NORMAL BASES OF RINGS OF CONTINUOUS
FUNCTIONS CONSTRUCTED WITH THE (g,)-DIGIT
PRINCIPLE

S. EVRARD

When K is a local field with valuation ring V', K. Conrad [6] constructs
normal bases of the ring C(V, K) of continuous functions from V to K,
using what he calls the extension by ¢-digit expansion, where ¢ denotes the
cardinality of the residue field k£ of V. In this article, we extend Conrad’s
method to the ring C(S, K) of continuous functions from S to K where S
denotes a subset of V. Moreover, we no more assume the finiteness of the
residue field k, but replace this condition by the precompactness of S.

We first recall in Section 1 the notion of normal basis and Conrad’s ¢-
digit principle. In Section 2, we define the extension by (g, )-digit expansion.
Then, in Section 3, we generalize Conrad’s ¢-digit principle by our (g, )-digit
principle (Theorem 3.6), that may be applied in particular to Amice’s reg-
ular compact subsets [1]. In section 4, we end with several examples.

1. THE ¢-DIGIT PRINCIPLE

Let (K, ||) be a complete valued non-archimedean field. Denote by V' the
corresponding valuation ring, 90 its maximal ideal and k its residue field.
Let (E,|| - ||) be an ultrametric Banach space over K.

Definition 1.1. A sequence (e,),>o of elements of E is called a normal

basis of E(orthonormal basis in [6]) if

(1) each € FE has a representation as x = En>0 Tne, Where z, € K
and lim,,_ z, =0,

(2) in the representation z = ) -, x,e,, we have |[z|| = sup,, |2,|.

Let By = {z € E/||z|| < 1}. Then Ey/9ME, is a k-vector space. For e, €
Ey, €, denotes the reduction of e, modulo 9ME,. The following proposition
allows to characterize normal bases in purely algebraic terms.
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Proposition 1.2. [2, prop.3.1.5] Assume that the valuation is discrete and
that || E|| = |K|. A sequence (e,)nen of elements of E is a normal basis of E
if and only if e, € Ey for every n > 0 and (€,)nen is a k-basis of Eo/IMEy.

Assuming that £ is finite with cardinality ¢ (hence K is a local field),
K. Conrad [6] uses extension by ¢-digit expansion to construct some normal
bases of the ring C(V, K'). We first recall this notion.

Definition 1.3. Let (e,),>0 be a sequence of elements of C(V, V). We
construct another sequence of functions (f;) in the following way :
then fi=ed e

T

The sequence (f;) is called the extension of the (e,) by q-digit expansion.

In characteristic p, V' contains a field which is isomorphic to k& and then,
it may be seen as a k-vector space. In this case, the ¢-digit principle has

the following form:

Proposition 1.4. Digit principle in characteristic p [6, Theorem 2]

If the sequence (e,) is a normal basis of the ring of continuous k-linear
functions from V' to K, then the extension of the (e,) by q-digit expansion
is a normal basis of C(V, K).

As noted by K. Conrad, in characteristic 0 there is no analogue of the
subspace of linear functions. Nevertheless, there is another version that

holds in any characteristic :

Proposition 1.5. Digit principle in any characteristic |6, Theorem 3|
Let (en)n>0 be a sequence of elements of C(V, V) such that the reductions
e € C(V, k) are constant on the cosets modulo M and the map
v/t — k™ o
- _ _ 1s bijective.
’ { v (@), () Y
Then the extension of the (e,) by q-digit expansion is a normal basis of

eV, K).

To generalize the g¢-digit principle to subsets S, the map ¢, will be re-
quired to be only injective, as S/9M" does not necessarily contain ¢" ele-

ments.

2. THE (g,)-DIGIT EXPANSION

Hypotheses and notation. Let V be a discrete valuation domain, with
valuation v. Denote by K the quotient field of V', 9 the maximal ideal of
V', m a generator of M ( with v(7) = 1), k = V/9M the residue field and ¢
the cardinality (finite or not) of k. Let S be an infinite subset of V.
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We denote by 17, K , and S the completions of V', K and S with respect
to the M-adic topology. We still denote by v the extension of v to K. For
every n > 0, we denote by S/9" the set formed by the classes of S mod
™ and we define g, as the cardinality of S/9M™ (¢o = 1).

We assume that S is precompact, that is, S is compact, and we know that
this is equivalent to the fact that all the ¢,’s are finite.

Of course, the sequence (g,) is a non-decreasing and non-stationary se-

quence. Now, we define the (g, )-digit expansion of a positive integer m:

Proposition 2.1. Let (g,)n>0 be a non-decreasing and non-stationary se-
quence of integers, with qo = 1. For every m > 0, there exists a unique

representation of m as:
m=mg+miqy + -+ MGy
where r is such that
¢ <m < (gri1
and where, for every j in [1,7],
m; >0  and mo+miq + - +miq; < giqa-

This representation is called the (g,)-digit expansion of m.

Proof. Suppose there is such a representation of m. For 0 < k < r, let
N =mg+miqy + -+ - + mpqx.
Hence, for 1 < k£ < r, one has:
Ny = Ni_1 + myqi, with Np_1 < qg.

So, my is the quotient of the division of Ny by ¢gr and Ny_; is the rest.
Consequently, the sequence (my) is uniquely determined.

Conversely, let us prove that such a sequence satisfies our hypothesis. Con-
sider the sequences N,, N,_1,---, Ny and m,,m,_q,--- ,mg defined by in-

duction in the following way:

mk:[&} for0<k<r

Nk—l = Nk — Mirqr for1 S k S r.
By definition of r, m, = [m/q,] # 0. At each step (1 < k < r), one has
N1 < qr and m = Np_1 + mgqr + - - - + m,q,.. Indeed,

Zml% = Z(Nz - lel) =m — Np_.
I=k k

=
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Hence,

N,
m:N0+mIQI+"'+mTQT7 moy = [q_0:| :NO‘
0

Finally, m = ", _, mqy and, for 0 <k <r,
Mo +migi + -+ + Mgy = m — (Mpg1Ger + -+ megr) = N < Grg-

g

Remarks 2.2. (1) Let m = mog + miq1 + --- + m,q, be the (g,)-digit
expansion of m. Then, for 0 < j < r, one has:
e 0<m; < q{}—jl,
e in particular, if ¢; = g;41 then m; = 0.

(2) The condition 0 < m; < % is not sufficient to define the m;’s.
If we consider the sequence ¢, = 2n + 1 of odd integers, the (g,)-
digit expansion of m = 5 is m = 5 = ¢y, but one can also write
m=2+3=2q +q Withm0:2<g—;:3

(3) On the contrary, the condition 0 < m; < q“” does characterize the
(gn)-digit expansion when ¢; divides g;;1. Indeed if a; = ¢j+1/4;
is an integer and 0 < m; < «;, then my < ¢, and by induction,
(mo+magu+---+mj1g;-1) +m;q; < g5+ (a; —1)¢; = a;q; = g1,

(4) If the sequence (g,) is associated to a subset S (that is ¢, = Card(S/9M")),
then we have ¢, < ¢,11 < ¢.¢,. As already said, (g,) is a non-
decreasing and non-stationary sequence. Note that the sequence
needs not to be strictly increasing and ¢, does not necessarily divide
Gn+1, as shown by V' = Zs and S = 125Zs5(J{25 + 125Z5} U{1 +
125Z5}. One has: S/(5) = {0,1} and ¢; = 2; S/(25) = {0,1} and
q2 = 2; 5/(125) = {0,1,25} and ¢3 = 3; ¢4 = 15 and, more generally,
gn =3 x 5" 73 for n > 3.

Definition 2.3. Let (e,)n>0 be a sequence of elements of a commutative
monoid (with an identity element). The extension of the sequence (ey)n>0

by (qn)-digit expansion is the following sequence ( fi,)m>o:
fmn =€y x et x - xel
where m = mg + miqy + -+ - + m,q, is the (g,)-digit expansion of m.

Remarks 2.4. (1) fo=1.
(2) If there exists j such that ¢; = g;j41, then the term e; of the sequence
(e,) never appears in any element of the sequence (f,).
(3) For ¢, <m < ¢41, if m = m,q, + N, with N, < g, then

fm = 6?% X fNT'
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We now try to find conditions on the subset S and on the sequence (ey,),>0
of elements of C(§ : 17) for the sequence (f,)m>o to be a normal basis of
C(S,K). We first assume that the sequence (en)n>0 satisfies a condition
similar to that considered by K. Conrad. More precisely, let (e,)n,>0 be a
sequence of elements of C(§ , 17) such that, for each n > 0, the reduction e,
of e, in C(:S'\, k) is constant on the cosets of S modulo 9™, Denote by
(fm)m>o0 the extension of (e,),>0 by (¢, )-digit expansion. It is obvious that,
for 0 < m < ¢, the reductions f,, in C (§ ,k) are constant on the cosets of
S modulo 9M". In order to determine whenever this sequence is a normal

basis of C(S, K), we use the following lemma.

Lemma 2.5. Let (g,)n>0 be a sequence of C(g, \A/) such that, for 0 < m <
qr, the reduction g,, in C(§, k) are constant on the cosets of S modulo M".
The following assertions are equivalent:

(1) (ga) is a normal basis of C(S, K),

(2) (g,) is a k-linear basis of C(S, k),

(3) for each integerr > 1, (G, )o<m<q, @S a k-basis of the space F(S/IMM", k)

of functions from S/M" to k,
(4) for each n, the g,,’s (0 < m < n) are k-linearly independent.

Proof. Proposition 1.2 gives the equivalence between assertions (1) and (2).
The equivalence between assertions (3) and (4) follows from the dimension
of the vector space F(S/9M", k). Obviously, (2) implies (4). Finally, (3)
implies (2) as a continuous function from S to k is locally constant and can
be seen as a map from S/9M" to k for some . 4

Proposition 2.6. Let (g,)n>0 be a sequence of functions such that, for
every 0 < m < q,, the reductions g, in C(:S'\, k) are constant on the cosets
of S modulo M". Forr > 1, let GG, be the following matrix:

G, = (9;(ai))o<ij<qrs
where (a;)o<i<q, denotes a complete set of residues of S modulo M". Then

the following properties hold true:

(1) det G, does not depend on the a;’s (except for the sign).
(2) The g,,’s (0 < m < q,) are k-linearly independent if and only if
det G, # 0.

Proof. (1) If (bi)o<i<q, is another complete set of residues of S modulo 9",
there exists a permutation o such that b; = aq) (mod 9M"). As the §j’s
are constant on the cosets of S modulo 9", the rows of (g;(a;))o<i <4 and
of (9,(bi))o<i,j<q. are then permuted.

(2) Suppose that the A,;,,’s € k (0 < m < g,) are such that

Aogo + MGy + -+ Ag1G,, 1 = 0.
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Evaluating the g,,’s (0 < m < ¢.) on the ¢, elements of S/9M", we obtain
a system of ¢, equations in the ¢, unknowns \,,. This system has a unique

solution if and only if det G,. # 0. O

3. NORMAL BASIS OBTAINED BY THE (¢, )-DIGIT PRINCIPLE

We still consider hypotheses and notation introduced in Section 2 and we
complete them by the following:
Hypotheses and notation. Let r € N be fixed and denote by (a;)o<i<q,,, a
complete set of residues of S modulo 9" such that (a;)o<i<g, is a complete
set of residues of S modulo 9". For 0 <17 < g, let

v =Card{j |0 <j < ¢41,a; =a; (mod IM")}.
Moreover we order the a;’s (0 < i < g,) such that:
Y = 2 Vg1 2 L

Let (e,)n>0 be a sequence of elements of C(S, V) such that, for each n > 0,
the reduction €, of e, in C(§ ,k) is constant on the cosets of S modulo
MM+ Denote by (fm)m>o the extension of (e,)n>0 by (¢,)-digit expansion.
Clearly, we have:

Lemma 3.1. There are exactly v, —1 complete sets of residues of S modulo
IMM" in a complete set of residues of S/M"TL. Moreover, for all 0 < i,j <
¢r41 such that a; = a; (mod IM"), one has:

(1) Vk < r,ex(a;) = eg(ay)

(2) Yk < g, frla) = Filay).

3.1. A necessary condition.

Lemma 3.2. Suppose that there exists r such that q,. divides q,1 and write
Gry1 = Qp X qp. If the f,.’s (0 < m < qu41) are k-linearly independent, then
4r+1

G
Proof. Assume that vy > «,.. First, remark that ¢. < ¢,1 since, if ¢, = ¢,11,

70:71:'..:76},»—1:0{1”:

one has v, = 1 = q, for every i. In the matrix G,11 = (f;(a:))o<ij<qg o1, We

arrange the columns with respect to the following sequence:

— —ar—1 f 7 =ar—1
1767'7"' e." 7f17"'7f1€rr )

»Er

fiel - fo et
We denote by C; ; the column corresponding to f.el and, for 1 <i < ¢, and

0 <j < a,, we use the following elementary transformations on columns :

Cij — Cij — fi(ao)Coy.
For 1 <1 < gy41, the term in the column C;; and the row L; becomes:

Jila)el(a) — fi(ao)el(a).
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It follows from Lemma 3.1 that, whenever [ (0 < [ < g,,1) is such that
a; = ag (mod M"), f,(ap) = f;(a;) and, after permutations on the rows of
the matrice, the v first new rows (corresponding to such an a;) end with
null terms. Consequently, the new matrix is of the form
Al 0
(B | C’) where A € M,, (k),
and, as vy > «,, the first line of C' is null. Finally,
det G411 = det G,y = det A x det C' = 0.

0

This necessary condition defines a class of subsets of V' called Legendre
subsets in [7]. Before stating our main theorem, we recall some properties

of these sets.
3.2. Legendre sets.

Definition 3.3. The subset S is called a Legendre set if, for every r in N,
each class of S modulo 9" contains the same number of elements modulo
mr+t,

If S is a Legendre set then, for every r > 0, ¢, divides ¢,; and for every

0 <i < g, one has:
_ qr+1
Qr
Such subsets have been studied by Y. Amice [1] as regular compact sub-

%

sets in the case when K is a local field and S is compact and by Y. Fares
and the author [7] in a more general setting . Let us recall a property of
the Legendre sets that we will use in the applications. We first recall the
following definitions:

Definition 3.4. Let (a,),>0 be a sequence of elements of S.
(1) The sequence is called a v-ordering of S [3] when, for every n > 0,

v( H (an—ak)> :;2£U< H (x—ak)>.

0<k<n 0<k<n
(2) The sequence is called a very well distributed sequence of S [1] if,
for every r > 0 and every A € N, (axg, .- ,a@(r+1)q,—1) 1S @ complete

set of residues of S/9M".

We then have a very nice property:

Proposition 3.5. [7]

o A very well distributed sequence of a subset is a v-ordering.

e Fveryv-ordering of a Legendre set is a very well distributed sequence.
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Here are some examples of Legendre sets:

Ezxample 1. Assume that the residue field & is finite of cardinality q.
(1) V is a Legendre set and ¢, = ¢ X ¢,—1 = ¢".
(2) Let S = Ui_;b; + M, where by, -+ ,b, are not congruent mod N,
then S is a Legendre set and ¢, = r¢" L.
(3) Let u € V be such that v(u) = 0. Then S = {u";n € N} is a
Legendre set.

We are ready to state our theorem.

3.3. Extension of Conrad’s ¢-digit principle.

Theorem 3.6. Let V' be a discrete valuation domain with mazximal ideal
M and residue field k = V/OM. Let S be a precompact subset of V' and,
forn > 0, let g, = card(S/9M™). Assume that, for every r, q. divides
Grs1. Let (e;) be a sequence of elements of C(S, V) such that the reductions
€; € C(§, k) are constant on the cosets of S modulo M and suppose that,
for every r > 0, the following map is injective:
‘ S/gﬁr—&-l N kr—i—l
o { v e @) e )

Then the extension (fm)m>o of the (en)n>0 by (¢n)-digit expansion is a nor-
mal basis ofC(:S'\, IA() if and only if S is a Legendre set.

Proof. The necessary condition follows from Lemmas 2.5 and 3.2. Using
Proposition 2.6, we show that the condition is sufficient. We prove by
induction on r that det G, # 0. For r = 0, one has

det G| = V(go(ao)y T 7EO(CLQ1*1))

where V(-) denotes the Vandermonde determinant. By hypothesis, ¢q is
injective, hence det G; # 0. Now, we suppose that det G, # 0 and we show
that det G411 # 0. First, as there are exactly «, complete sets of residues
of S modulo M" in (a;)o<i<q., We can assume that for 0 < i < ¢, and
0<Il<a,

Qitlg, = a; (mod M").

then we compute det G,; by ordering each row L,.; in the matrix as fol-

lows:

Ll = <f07. .. 7fq1—1) = (1750,. .. ,Eglfl)
and, for r > 1,
Lojw = (Ly, &Ly, 8% L),

»Er



THE ¢,-DIGIT PRINCIPLE 9

So we can write:

I, Jo ... Jo!
v JO P G, 0 0
Gy = A R R
. . . 1_1 0 O Gr
Iy, Ja,—1 ... Jao‘:_l
with, for 0 <[ < «,
E"‘(Cqu'r) 0 O
Jp = 0 0

0 0 &(aurng—1)
We now compute the determinant of B, noticing that the matrices J; and

J; are commuting:

det B=V(Jo, -, Jo,-1) = [ det(J; =)

0§l<j<ar
We then obtain
QT_l
det Gppq = det G2 x [ V (8r(a:), 8 (ag,44), -+ s Er(a(ay—1)g,+4)) -
i=0

By induction hypothesis, det G, # 0. Moreover, as for j < r, one has, for
every 0 <[ < a.,

€j(a:) = €j(ag, +i),
the injectivity of ¢,1 implies that, for 0 < 7 < < a., one has
ér(ai+jq7«) 7é Er(ai+ZQT)'

Hence, for every i (1 <i<g,),

4 (57«(%)’@(@%“), s ,Er(a(ar—l)qwi)) # 0.

4. APPLICATIONS

4.1. Examples of normal bases obtained by the (g,)-digit princi-
ple. For the following examples, the hypotheses of Theorem 3.6 are clearly
satisfied.

Proposition 4.1. Let S be a Legendre set, and denote by F' a complete set
of residues of V- mod M. FEach x in S has a unique representation of the
form x =xg+xm+ -+ a;m 4+ -+ withx; € F. For each j >0, let
{ S —- V
wj :
T =T

Then (), the extension of (wy) by (q,)-digit expansion is a normal basis

of C(S, K)
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The second example uses hyperdifferential operators as defined by Voloch
in [9]: We suppose here that the characteristic of V' is p > 0, then we can
consider V' as a k-vector space. He defines a sequence of k-linear maps 6,
by the following condition:

r

Vr € N,Vm € N, §,(7"™) = ( m ) e

Proposition 4.2. Let S be a Legendre set of V. The sequence (A,,) exten-
sion of (0,) by (qn)-digit expansion is a normal basis of C(§, IA()

4.2. A polynomial example. We end with a polynomial example. We
already know ([5] or [4]) that, if S is a subset in a discrete valuation ring V'
and (ay,)n>0 is a v-ordering of S, then the sequence of polynomials :

U,T,(X): H X—ai

a, — a;
0<i<r T v

is a normal basis of C (§ K ). Here is another example:

Proposition 4.3. Let S be a Legendre set and (ay)n>0 be a v-ordering of
S. Let (e,) defined by :

60(X) =X
X —ay

e (X) = H - _C;} forr > 1.
0<i<q. I v

The sequence (f,,), extension of (e;) by (q,)-digit expansion, is a normal

basis OfC(:g\,[A().

Proof. Of course, e, is an integer-valued polynomial, with deg(e,) = g..
First, we want to prove that for every r,e,. € C (§ ,k) is constant on the
cosets of S modulo M" L. As recalled in Proposition 3.5, every v-ordering
of a Legendre set S is very well distributed in S. So, for each x in S, there
exists a unique s such that 0 < s < ¢,4; and z = a, [PM""!]. We have to
prove that

e-(r) =¢€.(ay).

First suppose that s > ¢,.
T —a; T — Qg
Vie{0,...,q. — 1}, =1+
as — a;

a's_ai.
Asv(x —as) > r+1and v(as — a;) <7+ 1, we have
o o and [ S =10

s — a;
0<i<g—1 ° "

as —

To conclude, write
Tr — a;

er(x) = e (as) X H

0<i<gr

as — a;

Then e,.(z) = e.(as) [IN].
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Suppose now that s < ¢.. Then €,(as) = 0. If we suppose that
o [T @=a))=o( I (ag —a)),
0<i<gr 0<i<gr
then x could replace a4, in a v-ordering. Meanwhile, we could construct a
new v-ordering
ag,-..,0q.—1,T, bqurl, . 7b(1r+1*17 .

Since a v-ordering must be a very well distributed sequence,

ap, . . - ,aqr_l,x,quH, ey qu+1_1

must be a complete set of residues modulo M1, This is impossible, since
v(r —as) >r+1. So

o( H (z — a;)) > v( H (ag, — a;)) and &.(z) = 0.

We now prove by induction on r that the ¢,’s are injective. It is equivalent
to prove that

P, (z) =®,.(y) = z=y (mod M),

where the map P, is

o, :{ S — frtl

r — (ey(x),...,e.(x))
Since €9(X) = X, clearly €y(z) = €y(y) implies z = y (mod M), so ¢ is
injective. We then suppose that ¢,_; is injective. If z # y (mod 9M"), it
follows by induction that ®,_;(z) # ®,_1(y) and then ®,(x) # ®,(y). Thus

we may assume that z and y are both in the class of some a; (j < ¢,)
modulo 9"

r=a;+br" and y = a; +cr”, with b,c € V.

Considering the classes of b and ¢ in S/9M, we show that b # ¢ implies
e-(z) # e (y). )

1) We first note that, for b # 0, €,.(x) # 0.

Indeed, ay,...,a, 1,7 are then in distinct classes modulo M™ . They
thus form the beginning of a very well distributed sequence and hence, this
sequence is a v-ordering. Then

ol IT (ag —a)y =o( [T (@ —a)).
0<i<gr 0<i<gr
Then v(e,(x)) =0, and €,(x) # 0.
If ¢ =0, as €, is constant on cosets modulo M, €,.(y) = €,.(a;) = 0, and

then €,(y) # €.(z). Similarly, if b = 0, ¢ # 0, we have again €,(y) = 0 and
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er(z) # 0.

2) Now we suppose that b # 0, ¢ # 0, then &,(z) # 0, &,(y) # 0.
eT(x)::v—ajx H T — ag

ly) Y g YT M
For k # j, we have
ook L Ty
Y — ag Yy — ag
N B oy e
Asv(z —y) =7 and v(y — a;) <7, hence ;=% is in V and
Ty (mod ).
Y —ak
On the other hand,
r—a; b
y—a; ¢
As V is local and ¢ & 9, ¢ is an element of V, thus so is Z:Eg and
, b
() = - (mod 9M).
ely) ¢
Now, b # ¢ implies g # 1, hence % # 1, that is €,(x) # €.(y). O
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