Licence mention Mathématiques - Deuxième année - Semestre 3 Statistiques Partiel du lundi 5 novembre 2007

Durée 2h00 Tout document interdit - Calculatrices autorisées

Exercice 1.

1) Dans un grand immeuble de 100 étages, on a étudié l'utilisation de l'ascenseur principal. Plus précisément, on a observé au cours d'une journée l'étage choisi par chacune des personnes montant dans l'ascenseur au rez-de-chaussée (étage 0), chaque personne choissant un seul étage. Les résultats obtenus sont les suivants :

Etage choisi	Nombre de personnes				
]0;10]	490				
]10;20]	510				
]20;30]	480				
]30;40]	520				
]40;60]	980				
]60;80]	1020				
]80;100]	1000				

Pour la présentation des différents calculs effectués dans les questions suivantes, on construira dès le début un unique tableau présentant l'ensemble des résultats demandés ou utiles.

- a) Préciser la population étudiée, la variable étudiée et sa nature, la taille de l'échantillon. Le type de présentation des données correspond-il à la nature de la variable étudiée ? Expliquer le choix qui a été fait pour cette présentation.
- b) Représenter graphiquement les résultats présentés dans le tableau. Que remarquez-vous ? Que pourrait-on en déduire ?
- c) Calculer les fréquences cumulées (croissantes) de la distribution et tracer le polygone des fréquences cumulées.
- d) En déduire par lecture graphique, puis par une formule d'interpolation linéaire, la valeur de la médiane et des quartiles de la distribution. Interpréter les résultats obtenus et les représenter graphiquement à l'aide d'une boîte à moustaches.
- e) Donner une valeur approchée à 10^{-2} près de la moyenne et l'écart-type de la distribution. Préciser les données à partir desquelles ces valeurs ont été obtenues.

Dans la suite de cet exercice, r et n sont des entiers naturels non nuls.

On considère un ascenseur qui dessert les r étages d'un immeuble. On suppose que n personnes entrent dans cet ascenceur (vide) au rez-de-chaussée (étage 0). On suppose que chacune des ces personnes, indépendamment des autres, a une probabilité $\frac{1}{r}$ de sortir à l'un des étages. On suppose enfin que personne ne rentre dans l'ascenseur à un étage au-dessus du rez-de-chaussée.

Pour tout i compris entre 1 et r, on désigne par X_i le nombre de personnes sortant à l'étage i, et par Y_i la variable aléatoire égale à 1 si l'ascenseur s'arrête à l'étage i (il ne le fait que si au moins une personne sort à cet étage) ou à 0 sinon.

- 2) Soit i un entier compris entre 1 et n.
 - a) Quelle est (en fonction de r et n) la loi de probabilité de X_i ? Justifier la réponse.
 - b) Calculer la probabilité qu'au moins une personne sorte à l'étage i.
 - c) Quel est le nombre moyen de personnes sortant à l'étage i?

- d) Dans cette question, on suppose que r = 100 et n = 500. Calculer la probabilité que 4 personnes (exactement) sortent à l'étage i, en utilisant d'abord la loi exacte de X_i , puis une loi approchée de X_i en justifiant son utilisation. Comparer les deux résultats.
- e) Dans cette question, on suppose que r = 100 et n = 2000. Calculer la probabilité qu'il y ait entre 15 et 25 personnes qui sortent à l'étage i. On pourra utiliser une loi approchée en justifiant son utilisation.
- 3) Déterminer la loi de probabilité de Y_i , ainsi que son espérance mathématique $E(Y_i)$. On pourra utiliser le résultat de la question 2)b).
 - 4) On désigne par *Y* la variable aléatoire égale au nombre d'arrêts de l'ascenseur.
 - a) Exprimer Y en fonction de Y_i .
 - b) En déduire l'espérance mathématique de Y.

Exercice 2.

Le tableau ci-dessous donne une estimation du montant des achats en ligne des ménages français :

Année	1998	1999	2000	2001	2002	2003	2004
Rang de l'année : x_i	0	1	2	3	4	5	6
Montant d'achats en millions d'euros : y_i	75	260	820	1650	2300	4000	5300

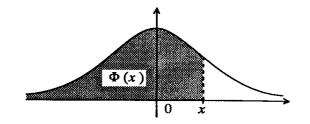
- 1) a) Préciser la population, la(es) variable(s) étudiée(s) et la taille de l'échantillon.
- b) Rappeler le critère permettant de déterminer la droite de régression de *y* en *x* obtenues par la méthode des moindres carrés, et les formules de calcul des coefficients de l'équation.
 - c) Donner une équation de la droite de régression de y en x.
 - d) Donner le coefficient de corrélation linéaire entre x et y. Interpréter le résultat obtenu.
- e) Quelle prévision du montant d'achats peut-on faire pour l'année 2005 ? Cette prévision est-elle fiable ?
 - 2) On considère la nouvelle variable $z = \sqrt{y}$.
- a) Déterminer une équation de la droite de régression de z en x, ainsi que le coefficcient de corrélation linéaire entre x et z. Interpréter le résultat obtenu.
- b) En déduire une expression de *y* en fonction de *x*, puis une prévision du montant d'achats pour l'année 2005.
- 3) A partir du tableau de données, le logiciel Excel propose un ajustement polynomial par l'équation $y = 130x^2 + 100x + 68$.
 - a) S'agit-il du même ajustement que celui obtenu dans le 2)? Expliquer cette situation.
 - b) Déduire de cet ajustement une prévision du montant d'achats pour l'année 2005.
- 4) Le montant des achats en ligne en 2005 a été de 7700 millions d'euros. Lequel des trois ajustements précédents vous parait-il le plus conforme à la réalité ? Jutifier votre réponse.

Exercice 3.

Un dépistage systématique concernant un éventuel trouble de l'audition est effectué à la naissance. On sait que 2% des nouveaux-nés présentent des troubles de l'audition. Ce dépistage commence par un test donnant 95% de résultats positifs pour les nouveaux-nés atteints de ces troubles, et 6% de résultats positifs pour les nouveaux-nés n'ayant pas ces troubles.

- 1) Traduire les données de l'énoncé en terme de probabilité d'événements. Préciser l'expérience aléatoire considérée et proposer un espace probabilisé adapté à cette expérience.
 - 2) Quelle est la probabilité qu'un nouveaux-né pris au hasard ait un test positif ? Justifier le calcul.
- 3) Quelle est la probabilité qu'un nouveaux-né pris au hasard soit atteint de ces troubles sachant que le test a donné un résultat positif ?
- 4) Quelle est la probabilité qu'un nouveaux-né pris au hasard soit atteint de ces troubles sachant que le test a donné un résultat négatif ?
 - 5) Le test vous paraît-il fiable?

TABLE 1


Fonction de répartition de la loi normale réduite

Si U suit la loi normale réduite, pour $x \ge 0$, la table donne la valeur :

$$\phi(x) = P(U \leqslant x).$$

La valeur x s'obtient par addition des nombres inscrits en marge. Pour x < 0, on a :

$$\phi(x) = 1 - \phi(-x).$$

х	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,500 0	0,5040	0,508 0	0,5120	0,5160	0,5199	0,5239	0,5279	0,531 9	0,535 9
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,575 3
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,621 7	0,625 5	0,6293	0,6331	0,6368	0,640 6	0,6443	0,6480	0,651 7
0,4	0,655 4	0,6591	0,6628	0,6664	0,670 0	0,6736	0,677 2	0,6808	0,6844	0,6879
0,5	0,691 5	0,695 0	0,6985	0,701 9	0,7054	0,7088	0,7123	0,7157	0,7190	0,722 4
0,6	0,7257	0,7291	0,7324	0,735 7	0,7389	0,7422	0,745 4	0,7486	0,7517	0,7549
0,7	0,7580	0,761 1	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,785 2
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,802 3	0,805 1	0,8078	0,8106	0,8133
0,9	0,815 9	0,8186	0,821 2	0,8238	0,8264	0,828 9	0,831 5	0,8340	0,8365	0,838 9
1,0	0,841 3	0,8438	0,8461	0,848 5	0,8508	0,8531	0,8554	0,8577	0,8599	0,862 1
1,1	0,8643	0,866 5	0,8686	0,8708	0,872 9	0,8749	0,877 0	0,8790	0,8810	0,883.0
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,898 0	0,8997	0,901 5
1,3	0,903 2	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,922 2	0,9236	0,925 1	0,926 5	0,9279	0,929 2	0,9306	0,931 9
1,5	0,933 2	0,934 5	0,935 7	0,937 0	0,938 2	0,9394	0,940 6	0,941 8	0,942 9	0,944 1
1,6	0,945 2	0,9463	0,9474	0,9484	0,9495	0,950 5	0,951 5	0,9525	0,9535	0,954 5
1,7	0,955 4	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,962 5	0,963 3
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,970 6
1,9	0,971 3	0,971 9	0,972 6	0,973 2	0,9738	0,9744	0,975 0	0,975 6	0,9761	0,9767
2,0	0,977 2	0,977 8	0,9783	0,9788	0,9793	0,9798	0,980 3	0,9808	0,981 2	0,981 7
2,1	0,9821	0,982 6	0,9830	0,9834	0,9838	0,9842	0,9846	0,985 0	0,985 4	0,985 7
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,991 6
2,4	0,991 8	0,992 0	0,992 2	0,992 5	0,992 7	0,992 9	0,993 1	0,993 2	0,9934	0,993 6
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,994 9	0,995 1	0,995 2
2,6	0,9953	0,995 5	0,9956	0,995 7	0,9959	0,996 0	0,9961	0,996 2	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,997 0	0,9971	0,997 2	0,9973	0,997 4
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,997 9	0,998 0	0,9981
2,9	0,9981	0,998 2	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,998 6