rho_k &= \ell_{2\rho_k+1}, \\
d_k &= \frac{c_1 m_k \log 2}{2m_k}, \\
n_k &= \left[\frac{\gamma \ell_{\rho_k-1} m_k (1-c_1)}{2} \right] - 1 \quad (\rho_0 = 1), \\
q_k &= 1 - C \prod_{j=1}^{k-1} n_j \\
\end{align*}
\]

where \(\lfloor x \rfloor \) denotes the integral part of a real number \(x \) and the constants \(\gamma \) and \(C \) are those in Proposition 1.

Consider the random sample of size \(2^{m_1} \) from the uniform distribution over \([0, 1)\): \(\omega^0, \omega^1, \omega^{2m_1+1}, \ldots, \omega^{2^{m_1+1}-1} \).

Applying Proposition 1 with \(n = 2^{m_1} \) and \(\ell = 1 \). Proposition 1 is applicable if \(\Delta \) is large enough so that \(2^{m_1(1-2c_2-c_1)} \geq \log 1 \). We assume that \(\gamma 2^{m_1(1-c_1)} > 7 \) so that \(n_1 \geq 2 \). Let \(L_1 \) be the set of left points of subspacing intervals contained in \(J = [0, 1) \) having length in \([c_1 m_1 \log 2, c_1 m_1 \log 2] \). By Proposition 1, we have

\[
P\left(\|L_1 \| \geq \gamma 2^{m_1(1-c_1)} \right) > 1 - \frac{C}{2^{m_1(c_2-c_1)}} = q_1.\]

Thus with probability \(q_1 \) we can find a set \(L_1^* \subset L_1 \) with \(n_1 \) points such that for each point in \(L_1^* \) there is on its right side a point in \(L_1 \setminus L_1^* \). So, any two points in \(L_1^* \) has a distance at least \(2d_1 \). Define

\[
C_1 = \bigcup_{\omega \in L_1^*} [\omega, \omega + \rho_1].
\]

Notice that there are \(n_1 \) \((\geq 2)\) intervals in \(C_1 \) each of which has length \(\rho_1 \) and that these intervals are separated by a distance at least \(d_1 \).

Suppose that with probability \(q_1 q_2 \cdots q_k \) we have successively constructed a nested sequence of sets \(C_1 \supset C_2 \supset \cdots \supset C_k \) such that

(i) every \(C_j \) \((1 \leq j < k)\) is a union of disjoint closed intervals and each such interval in \(C_j \) is of length \(\rho_j \) and contains \(n_{j+1} \) intervals contained in \(C_{j+1} \), and every interval contained in \(C_{j+1} \) is a subset of \(C_j \);
(ii) the gap between two intervals contained in \(C_{j+1} \) is at least \(d_{j+1} \).
We now construct C_{k+1}. Consider the random sample of size 2^{m_k+1}: $\omega_{2^{m_k+1}}, \omega_{2^{m_k+1}+1}, \ldots, \omega_{2^{m_k+1}+1}$. This sample is independent of all preceding random samples in the construction of C_1, C_2, \ldots, C_k since $2^{m_k+1} - 1 < 2^{m_k+1}$. Apply Proposition 1 to each interval J contained in C_k with $n = 2^{m_k+1}$ and $\ell = \rho_k = \ell_{2^{m_k+1}}$. Notice that
\[
2^{m_k+1} \Delta(1 - 2(c_2 - c_1)) \ell_{2^{m_k+1}} = 2^{-\alpha + \Delta^k(\alpha((1 - 2(c_2 - c_1)) - \alpha))} > \log^4 2^{m_k+1}
\]
if Δ is large enough. So we can really apply Proposition 1. Thus if $L_{k+1, J}$ denote the set of left points of subspacings contained in J having length in $[\frac{e^{m_k+1} \log 2}{2^{m_k+1}}, \frac{e^{m_k+1} \log 2}{2^{m_k+1}}]$, we have
\[
P(\sharp L_{k+1, J} \leq \gamma \rho_k 2^{m_k+1(1-c_1)} \text{ for some } J \subset C_k) \leq C \cdot \prod_{j=1}^{\infty} \frac{N_j}{2^{m_k+1(c_2-c_1)}}.
\]
In other words,
\[
P(\sharp L_{k+1, J} > \gamma \rho_k 2^{m_k+1(1-c_1)} \text{ for all } J \subset C_k) \geq q_{k+1}
\]
where J denotes a typical interval in C_k. For each J in C_k, take a set $L_{k+1, J}^*$ of n_k+1 points from $L_{k+1, J}$ such that for each point in $L_{k+1, J}^*$ there is on its right side a point in $L_{k+1, J} \setminus L_{k+1, J}^*$. Then construct
\[
C_{k+1} = \bigcup_{J \subset C_k} \bigcup_{\omega \in L_{k+1, J}^*} [\omega, \omega + \rho_{k+1}]
\]
where $J \subset C_k$ means that J is a component of C_k. Thus with probability $q_1q_2 \cdots q_{k+1}$ we have constructed a nested sequence of sets $C_1 \supset C_2 \supset \cdots \supset C_{k+1}$ which have the properties described by (i) and (ii) (see above, k being replaced by $k + 1$). Thus by induction we get an infinite sequence of nested sets C_k and we can construct a Cantor set $C_\infty = \bigcap_{k=1}^{\infty} C_k$ with probability
\[
p = \prod_{k=1}^{\infty} q_k > 0.
\]
The positivity of this probability is the consequence of
\[
\sum_{k=1}^{\infty} (1 - q_k) \leq C \sum_{k=1}^{\infty} \frac{\prod_{j=1}^{k} N_j}{2^{m_k+1(c_2-c_1)}} < \infty,
\]
because the general term of the series is bounded by
\[
\gamma^k \left(\prod_{\ell \in I_k} \rho_\ell \right) 2^{(m_1+2m_2+\cdots+m_k)(1-c_1) - m_{k+1}(c_2-c_1)} = O\left(\gamma^k 2^{\Delta^k((1-c_1) - (c_2-c_1))} \right).
\]
By the construction, with probability $p > 0$ we have $C_\infty \subset E_\infty(\omega)$. Actually C_∞ is infinitely covered by those intervals I_k with $2^{m_k} \leq n < 2 \cdot 2^{m_k}$ for some $k \geq 1$.

Let us apply Proposition 2 to estimate the Hausdorff dimension of C_∞ from below. Notice that $\rho_k = 2^{-\alpha(\Delta^k+1)}$ and
\[
n_{k+1} \Delta^k \approx m_{k+1} 2^{-\alpha m_k(1-c_1) - m_{k+1}} = \alpha^k 2^{-\Delta^k(\alpha+c_1)\Delta}.
\]
For any $\alpha > 1$ and small $c_1 > 0$ so that $c_1 \Delta$ is small, the condition $n_{k+1} \Delta^k \geq \rho_k^\alpha$ is satisfied. Also notice that
\[
\lim_{k \to \infty} \frac{\log(n_1n_2 \cdots n_k)}{-\log \rho_k} = \frac{1}{\alpha} (1 - c_1) \frac{\Delta}{\Delta - 1} = \frac{1}{\Delta - 1}.
\]
Thus with probability $p > 0$,
\[
dim E_\infty(\omega) \geq \dim C_\infty \geq \frac{1}{\alpha} (1 - c_1) \frac{\Delta}{\Delta - 1} = \frac{1}{\Delta - 1}.
\]
Since $E_\infty(\omega)$ is a tail event, we have with probability one
\[\dim E_\infty(\omega) \geq \frac{1}{a\alpha} (1 - c_1) \frac{\Delta}{\Delta - 1} - \frac{1}{\Delta - 1}. \]

Let $c_1 \to 0$, $\Delta \to \infty$ and then $a \to 1$, we get $\dim E_\infty(\omega) \geq 1/\alpha$ a.s.

References