Licence mention Mathématiques - Semestre 3 Statistique Partiel du mercredi 25 octobre 2017

Durée 2h00

Tout document interdit - Calculatrices autorisées

Exercice 1

1) Ouestion de cours.

Dans une population donnée, on considère un caractère qualitatif à deux modalités A et B, représenté par une variable aléatoire X de loi de Bernoulli de paramètre p, où p est la proportion d'individus ayant la modalité A dans la population, avec $p \in [0, 1[$. On considère un échantillon $(X_1, ..., X_n)$ de taille n de X, où n est un entier

naturel tel que $np \ge 10$ et $n(1-p) \ge 10$. On désigne par $F = \frac{\sum_{i=1}^{n} X_i}{n}$ la fréquence d'échantillon. Soit $\alpha \in]0;1[$.

a) Exprimer $E\left(\sum_{i=1}^{n} X_i\right)$ et $V\left(\sum_{i=1}^{n} X_i\right)$, puis E(F) et V(F) en fonction de n et p. Justifier les réponses.

b) On suppose dans cette question

- b) On suppose dans cette question que p est connu. Déterminer, en détaillant les calculs, un intervalle de fluctuation de F (autour de p) au niveau $1 - \alpha$. Expliquer ce que signifie le résultat obtenu.
- c) On suppose dans cette question que p est inconnu. Déterminer, en détaillant les calculs, un intervalle de confiance de p au niveau $1 - \alpha$. Expliquer ce que signifie le résultat obtenu.
 - d) Justifier que $\left[f \frac{1}{\sqrt{n}} \right]$, $f + \frac{1}{\sqrt{n}}$ est un intervalle de confiance de p de niveau au moins égal à 95%.
- 2) Un laboratoire qui produit un médicament contre le cholestérol annonce que 30% des patients qui l'utilisent présentent des effets secondaires. Afin de tester cette hypothèse, un cardiologue sélectionne de manière aléatoire 100 patients traités avec ce médicament. L'étude réalisée auprès de ces 100 patients a dénombré 37 personnes présentant des effets secondaires.
- a) Donner un intervalle de fluctuation au niveau 95% de la fréquence de patients présentant des effets secondaires. Que peut-on en conclure quant à l'affirmation du laboratoire ?
- b) Effectuer un test statistique au risque 5% pour répondre à la question suivante : l'affirmation du laboratoire doit-elle être rejetée ? Le résultat de ce test est-il cohérent avec la conclusion du 2) a) ?
- c) Donner un intervalle de confiance au niveau 95% de la proportion de patients présentant des effets secondaires. Cet intervalle permet-il de prévoir le résultat du test effectué au 2) b) ? Justifier la réponse.
- Pour estimer la proportion d'utilisateurs de ce médicament présentant des effets secondaires, un organisme indépendant réalise une étude basée sur un intervalle de confiance au niveau de confiance 95%. Cette étude aboutit à une fréquence observée de 0,37 de patients présentant des effets secondaires, et à un intervalle de confiance qui ne contient pas la proportion 0,30. Quel est l'effectif minimal de l'échantillon de cette étude ? Justifier la réponse. On pourra utiliser le résultat du 1) d) pour simplifier les calculs.

Exercice 2

Dans le cadre de la fabrication de sa console de jeux XS5, une entreprise d'injection plastique est chargée de fabriquer les coques plastiques des manettes utilisées avec cette console XS5. Ces coques sont constituées de deux pièces, la demi-coque supérieure S et la demi-coque inférieure I, que l'on assemble lors du montage de la coque.

Lors de l'injection du plastique dans le moule, il arrive que la pression ne soit pas suffisante et que la pièce, bien que d'aspect conforme, ne soit pas de densité suffisante pour garantir certaines propriétés de résistance.

Une demi-coque supérieure S est jugée conforme lorsque sa masse est supérieure à 62 grammes.

On considère que la variable aléatoire X qui, à toute demi-coque supérieure S prélevée au hasard dans la production, associe sa masse en grammes.

- 1) On suppose que lorsque la presse est bien réglée, X suit la loi normale de moyenne 63 et d'écart-type 0,45.
- a) Quelle est la probabilité qu'une demi-coque supérieure S prise au hasard dans la production ait une masse comprise entre 62 et 64 grammes ?
- b) Quelle est la probabilité qu'une demi-coque supérieure S prise au hasard dans la production soit jugée conforme?

2) Toutes les semaines, le responsable de la production effectue un test statistique pour contrôler si la presse est toujours réglée correctement. En effet, un dérèglement de la presse pourrait conduire à une augmentation de la proportion de demi-coques supérieures S non conformes.

Lors d'un contrôle, le responsable prélève dans la production un échantillon de 100 demi-coques supérieures S. Sur cet échantillon, il a obtenu une moyenne de 62,93 g et un écart-type corrigé de 0,5.

- a) Effectuer un test statistique au risque 5% pour répondre à la question suivante : peut-on considérer que la masse moyenne des demi-coques supérieures S a baissé ? Préciser les hypothèses H_0 et H_1 de ce test et présenter les calculs effectués.
- b) Reprendre le test du 2) a) au risque 10%. En cas de décisions contradictoires avec les deux risques 5% et 10%, préciser et justifier la décision à retenir.

Exercice 3

Un laboratoire a mis au point un sérum permettant la prévention d'une contagion d'une maladie infantile. Un échantillon de 2000 enfants est divisé en deux groupes : 1000 enfants reçoivent une injection de sérum, les 1000 autres recevant une injection de placébo.

L'échantillon est mis au contact de la maladie. Dans le premier groupe, 40 enfants développent la maladie, tandis que 50 cas sont observés dans le deuxième groupe.

- 1) Effectuer un test statistique au risque 5% pour savoir si l'on peut considérer que le sérum est efficace. Préciser les hypothèses H_0 et H_1 de ce test et présenter les calculs effectués.
- 2) La conclusion de ce test serait-elle la même si on avait observé les mêmes nombres de cas (respectivement 40 et 50) sur deux groupes de 10 000 enfants ? Justifier la réponse.
- 3) La conclusion de ce test serait-elle la même si on avait observé les mêmes fréquences de cas sur deux groupes de 10 000 enfants ? Justifier la réponse.

Exercice 4

Dans une étude en biologie, on mesure la longueur des spécimens mâles et femelles de poissons adultes appartenant à la même espèce. On obtient les résultats suivants (longueurs en mm) :

Mâles	120	107	110	116	114	111	113	117	114	112
Femelles	110	111	107	108	110	105	107	106	111	111

On se demande si la taille des individus diffère entre les deux sexes de cette espèce.

- 1) Pour répondre à cette question, quel(s) test(s) statistique(s) peut-on mettre en oeuvre ? Quelles sont les hypothèses à formuler ?
 - 2) Mettre en oeuvre ce(s) test(s) au risque 5% et répondre à la question.

Exercice 5

Un centre de transfusion sanguine a enregistré la répartition suivante des groupes sanguins de 500 donneurs bénévoles :

О	A	В	AB
226	219	39	16

On sait que la répartition des groupes sanguins dans la population française est la suivante :

О	A	В	AB
42%	44%	10%	4%

Effectuer un test statistique au risque 5% pour répondre à la question suivante : la répartition des groupes sanguins des 500 donneurs bénévoles est-elle conforme, aux fluctuations d'échantillonnage près, à celle de la population française ? Préciser les hypothèses H_0 et H_1 de ce test et présenter les calculs effectués.

Formulaire de Statistique Inférentielle

1) Estimateurs

Paramètre	Estimateur	Statistique et sa loi
μ	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	$T = \frac{\overline{X} - \mu}{\frac{S_c}{\sqrt{n}}} : \begin{cases} \text{Student à } n - 1 \text{ d.d.l.} \\ \text{si échantillon gaussien} \end{cases}$
σ^2	$S_c^2 = \frac{n}{n-1} S^2$, avec $S^2 = \left(\frac{1}{n} \sum_{i=1}^n X_i^2\right) - (\overline{X})^2$	$Y^{2} = \frac{n-1}{\sigma^{2}} S_{c}^{2} : \begin{cases} \text{Khi deux à } n-1 \text{ d.d.l.} \\ \text{si échantillon gaussien} \end{cases}$
p	$F = \frac{\sum_{i=1}^{n} X_i}{n}$	$U = \frac{F - p}{\sqrt{\frac{p(1-p)}{n}}} : \text{Normale } \mathcal{N}(0;1) \text{ (approx.)}$ $\sin np \ge 10 \text{ et } n(1-p) \ge 10$

2) Intervalles de confiance au niveau $1 - \alpha$

Paramètre	Intervalle de confiance	Valeurs tabulées
μ	$i_{\mu} = \left[\bar{x} - \frac{S_c}{\sqrt{n}} t_{\alpha} , \bar{x} + \frac{S_c}{\sqrt{n}} t_{\alpha} \right]$	t_{α} tel que $P(-t_{\alpha} < T < t_{\alpha}) = 1 - \alpha$
σ^2	$i_{\sigma^2} = \left[\frac{n-1}{b_\alpha} s_c^2 , \frac{n-1}{a_\alpha} s_c^2 \right]$	a_{α} et b_{α} tels que $P(Y^{2} \geq a_{\alpha}) = 1 - \frac{\alpha}{2}$ $P(Y^{2} \geq b_{\alpha}) = \frac{\alpha}{2}$
p	$i_p = \left[f - \sqrt{\frac{f(1-f)}{n-1}} u_\alpha , f + \sqrt{\frac{f(1-f)}{n-1}} u_\alpha \right]$	u_{α} tel que $P(-u_{\alpha} < U < u_{\alpha}) = 1 - \alpha$

3) Tests de conformité au risque α

\mathbf{H}_0	\mathbf{H}_1	Statistique de test	Valeur(s) test(s)
$\mu = \mu_0$	$\mu \neq \mu_0$ $\mu > \mu_0$ $\mu < \mu_0$	$T = \frac{\overline{X} - \mu_0}{\frac{S_c}{\sqrt{n}}}$	$t_{\alpha} \text{ tel que } P(-t_{\alpha} < T < t_{\alpha}) = 1 - \alpha$ $t'_{\alpha} \text{ tel que } P(T < t'_{\alpha}) = 1 - \alpha, \text{ i.e. } t'_{\alpha} = t_{2\alpha}$ $t''_{\alpha} \text{ tel que } P(T \ge t''_{\alpha}) = 1 - \alpha, \text{ i.e. } t''_{\alpha} = t_{2-2\alpha} = -t_{2\alpha}$
$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$ $\sigma^2 > \sigma_0^2$ $\sigma^2 < \sigma_0^2$	$Y^2 = \frac{n-1}{\sigma_0^2} S_c^2$	a_{α} et b_{α} tels que $P(a_{\alpha} < Y^2 < b_{\alpha}) = 1 - \alpha$ b'_{α} tel que $P(Y^2 \ge b'_{\alpha}) = \alpha$, i.e. $b'_{\alpha} = b_{2\alpha}$ a''_{α} tel que $P(Y^2 \ge a''_{\alpha}) = 1 - \alpha$, i.e. $a''_{\alpha} = a_{2\alpha}$
$p = p_0$	$p \neq p_0$ $p > p_0$ $p < p_0$	$U = \frac{F - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	u_{α} tel que $P(-u_{\alpha} < U < u_{\alpha}) = 1 - \alpha$ u'_{α} tel que $P(U < u'_{\alpha}) = 1 - \alpha$, i.e. $u'_{\alpha} = u_{2\alpha}$ u''_{α} tel que $P(U \ge u''_{\alpha}) = 1 - \alpha$, i.e. $u''_{\alpha} = -u_{2\alpha}$

Pour un intervalle de confiance de μ et/ou un test de conformité sur μ avec un grand échantillon (quelconque), on peut approcher la loi de Student par la loi Normale $\mathcal{N}(0;1)$, et remplacer t_{α} , t'_{α} et t''_{α} par u_{α} , u'_{α} et u''_{α} .

4) Tests d'homogénéité au risque α

\mathbf{H}_0	\mathbf{H}_1	Statistique de test et sa loi sous l'hypothèse \mathbf{H}_0	Valeur(s) test(s)
$\sigma_1 = \sigma_2$	$\sigma_1 \neq \sigma_2$	$F = rac{S_{c,1}^2}{S_{c,2}^2}$: Snédécor à $(n_1 - 1, n_2 - 1)$ d.d.l. si échantillons indépendants gaussiens	f_{α} tel que $P(F \ge f_{\alpha}) = \frac{\alpha}{2}$ en travaillant $\operatorname{avec} f \ge 1$
$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$ $\mu_1 > \mu_2$ $\mu_1 < \mu_2$	$U = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\left(\frac{S_{c,1}^2}{n_1} + \frac{S_{c,2}^2}{n_2}\right)}} : $ Normale $\mathcal{N}(0;1)$ (approx.) si grands échantillons indépendants	$u_{lpha}\ u_{lpha}'$
$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$ $\mu_1 > \mu_2$ $\mu_1 < \mu_2$	Student à $n_1 + n_2 - 2$ d.d.l. $T = \frac{\overline{X_1} - \overline{X_2}}{s_{c,1,2} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} : \text{ (approx.) si petits échantillons indép. gaussiens et si } \sigma_1 = \sigma_2$ $\text{avec } s_{c,1,2}^2 = \frac{(n_1 - 1)s_{c,1}^2 + (n_2 - 1)s_{c,2}^2}{n_1 + n_2 - 2}$	$t_lpha \ t'_lpha \ t''_lpha$
$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$ $\mu_1 > \mu_2$ $\mu_1 < \mu_2$	$U = \frac{\overline{D}}{\frac{S_{c,d}}{\sqrt{n}}}$, où $D = X_1 - X_2$: Normale $\mathcal{N}(0;1)$ (approx.) si grands échantillons appariés	u_{α} u'_{α} u''_{α}
$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$ $\mu_1 > \mu_2$ $\mu_1 < \mu_2$	Student à $n-1$ d.d.l. $T = \frac{\overline{D}}{\frac{S_{c,d}}{\sqrt{n}}}$, où $D = X_1 - X_2$: si petits échantillons appariés gaussiens	$t_lpha \ t_lpha' \ t_lpha''$
$p_1 = p_2$	$p_1 \neq p_2$ $p_1 > p_2$ $p_1 < p_2$	$U = \frac{F_1 - F_2}{\sqrt{(\frac{1}{n_1} + \frac{1}{n_2})f_{1,2}(1 - f_{1,2})}} : \begin{cases} \text{Normale } \mathcal{N}(0;1) \text{ (approx.)} \\ \sin n_1 f_1 \ge 5, n_1(1 - f_1) \ge 5, \\ n_2 f_2 \ge 5, n_2(1 - f_2) \ge 5, \\ \operatorname{avec} f_{1,2} = \frac{n_1 f_1 + n_2 f_2}{n_1 + n_2} \end{cases}$	$u_{lpha} \ u_{lpha}' \ u_{lpha}''$

5) Test d'ajustement à une loi théorique à r modalités au risque α

Hypothèse H_0 : le caractère suit la loi théorique définie par les probabilités p_i . Hypothèse H_1 : $\overline{H_0}$.

Statistique de test :
$$D = \sum_{i=1}^{r} \frac{(N_i - np_i)^2}{np_i}$$
.

Loi de D sous l'hypothèse H_0 : khi deux à r-1-k d.d.l.

Valeur test : b_{α} tel que $P(D \ge b_{\alpha}) = \alpha$.

6) Test d'indépendance entre deux caractères à r et s modalités au risque α

Hypothèse H_0 : les deux caractères sont indépendants.

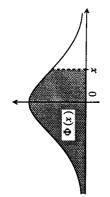
Hypothèse $H_1 : \overline{H_0}$.

Statistique de test :
$$D = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(N_{i,j} - np_{i,j})^2}{np_{i,j}}$$
, avec $np_{i,j} = \frac{n_{i,\bullet} n_{\bullet,j}}{n}$, $n_{i,\bullet} = \sum_{j=1}^{s} n_{i,j}$ et $n_{\bullet,j} = \sum_{i=1}^{r} n_{i,j}$.

Loi de D sous l'hypothèse H_0 : khi deux à (r-1)(s-1) d.d.l.

Valeur test : b_{α} tel que $P(D \ge b_{\alpha}) = \alpha$.

TABLE 1


Fonction de répartition de la loi normale réduite

Si *U* suit la loi normale réduite, pour $x \ge 0$, la table donne la valeur :

 $\phi(x) = P(U \leqslant x).$

La valeur x s'obtient par addition des nombres inscrits en marge. Pour x < 0, on a :

 $\phi(x) = 1 - \phi(-x).$

Loi normale réduite (table de l'écart réduit)

TABLE 2

Si U est une variable aléatoire qui suit la loi normale réduite, la table donne, pour α choisi, la valeur u_{α} telle que :

 $P(|U| \geqslant u_{\alpha}) = \alpha.$

La valeur α s'obtient par addition des nombres inscrits en marge.

,	51α	μα
\leftarrow		0
	8161	- ηα

8	00'0	0,01	0,02	0,03	0,04	0,05	90,0	0,07	0,08	0,09
0.0	8	2.576	2.326	2.170	2.054	1,960	1,881	1,812	1,751	1,695
	1645	1.598	1.555	1,514	1,476	1,440	1,405	1,372	1,341	1,311
0,0	1 282	1,254	1,227	1,200	1,175	1,150	1,126	1,103	1,080	1,058
, ,	1.036	1,015	0,994	0.974	0.954	0,935	0,915	968'0	0,878	0,860
7,0	0.842	0.824	0.806	0.789	0,772	0,755	0,739	0,722	0,706	0,690
0,0	0,674	0,659	0,643	0.628	0,613	0,598	0,583	0,568	0,553	0,539
0,0	0.524	0,510	0,496	0.482	0,468	0,454	0,440	0,426	0,412	0,399
0,0	0.385	0.372	0.358	0,345	0,332	0.319	0,305	0,292	0,279	0,266
, č	0.253	0,240	0.228	0,215	0,202	0,189	0,176	0,164	0,151	0,138
0.9	0,126	0,113	0,100	0,088	0,075	0,063	0,050	0,038	0,025	0,013
<u>,</u>	1		`							- 1

0,09	0,535 9	0,722 4	0,8621	0,9441	0,981 7	0,995 2
	0,575 3	0,754 9	0,8830	0,9545	0,985 7	0,996 4
	0,614 1	0,785 2	0,9015	0,9633	0,989 0	0,997 4
	0,651 7	0,813 3	0,9177	0,9706	0,991 6	0,998 1
	0,687 9	0,838 9	0,9319	0,9767	0,993 6	0,998 6
80'0	0,5319 0,5714 0,6103 0,6480 0,6844	0,719 0 0,751 7 0,782 3 0,810 6 0,836 5	0,859 9 0,881 0 0,899 7 0,916 2 0,930 6	0,942 9 0,953 5 0,962 5 0,969 9 0,976 1	0,981 2 0,985 4 0,988 7 0,991 3 0,993 4	0,9951 0,9963 0,9973 0,9980 0,9986
70'0	0,527 9	0,7157	0,857 7	0,9418	0,980 8	0,994 9
	0,567 5	0,748 6	0,879 0	0,9525	0,985 0	0,996 2
	0,606 4	0,779 4	0,898 0	0,9616	0,988 4	0,997 2
	0,644 3	0,807 8	0,914 7	0,9693	0,991 1	0,997 9
	0,680 8	0,834 0	0,929 2	0,9756	0,993 2	0,998 5
90'0	0,5239	0,7123	0,8554	0,940 6	0,9803	0,9948
	0,5636	0,7454	0,877 0	0,951 5	0,9846	0,9961
	0,6026	0,7764	0,896 2	0,960 8	0,9881	0,9971
	0,6406	0,8051	0,913 1	0,968 6	0,9909	0,9979
	0,6772	0,8315	0,927 9	0,975 0	0,9931	0,9985
90'0	0,519 9 0,559 6 0,598 7 0,636 8 0,673 6	0,708 8 0,742 2 0,773 4 0,802 3 0,828 9	0,8531 0,8749 0,8944 0,9115	0,9394 0,9505 0,9599 0,9678 0,9744	0,9798 0,9842 0,9878 0,9906 0,9929	0,9946 0,9960 0,9970 0,9978 0,9984
0,04	0,516 0 0,555 7 0,594 8 0,633 1 0,670 0	0,7054 0,7389 0,7704 0,7995 0,8264	0,850 8 0,872 9 0,892 5 0,909 9 0,925 1	0,938 2 0,949 5 0,959 1 0,967 1 0,973 8	0,979 3 0,983 8 0,987 5 0,990 4 0,992 7	0,9945 0,9959 0,9969 0,9977 0,9984
0,03	0,512 0	0,701 9	0,848 5	0,937 0	0,978 8	0,9943
	0,551 7	0,735 7	0,870 8	0,948 4	0,983 4	0,9957
	0,591 0	0,767 3	0,890 7	0,958 2	0,987 1	0,9968
	0,629 3	0,796 7	0,908 2	0,966 4	0,990 1	0,9977
	0,666 4	0,823 8	0,923 6	0,973 2	0,992 5	0,9983
0,02	0,508 0 0,547 8 0,587 1 0,625 5 0,662 8	0,698 5 0,732 4 0,764 2 0,793 9 0,821 2	0,8461 0,8686 0,8888 0,9066	0,935 7 0,947 4 0,957 3 0,965 6 0,972 6	0,9783 0,9830 0,9868 0,9898	0,9941 0,9956 0,9967 0,9976 0,9982
10'0	0,504 0	0,695 0	0,8438	0,9345	0,977 8	0,994 0
	0,543 8	0,729 1	0,8665	0,9463	0,982 6	0,995 5
	0,583 2	0,761 1	0,8869	0,9564	0,986 4	0,996 6
	0,621 7	0,791 0	0,9049	0,9649	0,989 6	0,997 5
	0,659 1	0,818 6	0,9207	0,9719	0,992 0	0,998 2
00'00	0,500 0	0,6915	0,8413	0,933 2	0,977 2	0,9938
	0,539 8	0,7257	0,8643	0,945 2	0,982 1	0,9953
	0,579 3	0,7580	0,8849	0,955 4	0,986 1	0,9965
	0,617 9	0,7881	0,9032	0,964 1	0,989 3	0,9974
	0,655 4	0,8159	0,9192	0,971 3	0,991 8	0,9981
χ	0,0 0,1 0,2 0,3 0,4	0,5 0,7 0,8 0,9	5 - 5 5 4	1,5 1,7 1,9 1,9	2,0 2,1 2,2 2,3 2,4	2,5 2,6 2,7 2,8 2,9

TABLE 3

Lois de St

Si T est une loi de Stude donne, pour $P(|T| \ge t_{\alpha})$

7110	t_{α}
	0
8164	- t a

	816	t _a
		0
	2171	- t _α

	8167	t_{α}
		0
	214	-t _α

2167	_	119 119 119 119 119 119 119 119 119 119	60
, s	0,001	0.11 0.11	χ. 4,ε,
	0,01	63,657 4,604 4,604 4,604 4,604 4,604 13,250 3,106 3,169 3,169 12,917 12,921 12,921 12,821	2,660
	0,02	31,82, 6,965 9,656 3,747 3,368 3,143 3,143 3,143 2,682 2,882 2,682 2,682 2,683 2,683 2,583	2,358
217 - I a	0,05	12,706 3,830 3,182 2,718 2,718 2,226 2,236 2,173 2,117 2,117 2,117 2,110 2,110 2,100 2,000	2,000
¥	0,10	6,314 2,920 2,920 2,353 2,132 1,943 1,860 1,833 1,746 1,746 1,725 1,725 1,725 1,725 1,725 1,725 1,725 1,726 1,734 1,726 1,734 1,726 1,734 1,734 1,734 1,734 1,734 1,734 1,734 1,734 1,734 1,734 1,734 1,734 1,734 1,734 1,734 1,736	1,671
ii suit la la table , tel que	0,20	3,078 1,886 1,538 1,476 1,440 1,440 1,363 1,363 1,363 1,363 1,363 1,334 1,334 1,344	1,296
atoire qu le liberté, lombre t	0;30	1,963 1,156 1,1386 1,1386 1,119 1,119 1,108 1,003 1,004 1,005 1,00	1,046 1,041
Student one variable aléatoire qui suit la dent à ν degrés de liberté, la table out α choisi, le nombre t_{α} tel que t_{α}	0,50	1,000 0,765 0,747 0,718 0,711 0,700 0,695 0,699 0,688	0,679
Student me varia dent à v our α ch σ σ σ σ σ	06,0	0,158 0,137 0,137 0,137 0,139 0,139 0,129 0,128 0,128 0,127 0,127 0,127 0,127 0,127 0,127 0,127 0,127 0,127	0,126 0,126

Lorsque le degré de liberté est infini, il s'agit du nombre u_{α} correspondant à la loi normale centrée réduite (cf, table 2).

TABLE 4

Lois de Pearson ou lois du χ^2

Si Y^2 est une variable aléatoire qui suit la loi du χ^2 à ν degrés de liberté, la table donne, pour α choisi, le nombre χ^2_a tel que $P(Y^2 \geqslant \chi^2_a) = \alpha$.

X,2 a	
0	
·	

0,001	10,83 13,82 16,27	18,47 20,52 22,46 24,32	26,13 27,88 29,59	31,26 32,91 34,53 36,12	37,70 39,25 40,79 42,31 43,82 45,32	46,80 48,27 49,73 51,18 52,62 54,05 55,48 56,89 58,30 59,70
0,01	6,63 9,21 11,34	13,28 15,09 16,81 18,47	20,09 21,67 23,21	24,72 26,22 27,69 29,14	30,58 32,00 33,41 34,80 36,19 37,57	38,93 40,29 41,64 42,98 44,31 46,96 48,28 49,59 50,89
0,025	5,02 7,38 9,35	11,14 12,83 14,45 16,01	17,53 19,02 20,48	21,92 23,34 24,74 26.12	27,49 28,84 30,19 31,53 32,85 34,17	35,48 36,78 38,08 39,37 40,65 41,92 43,19 44,46 45,72
0,05	3,84 5,99 7,81	9,49 11,07 12,59 14,07	15,51 16,92 18,31	19,67 21,03 22,36 23,68	25,00 26,30 27,59 28,87 30,14 31,41	32,67 33,92 35,17 36,41 37,65 38,88 40,11 41,34 42,56 43,77
0,10	2,71 4,61 6,25	7,78 9,24 10,64 12,02	13,36 14,68 15,99	17,27 18,55 19,81	22,31 23,54 24,77 25,99 27,20 28,41	29,61 30,81 32,01 33,20 34,38 35,56 36,74 37,92 39,09
06,0	0,016 0,21 0,58	1,06 1,61 2,20 2,83	3,49 4,17 4,87	5,58 6,30 7,04	8,55 9,31 10,08 10,86 11,65	13,24 14,04 14,85 15,66 16,47 17,29 18,11 18,94 19,77
56,0	0,004 0,10 0,35	0,71 1,15 1,64 2,17	2,73 3,33 3,94	5,23 5,89 6,57	7,26 7,26 7,96 8,67 9,39 10,12	11,59 12,34 13,09 13,85 14,61 15,38 16,15 16,15 16,93 17,71
0,975	0,001 0,05 0,22	0,48 0,83 1,24 1,69	2,18 2,70 3,25	3,82 4,40 5,01 5,63	6,26 6,91 7,56 8,23 8,91 9,59	10,28 10,98 11,69 12,40 13,12 13,84 14,57 15,31 16,05
66'0	0,000 2 0,02 0,12	0,30 0,55 0,87 1,24	1,65 2,09 2,56	3,05 3,57 4,11 4,66	5,23 5,81 6,41 7,01 7,63 8,26	8,90 9,54 10,20 10,86 11,52 12,20 12,88 13,57 14,26
α Λ	3 2 1	4 5 9 7	8 6 01	13 13 2	112 114 118 118 119	30 82 7 8 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2

Lorsque le degré de liberté ν est tel que $\nu>30$, la variable aléatoire :

$$U = \sqrt{2Y^2} - \sqrt{2\nu - 1}$$

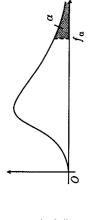
3,291

2,576

2,326

1,960

0,126 | 0,674 | 1,036 | 1,282 | 1,645 |


8

suit à peu près la loi normale réduite.

TABLE 5

Lois de Snédécor ($\alpha = 0,025$)

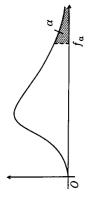

Si F est une variable aléatoire qui suit la loi de Snédécor à (v_1, v_2) degrés de liberté, la table donne le nombre f_α tel que $P(F \geqslant f_\alpha) = \alpha = 0,025$.

TABLE 6

Lois de Snédécor ($\alpha = 0.05$)

Si F est une variable aléatoire qui suit la loi de Snédécor à (v_1, v_2) degrés de liberté, la table donne le nombre f_α tel que $P(F \geqslant f_\alpha) = \alpha = 0,05$.

8	254 8,53 5,63 5,63 3,64 3,67 1,29 2,20 2,20 2,20 1,90 1,90 1,60 1,60 1,60 1,60 1,60	4,1 1,39 1,28 1,00
30	250 8,62 8,62 3,45 3,38 3,38 3,38 2,75 2,70 2,15 2,15 2,15 2,15 2,15 2,15 2,15 2,15	1,69 1,65 1,60 1,57 1,46
20	248 8,66 5,80 5,80 5,80 5,80 3,44 2,56 2,94 2,77 2,54 2,54 2,54 2,54 2,54 2,53 2,53 2,19 2,10 2,10 2,10 2,10 2,10 2,10 2,10 2,10	1,78 1,75 1,70 1,68 1,57
15	246 8,70 5,86 3,94 3,51 3,51 3,51 3,51 2,62 2,53 2,46 2,46 2,46 2,46 2,23 2,23 2,23 2,23 2,23 2,23 2,23 2,2	1,87 1,84 1,79 1,77 1,67
10	242 8,79 8,79 5,96 4,74 4,74 6,06 1,06 1,06 1,06 1,06 1,06 1,06 1,06	2,03 1,99 1,95 1,93 1,83
∞	239 8,85 6,04 4,82 4,82 4,15 3,73 3,73 3,07 2,95 2,95 2,59 2	2,13 2,10 2,06 2,03 1,94
9	234 6,16 6,16 6,16 6,16 6,16 6,16 7,28 3,38 3,37 3,00 3,00 2,92 2,74 2,70 2,66 2,66 2,66 2,63 2,63 2,63 2,64 2,74 2,70 2,64 2,70 2,64 2,70 2	2,29 2,25 2,21 2,19 2,10
5	230 6,26 5,05 5,05 3,97 3,97 3,69 3,48 3,33 3,33 2,96 2,96 2,96 2,77 2,77 2,77 2,77 2,74 2,74 2,74 2,74	2,40 2,37 2,33 2,31
4	225 19,2 6,39 6,39 5,19 8,412 3,84 3,63 3,84 3,63 3,48 3,18 3,18 3,18 3,18 2,90 2,90 2,93 2,74 2,74 2,74 2,69 2,69 2,69 2,74 2,74 2,74 2,74 2,74 2,74 2,74 2,74	2,56 2,53 2,49 2,46 2,37
ъ	216 9,28 6,59 5,41 7,46 7,46 7,46 3,86 3,71 3,59 3,29 3,20 3,10 3,10 3,10 3,10 3,10 3,10 3,10 3,1	2,79 2,72 2,72 0,70 1,60
7	200 9,55 6,94 6,74 7,14 7,10 7,10 7,10 7,10 7,10 7,10 7,10 7,10	3,18 3,15 3,09 3,00
-	161 118.5 10.1 7,71 6,61 5,99 5,59 5,32 5,12 4,84 4,75 4,60 4,44 4,45 4,38 4,38 4,38 4,38 4,38 4,38 4,38 4,38	3,96 3,96 3,94 3,84 4,00
v2/v1	1 1 2 5 4 5 9 7 8 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8 8 8 8

8	39,5 8,26 8,26 6,02 6,02 4,14 4,14 1,48 1,79 1,79 1,69 1,69 1,79 1,79 1,79 1,79 1,79 1,79 1,79 1,7
30	1001 39,5 14,1 8,46 6,23 6,23 3,36 3,36 3,36 2,37 2,27
20	993 14,2 8,56 6,33 6,33 6,5,17 7,00 3,67 3,42 3,42 3,42 3,42 3,42 2,56 2,56 2,56 2,56 2,57 2,57 2,53 2,53 2,53 2,53 2,53 2,53 2,53 2,53
15	985 144,3 8,666 6,43 6,43 6,43 6,43 7,72 7,72 7,73
10	968 4,44 8,84 4,36 6,623 6,633 6,633 6,633 6,633 6,633 6,633 6,633 6,633 6,633 6,633 6,633
∞	957 14,5 14,5 8,98 8,98 6,76 6,76 6,76 6,76 10,00 10,0
9	937 14,7 9,20 6,98 6,98 6,98 6,98 7,12 3,40 3,40 3,40 3,40 3,40 3,40 3,40 3,40
5	922 14,9 93,3 7,15 93,3 93,3 15 33,5 33,5 33,5 33,5 33,5 33,5 33,
4	900 151, 960 7,39 9,60 7,39 9,60 7,39 9,60 7,39 3,60 3,80 3,80 3,80 3,80 3,50 3,70 3,80 3,80 3,80 3,80 3,80 3,80 3,80 3,8
3	864 15,4 15,4 99,8 7,76 6,60 6,60 6,60 6,60 1,76 1,76 1,76 1,76 1,76 1,76 1,76 1,76
2	800 116,0 116,0 116,0 10,6 8,43 8,43 1,26 6,54 6,66 6,66 4,62 1,53 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,6
	648 38,5 17,4 10,0 8,81 10,0 8,81 7,57 7,21 6,94 6,30 6,20 6,12 6,04 6,30 6,12 6,04 6,30 6,12 6,04 5,98 5,98 5,98 5,98 5,98 5,72 5,73 5,73 5,73 5,73 5,73 5,73 5,73 5,73
V2	1000 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9