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When K is a local field with valuation ring V , K. Conrad [6] constructs

normal bases of the ring C(V,K) of continuous functions from V to K,

using what he calls the extension by q-digit expansion, where q denotes the

cardinality of the residue field k of V . In this article, we extend Conrad’s

method to the ring C(S,K) of continuous functions from S to K where S

denotes a subset of V . Moreover, we no more assume the finiteness of the

residue field k, but replace this condition by the precompactness of S.

We first recall in Section 1 the notion of normal basis and Conrad’s q-

digit principle. In Section 2, we define the extension by (qn)-digit expansion.

Then, in Section 3, we generalize Conrad’s q-digit principle by our (qn)-digit

principle (Theorem 3.6), that may be applied in particular to Amice’s reg-

ular compact subsets [1]. In section 4, we end with several examples.

1. The q-digit principle

Let (K, | |) be a complete valued non-archimedean field. Denote by V the

corresponding valuation ring, M its maximal ideal and k its residue field.

Let (E,‖ · ‖) be an ultrametric Banach space over K.

Definition 1.1. A sequence (en)n≥0 of elements of E is called a normal

basis of E(orthonormal basis in [6]) if

(1) each x ∈ E has a representation as x =
∑

n≥0 xnen where xn ∈ K
and limn→∞ xn = 0,

(2) in the representation x =
∑

n≥0 xnen, we have ‖x‖ = supn |xn|.

Let E0 = {x ∈ E/‖x‖ ≤ 1}. Then E0/ME0 is a k-vector space. For en ∈
E0, en denotes the reduction of en modulo ME0. The following proposition

allows to characterize normal bases in purely algebraic terms.
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Proposition 1.2. [2, prop.3.1.5] Assume that the valuation is discrete and

that ‖E‖ = |K|. A sequence (en)n∈N of elements of E is a normal basis of E

if and only if en ∈ E0 for every n ≥ 0 and (en)n∈N is a k-basis of E0/ME0.

Assuming that k is finite with cardinality q (hence K is a local field),

K. Conrad [6] uses extension by q-digit expansion to construct some normal

bases of the ring C(V,K). We first recall this notion.

Definition 1.3. Let (en)n≥0 be a sequence of elements of C(V, V ). We

construct another sequence of functions (fi) in the following way :{
if i = i0 + i1q + · · ·+ irq

r (0 ≤ ij < q)
then fi = ei00 · · · eirr .

The sequence (fi) is called the extension of the (en) by q-digit expansion.

In characteristic p, V contains a field which is isomorphic to k and then,

it may be seen as a k-vector space. In this case, the q-digit principle has

the following form:

Proposition 1.4. Digit principle in characteristic p [6, Theorem 2]

If the sequence (en) is a normal basis of the ring of continuous k-linear

functions from V to K, then the extension of the (en) by q-digit expansion

is a normal basis of C(V,K).

As noted by K. Conrad, in characteristic 0 there is no analogue of the

subspace of linear functions. Nevertheless, there is another version that

holds in any characteristic :

Proposition 1.5. Digit principle in any characteristic [6, Theorem 3]

Let (en)n≥0 be a sequence of elements of C(V, V ) such that the reductions

ei ∈ C(V, k) are constant on the cosets modulo Mi+1 and the map

φn:

{
V/Mn → kn

x 7→ (e0(x), · · · , en−1(x))
is bijective.

Then the extension of the (en) by q-digit expansion is a normal basis of

C(V,K).

To generalize the q-digit principle to subsets S, the map φr will be re-

quired to be only injective, as S/Mr does not necessarily contain qr ele-

ments.

2. The (qn)-digit expansion

Hypotheses and notation. Let V be a discrete valuation domain, with

valuation v. Denote by K the quotient field of V , M the maximal ideal of

V , π a generator of M ( with v(π) = 1), k = V/M the residue field and q

the cardinality (finite or not) of k. Let S be an infinite subset of V .
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We denote by V̂ , K̂, and Ŝ the completions of V , K and S with respect

to the M-adic topology. We still denote by v the extension of v to K̂. For

every n ≥ 0, we denote by S/Mn the set formed by the classes of S mod

Mn and we define qn as the cardinality of S/Mn (q0 = 1).

We assume that S is precompact, that is, Ŝ is compact, and we know that

this is equivalent to the fact that all the qn’s are finite.

Of course, the sequence (qn) is a non-decreasing and non-stationary se-

quence. Now, we define the (qn)-digit expansion of a positive integer m:

Proposition 2.1. Let (qn)n≥0 be a non-decreasing and non-stationary se-

quence of integers, with q0 = 1. For every m > 0, there exists a unique

representation of m as:

m = m0 +m1q1 + · · ·+mrqr

where r is such that

qr ≤ m < qr+1

and where, for every j in [1, r],

mj ≥ 0 and m0 +m1q1 + · · ·+mjqj < qj+1.

This representation is called the (qn)-digit expansion of m.

Proof. Suppose there is such a representation of m. For 0 ≤ k ≤ r, let

Nk = m0 +m1q1 + · · ·+mkqk.

Hence, for 1 ≤ k ≤ r, one has:

Nk = Nk−1 +mkqk, with Nk−1 < qk.

So, mk is the quotient of the division of Nk by qk and Nk−1 is the rest.

Consequently, the sequence (mk) is uniquely determined.

Conversely, let us prove that such a sequence satisfies our hypothesis. Con-

sider the sequences Nr, Nr−1, · · · , N0 and mr,mr−1, · · · ,m0 defined by in-

duction in the following way:
Nr = m

mk =
[
Nk

qk

]
for 0 ≤ k ≤ r

Nk−1 = Nk −mkqk for 1 ≤ k ≤ r.

By definition of r, mr = [m/qr] 6= 0. At each step (1 ≤ k ≤ r), one has

Nk−1 < qk and m = Nk−1 +mkqk + · · ·+mrqr. Indeed,

r∑
l=k

mlql =
r∑
l=k

(Nl −Nl−1) = m−Nk−1.
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Hence,

m = N0 +m1q1 + · · ·+mrqr, m0 =

[
N0

q0

]
= N0.

Finally, m =
∑r

k=0mkqk and, for 0 ≤ k ≤ r,

m0 +m1q1 + · · ·+mkqk = m− (mk+1qk+1 + · · ·+mrqr) = Nk < qk+1.

�

Remarks 2.2. (1) Let m = m0 + m1q1 + · · · + mrqr be the (qn)-digit

expansion of m. Then, for 0 ≤ j ≤ r, one has:

• 0 ≤ mj <
qj+1

qj
,

• in particular, if qj = qj+1 then mj = 0.

(2) The condition 0 ≤ mj <
qj+1

qj
is not sufficient to define the mj’s.

If we consider the sequence qn = 2n + 1 of odd integers, the (qn)-

digit expansion of m = 5 is m = 5 = q2, but one can also write

m = 2 + 3 = 2q0 + q1 with m0 = 2 < q1
q0

= 3.

(3) On the contrary, the condition 0 ≤ mj <
qj+1

qj
does characterize the

(qn)-digit expansion when qj divides qj+1. Indeed, if αj = qj+1/qj

is an integer and 0 ≤ mj < αj, then m0 < q1, and by induction,

(m0 +m1q1 + · · ·+mj−1qj−1)+mjqj < qj +(αj−1)qj = αjqj = qj+1.

(4) If the sequence (qn) is associated to a subset S (that is qn = Card(S/Mn)),

then we have qn ≤ qn+1 ≤ q.qn. As already said, (qn) is a non-

decreasing and non-stationary sequence. Note that the sequence

needs not to be strictly increasing and qn does not necessarily divide

qn+1, as shown by V = Z5 and S = 125Z5

⋃
{25 + 125Z5}

⋃
{1 +

125Z5}. One has: S/(5) = {0, 1} and q1 = 2; S/(25) = {0, 1} and

q2 = 2; S/(125) = {0, 1, 25} and q3 = 3; q4 = 15 and, more generally,

qn = 3× 5n−3 for n ≥ 3.

Definition 2.3. Let (en)n≥0 be a sequence of elements of a commutative

monoid (with an identity element). The extension of the sequence (en)n≥0

by (qn)-digit expansion is the following sequence (fm)m≥0:

fm = em0
0 × em1

1 × · · · × emr
r

where m = m0 +m1q1 + · · ·+mrqr is the (qn)-digit expansion of m.

Remarks 2.4. (1) f0 = 1.

(2) If there exists j such that qj = qj+1, then the term ej of the sequence

(en) never appears in any element of the sequence (fm).

(3) For qr ≤ m < qr+1, if m = mrqr +Nr with Nr < qr, then

fm = emr
r × fNr .
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We now try to find conditions on the subset S and on the sequence (en)n≥0

of elements of C(Ŝ, V̂ ) for the sequence (fm)m≥0 to be a normal basis of

C(Ŝ, K̂). We first assume that the sequence (en)n≥0 satisfies a condition

similar to that considered by K. Conrad. More precisely, let (en)n≥0 be a

sequence of elements of C(Ŝ, V̂ ) such that, for each n ≥ 0, the reduction en

of en in C(Ŝ, k) is constant on the cosets of S modulo Mn+1. Denote by

(fm)m≥0 the extension of (en)n≥0 by (qn)-digit expansion. It is obvious that,

for 0 ≤ m < qr, the reductions fm in C(Ŝ, k) are constant on the cosets of

S modulo Mr. In order to determine whenever this sequence is a normal

basis of C(Ŝ, K̂), we use the following lemma.

Lemma 2.5. Let (gn)n≥0 be a sequence of C(Ŝ, V̂ ) such that, for 0 ≤ m <

qr, the reduction gm in C(Ŝ, k) are constant on the cosets of S modulo Mr.

The following assertions are equivalent:

(1) (gn) is a normal basis of C(Ŝ, K̂),

(2) (gn) is a k-linear basis of C(Ŝ, k),

(3) for each integer r ≥ 1, (gm)0≤m<qr is a k-basis of the space F(S/Mr, k)

of functions from S/Mr to k,

(4) for each n, the gm’s (0 ≤ m < n) are k-linearly independent.

Proof. Proposition 1.2 gives the equivalence between assertions (1) and (2).

The equivalence between assertions (3) and (4) follows from the dimension

of the vector space F(S/Mr, k). Obviously, (2) implies (4). Finally, (3)

implies (2) as a continuous function from Ŝ to k is locally constant and can

be seen as a map from S/Mr to k for some r. �

Proposition 2.6. Let (gn)n≥0 be a sequence of functions such that, for

every 0 ≤ m < qr, the reductions gm in C(Ŝ, k) are constant on the cosets

of S modulo Mr. For r ≥ 1, let Gr be the following matrix:

Gr = (gj(ai))0≤i,j<qr ,

where (ai)0≤i<qr denotes a complete set of residues of S modulo Mr. Then

the following properties hold true:

(1) detGr does not depend on the ai’s (except for the sign).

(2) The gm’s (0 ≤ m < qr) are k-linearly independent if and only if

detGr 6= 0.

Proof. (1) If (bi)0≤i<qr is another complete set of residues of S modulo Mr,

there exists a permutation σ such that bi ≡ aσ(i) (mod Mr). As the gj’s

are constant on the cosets of S modulo Mr, the rows of (gj(ai))0≤i,j<qr and

of (gj(bi))0≤i,j<qr are then permuted.

(2) Suppose that the λm’s ∈ k (0 ≤ m < qr) are such that

λ0g0 + λ1g1 + · · ·+ λqr−1gqr−1 = 0.
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Evaluating the gm’s (0 ≤ m < qr) on the qr elements of S/Mr, we obtain

a system of qr equations in the qr unknowns λm. This system has a unique

solution if and only if detGr 6= 0. �

3. Normal basis obtained by the (qn)-digit principle

We still consider hypotheses and notation introduced in Section 2 and we

complete them by the following:

Hypotheses and notation. Let r ∈ N be fixed and denote by (ai)0≤i<qr+1 a

complete set of residues of S modulo Mr+1 such that (ai)0≤i<qr is a complete

set of residues of S modulo Mr. For 0 ≤ i < qr, let

γi = Card{j | 0 ≤ j < qr+1, aj ≡ ai (mod Mr)}.

Moreover we order the ai’s (0 ≤ i < qr) such that:

γ0 ≥ · · · ≥ γqr−1 ≥ 1.

Let (en)n≥0 be a sequence of elements of C(Ŝ, V̂ ) such that, for each n ≥ 0,

the reduction en of en in C(Ŝ, k) is constant on the cosets of S modulo

Mn+1. Denote by (fm)m≥0 the extension of (en)n≥0 by (qn)-digit expansion.

Clearly, we have:

Lemma 3.1. There are exactly γqr−1 complete sets of residues of S modulo

Mr in a complete set of residues of S/Mr+1. Moreover, for all 0 ≤ i, j <

qr+1 such that ai ≡ aj (mod Mr), one has:

(1) ∀k < r, ek(ai) = ek(aj)

(2) ∀k < qr, fk(ai) = fk(aj).

3.1. A necessary condition.

Lemma 3.2. Suppose that there exists r such that qr divides qr+1 and write

qr+1 = αr × qr. If the fm’s (0 ≤ m < qr+1) are k-linearly independent, then

γ0 = γ1 = · · · = γqr−1 = αr =
qr+1

qr
.

Proof. Assume that γ0 > αr. First, remark that qr < qr+1 since, if qr = qr+1,

one has γi = 1 = αr for every i. In the matrix Gr+1 = (f j(ai))0≤i,j<qr+1 , we

arrange the columns with respect to the following sequence:

1, er, · · · , eαr−1
r , f 1, · · · , f 1e

αr−1
r , · · · , f iejr, · · · , f qr−1e

αr−1
r .

We denote by Ci,j the column corresponding to f ie
j
r and, for 1 ≤ i < qr and

0 ≤ j < αr, we use the following elementary transformations on columns :

Ci,j ← Ci,j − f i(a0)C0,j.

For 1 ≤ l < qr+1, the term in the column Ci,j and the row Ll becomes:

f i(al)e
j
r(al)− f i(a0)e

j
r(al).
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It follows from Lemma 3.1 that, whenever l (0 ≤ l < qr+1) is such that

al ≡ a0 (mod Mr), f i(a0) = f i(al) and, after permutations on the rows of

the matrice, the γ0 first new rows (corresponding to such an al) end with

null terms. Consequently, the new matrix is of the form(
A | 0
B | C

)
where A ∈Mαr(k),

and, as γ0 > αr, the first line of C is null. Finally,

detGr+1 = detGr+1 = detA× detC = 0.

�

This necessary condition defines a class of subsets of V called Legendre

subsets in [7]. Before stating our main theorem, we recall some properties

of these sets.

3.2. Legendre sets.

Definition 3.3. The subset S is called a Legendre set if, for every r in N,

each class of S modulo Mr contains the same number of elements modulo

Mr+1.

If S is a Legendre set then, for every r ≥ 0, qr divides qr+1 and for every

0 ≤ i < qr, one has:

γi =
qr+1

qr
.

Such subsets have been studied by Y. Amice [1] as regular compact sub-

sets in the case when K is a local field and S is compact and by Y. Fares

and the author [7] in a more general setting . Let us recall a property of

the Legendre sets that we will use in the applications. We first recall the

following definitions:

Definition 3.4. Let (an)n≥0 be a sequence of elements of S.

(1) The sequence is called a v-ordering of S [3] when, for every n > 0,

v

( ∏
0≤k<n

(an − ak)

)
= inf

x∈S
v

( ∏
0≤k<n

(x− ak)

)
.

(2) The sequence is called a very well distributed sequence of S [1] if,

for every r > 0 and every λ ∈ N, (aλqr , · · · , a(λ+1)qr−1) is a complete

set of residues of S/Mr.

We then have a very nice property:

Proposition 3.5. [7]

• A very well distributed sequence of a subset is a v-ordering.

• Every v-ordering of a Legendre set is a very well distributed sequence.
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Here are some examples of Legendre sets:

Example 1. Assume that the residue field k is finite of cardinality q.

(1) V is a Legendre set and qn = q × qn−1 = qn.

(2) Let S = ∪rj=1bj + M, where b1, · · · , br are not congruent mod M,

then S is a Legendre set and qn = rqn−1.

(3) Let u ∈ V be such that v(u) = 0. Then S = {un; n ∈ N} is a

Legendre set.

We are ready to state our theorem.

3.3. Extension of Conrad’s q-digit principle.

Theorem 3.6. Let V be a discrete valuation domain with maximal ideal

M and residue field k = V/M. Let S be a precompact subset of V and,

for n ≥ 0, let qn = card(S/Mn). Assume that, for every r, qr divides

qr+1. Let (ei) be a sequence of elements of C(Ŝ, V̂ ) such that the reductions

ei ∈ C(Ŝ, k) are constant on the cosets of S modulo Mi+1 and suppose that,

for every r ≥ 0, the following map is injective:

φr :

{
S/Mr+1 → kr+1

x 7→ (e0(x), · · · , er(x))

Then the extension (fm)m≥0 of the (en)n≥0 by (qn)-digit expansion is a nor-

mal basis of C(Ŝ, K̂) if and only if S is a Legendre set.

Proof. The necessary condition follows from Lemmas 2.5 and 3.2. Using

Proposition 2.6, we show that the condition is sufficient. We prove by

induction on r that detGr 6= 0. For r = 0, one has

detG1 = V (e0(a0), · · · , e0(aq1−1))

where V (·) denotes the Vandermonde determinant. By hypothesis, φ0 is

injective, hence detG1 6= 0. Now, we suppose that detGr 6= 0 and we show

that detGr+1 6= 0. First, as there are exactly αr complete sets of residues

of S modulo Mr in (ai)0≤i<qr , we can assume that for 0 ≤ i < qr and

0 ≤ l < αr,

ai+lqr ≡ ai (mod Mr).

then we compute detGr+1 by ordering each row Lr+1 in the matrix as fol-

lows:

L1 = (f 0, · · · , f q1−1) = (1, e0, · · · , eq1−1
0 )

and, for r ≥ 1,

Lr+1 = (Lr, erLr, · · · , eαr−1
r Lr).
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So we can write:

Gr+1 =


Iqr J0 . . . Jαr−1

0
... J1 . . . Jαr−1

1
...

...
...

...
Iqr Jαr−1 . . . Jαr−1

αr−1

×
 Gr 0 0

0
. . . 0

0 0 Gr

 ,

with, for 0 ≤ l < αr,

Jl =

 er(alqr) 0 0

0
. . . 0

0 0 er(a(l+1)qr−1)

 .

We now compute the determinant of B, noticing that the matrices Jl and

Jj are commuting:

detB = V (J0, · · · , Jαr−1) =
∏

0≤l<j<αr

det(Jj − Jl).

We then obtain

detGr+1 = detGαr
r ×

qr−1∏
i=0

V
(
er(ai), er(aqr+i), · · · , er(a(αr−1)qr+i)

)
.

By induction hypothesis, detGr 6= 0. Moreover, as for j < r, one has, for

every 0 ≤ l < αr,

ej(ai) = ej(alqr+i),

the injectivity of φr+1 implies that, for 0 ≤ j < l ≤ αr, one has

er(ai+jqr) 6= er(ai+lqr).

Hence, for every i (1 ≤ i ≤ qr),

V
(
er(ai), er(aqr+i), · · · , er(a(αr−1)qr+i)

)
6= 0.

�

4. Applications

4.1. Examples of normal bases obtained by the (qn)-digit princi-

ple. For the following examples, the hypotheses of Theorem 3.6 are clearly

satisfied.

Proposition 4.1. Let S be a Legendre set, and denote by F a complete set

of residues of V mod M. Each x in S has a unique representation of the

form x = x0 + x1π + · · ·+ xjπ
j + · · · with xj ∈ F . For each j ≥ 0, let

ωj :

{
S → V
x 7→ xj

Then (Ωm), the extension of (ωn) by (qn)-digit expansion is a normal basis

of C(Ŝ, K̂).
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The second example uses hyperdifferential operators as defined by Voloch

in [9]: We suppose here that the characteristic of V is p > 0, then we can

consider V as a k-vector space. He defines a sequence of k-linear maps δr

by the following condition:

∀r ∈ N,∀m ∈ N, δr(πm) =

(
m
r

)
πm−r.

Proposition 4.2. Let S be a Legendre set of V . The sequence (∆m) exten-

sion of (δr) by (qn)-digit expansion is a normal basis of C(Ŝ, K̂).

4.2. A polynomial example. We end with a polynomial example. We

already know ([5] or [4]) that, if S is a subset in a discrete valuation ring V

and (an)n≥0 is a v-ordering of S, then the sequence of polynomials :

ur(X) =
∏

0≤i<r

X − ai
ar − ai

is a normal basis of C(Ŝ, K̂). Here is another example:

Proposition 4.3. Let S be a Legendre set and (an)n≥0 be a v-ordering of

S. Let (er) defined by :

e0(X) = X

er(X) =
∏

0≤i<qr

X − ai
aqr − ai

for r ≥ 1.

The sequence (fm), extension of (er) by (qn)-digit expansion, is a normal

basis of C(Ŝ, K̂).

Proof. Of course, er is an integer-valued polynomial, with deg(er) = qr.

First, we want to prove that for every r, er ∈ C(Ŝ, k) is constant on the

cosets of S modulo Mr+1. As recalled in Proposition 3.5, every v-ordering

of a Legendre set S is very well distributed in S. So, for each x in S, there

exists a unique s such that 0 ≤ s < qr+1 and x ≡ as [Mr+1]. We have to

prove that

er(x) = er(as).

First suppose that s ≥ qr.

∀i ∈ {0, . . . , qr − 1}, x− ai
as − ai

= 1 +
x− as
as − ai

.

As v(x− as) ≥ r + 1 and v(as − ai) < r + 1, we have

x− as
as − ai

≡ 0 [M] and
∏

0≤i≤qr−1

x− ai
as − ai

≡ 1 [M].

To conclude, write

er(x) = er(as)×
∏

0≤i<qr

x− ai
as − ai

.

Then er(x) ≡ er(as) [M].
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Suppose now that s < qr. Then er(as) = 0. If we suppose that

v(
∏

0≤i<qr

(x− ai)) = v(
∏

0≤i<qr

(aqr − ai)),

then x could replace aqr in a v-ordering. Meanwhile, we could construct a

new v-ordering

a0, . . . , aqr−1, x, bqr+1, . . . , bqr+1−1, . . .

Since a v-ordering must be a very well distributed sequence,

a0, . . . , aqr−1, x, bqr+1, . . . , bqr+1−1

must be a complete set of residues modulo Mr+1. This is impossible, since

v(x− as) ≥ r + 1. So

v(
∏

0≤i<qr

(x− ai)) > v(
∏

0≤i<qr

(aqr − ai)) and er(x) = 0.

We now prove by induction on r that the φr’s are injective. It is equivalent

to prove that

Φr(x) = Φr(y) ⇒ x ≡ y (mod Mr+1),

where the map Φr is

Φr :

{
S → kr+1

x 7→ (e0(x), . . . , er(x))

Since e0(X) = X, clearly e0(x) = e0(y) implies x ≡ y (mod M), so φ0 is

injective. We then suppose that φr−1 is injective. If x 6≡ y (mod Mr), it

follows by induction that Φr−1(x) 6= Φr−1(y) and then Φr(x) 6= Φr(y). Thus

we may assume that x and y are both in the class of some aj (j < qr)

modulo Mr:

x = aj + bπr and y = aj + cπr, with b, c ∈ V.

Considering the classes of b and c in S/M, we show that b 6= c implies

er(x) 6= er(y).

1) We first note that, for b 6= 0, er(x) 6= 0.

Indeed, a0, . . . , aqr−1, x are then in distinct classes modulo Mr+1. They

thus form the beginning of a very well distributed sequence and hence, this

sequence is a v-ordering. Then

v(
∏

0≤i<qr

(aqr − ai)) = v(
∏

0≤i<qr

(x− ai)).

Then v(er(x)) = 0, and er(x) 6= 0.

If c = 0, as er is constant on cosets modulo Mr+1, er(y) = er(aj) = 0, and

then er(y) 6= er(x). Similarly, if b = 0, c 6= 0, we have again er(y) = 0 and
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er(x) 6= 0.

2) Now we suppose that b 6= 0, c 6= 0, then er(x) 6= 0, er(y) 6= 0.

er(x)

er(y)
=
x− aj
y − aj

×
∏

0≤k<qr,k 6=j

x− ak
y − ak

For k 6= j, we have
x− ak
y − ak

= 1 +
x− y
y − ak

.

As v(x− y) = r and v(y − ak) < r, hence x−y
y−ak

is in V and

x− ak
y − ak

≡ 1 (mod M).

On the other hand,
x− aj
y − aj

=
b

c
.

As V is local and c 6∈M, b
c

is an element of V , thus so is er(x)
er(y)

and

er(x)

er(y)
≡ b

c
(mod M).

Now, b 6= c implies b
c
6= 1, hence er(x)

er(y)
6= 1, that is er(x) 6= er(y). �
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