Licence mention Mathématiques - Semestre 3 Statistique Examen de lundi 27 janvier 2014

Durée 2h00

Tout document interdit - Calculatrices autorisées

Exercice 1

- 1) Dans une population donnée, on considère un caractère quantitatif, représenté par une variable aléatoire X d'espérance mathématique μ et d'écart-type σ . On considère un échantillon $(X_1, ..., X_n)$ de taille n de X, et les estimateurs \overline{X} et S_c (de μ et σ) dont la définition est rappelée dans le formulaire joint. Soit un réel $\alpha \in [0, 1[$.
- a) On suppose que X suit la loi normale $\mathcal{N}(\mu; \sigma)$. Déterminer, en détaillant les calculs, un intervalle de confiance de μ au niveau 1α . Expliquer ce que signifie le résultat obtenu.
- b) On suppose que $n \ge 30$. Quelle hypothèse sur X peut-on supprimer? Donner alors (sans calcul) un intervalle de confiance de μ au niveau 1α .

Un chercheur étudie le comportement des étudiants de l'Université de Genève en termes de dépense hebdomadaire. Il se demande si la dépense hebdomadaire moyenne d'un étudiant est supérieure à 150 Francs Suisses (FS). Pour cela, il sélectionne un échantillon aléatoire de 20 étudiants et obtient les réponses suivantes (exprimées en FS): 120, 150, 180, 200, 130, 150, 170, 160, 190, 100, 125, 145, 175, 200, 120, 130, 135, 165, 150, 180.

- 2) a) Préciser la population et le caractère étudiés. Préciser la taille d'échantillon, le(s) estimateur(s) mis en jeu et leur loi. Préciser l'hypothèse éventuelle à faire sur la variable étudiée pour connaître la loi des estimateurs.
 - b) Estimer ponctuellement la moyenne et de l'écart-type de la dépense hebdomadaire d'un étudiant.
- c) Donner un intervalle de confiance au niveau 95% de la dépense hebdomadaire moyenne d'un étudiant. Le chercheur peut-il répondre à la question qu'il se pose ? Expliquer.
 - d) Effectuer un test statistique au risque 5% pour aider le chercheur à répondre. Que peut-on en conclure ?
 - 3) En utilisant le logiciel R, on a obtenu les résultats suivants :

```
> depense = c(120,150,180,200,130,150,170,160,190,100,125,145,175,200,120,130,135,165,150,180)
> mean (depense)
[1] 153.75
> var (depense)
[1] 812.8289
> shapiro.test(depense)
        Shapiro-Wilk normality test
data: depense
W = 0.9681, p-value = 0.7138
> t.test(depense,mu=150,alternative="greater")
        One Sample t-test
data: depense
t = 0.5882, df = 19, p-value = 0.2817
alternative hypothesis: true mean is greater than 150
95 percent confidence interval:
 142.7267
sample estimates:
mean of x
```

- a) Expliquer ce que réalisent les trois premières instructions saisies et indiquer ce que représentent les valeurs calculées.
- b) Donner, en justifiant, le résultat au risque 5% du premier test réalisé. Cela est-il cohérent avec l'hypothèse éventuellement faite dans le 2)a) ?
 - c) Donner, en justifiant, le résultat au risque 5% du deuxième test réalisé. Comparer avec le résultat du 2)d).

Exercice 2

Pour comparer l'effet de la vitamine C du jus d'orange et de l'acide ascorbique de synthèse, on a donné, pendant 6 semaines, du jus d'orange à un groupe de 10 cobayes et de l'acide ascorbique à un groupe de 10 autres cobayes. On a ensuite mesuré la longueur des odontoblastes des incisives et obtenu les résultats suivants :

Jus d'orange	8,2	9,4	9,6	9,7	10,0	14,5	15,2	16,1	17,6	21,5
Acide ascorbique	4,2	5,2	5,8	6,4	7,0	7,3	10,1	11,2	11,3	11,5

On se demande si le jus d'orange accélère plus la croissance que l'acide ascorbique ; autrement dit si le jus d'orange conduit à une longueur moyenne des odontoblastes des incisives supérieure à celle avec l'acide ascorbique.

1) Pour répondre à cette question, quel(s) test(s) statistique(s) peut-on mettre en oeuvre ? Quelles sont les hypothèses à formuler ?

On décide d'utiliser le logiciel R pour répondre à cette question. On obtient les résultats suivants :

2) Voici une première copie d'écran :

```
> jus orange = c(8.2,9.4,9.6,9.7,10.0,14.5,15.2,16.1,17.6,21.5)
> acide ascorbique = c(4.2,5.2,5.8,6.4,7.0,7.3,10.1,11.2,11.3,11.5)
> shapiro.test(jus orange)
        Shapiro-Wilk normality test
data: jus orange
W = 0.8925, p-value = 0.1808
> shapiro.test(acide ascorbique)
        Shapiro-Wilk normality test
data: acide ascorbique
W = 0.8865, p-value = 0.1547
> var.test(jus orange,acide ascorbique)
        F test to compare two variances
data: jus orange and acide ascorbique
F = 2.5701, num df = 9, denom df = 9, p-value = 0.1759
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
  0.6383833 10.3473187
sample estimates:
ratio of variances
          2.570128
```

Expliquer la démarche suivie et donner, en justifant, le résultat au risque 5 % de chacun des tests effectués.

3) Voici une deuxième copie d'écran :

- a) Préciser les hypothèses H_0 et H_1 du test statistique mis en oeuvre.
- b) Donner, en justifiant, le résultat du test et conclure au risque 5%.
- 4) On décide d'effectuer un test de Mann et Whitney (appelé aussi Mann et Whitney Wilcoxon). Voici une troisième copie d'écran :

- a) Donner, en justifiant, le résultat du test et conclure au risque 5%. Comparer avec le résultat du 3)b).
- b) Dans quelle situation aurait-il fallu utiliser ce test à la place de celui utilisé au 3)?

Exercice 3

Une entreprise s'interroge sur la qualité des pièces qu'elle reçoit de 3 fournisseurs A, B et C. L'observation d'échantillons extraits des dernières livraisons a donné les résultats suivants :

fournisseur \ qualité	bon état	défaut mineur	défaut majeur
A	90	3	7
В	170	18	7
С	135	6	9

- 1) On s'intéresse d'abord à la proportion de pièces en bon état.
- a) Pour chacun des trois fournisseurs, déterminer un intervalle de confiance au niveau 95% de la proportion de pièces en bon état. Vérifier les conditions d'application de la formule utilisée.
 - b) Peut-on en déduire, au risque 5%, qu'il y a une différence entre les trois fournisseurs ?
- c) Effectuer un test au risque 5% pour savoir si l'on peut considérerque la proportion de pièces en bon état du fournisseur A est supérieure à celle du fournisseur B ?
- 2) On se demande maintenant si le choix du fournisseur a une influence sur la qualité des pièces reçues. En utilisant le logiciel R, on a obtenu les résultats suivants :

```
> qualite = matrix(c(90,3,7,170,18,7,135,6,9),nrow=3,byrow=T)
> rownames(qualite) = c("A", "B", "C")
> colnames(qualite) = c("bon état", "défaut mineur", "défaut majeur")
> qualite
 bon état défaut mineur défaut majeur
A
       90
                      3
                                    7
В
       170
                      18
C
      135
                       6
> chisq.test(qualite) $expected
  bon état défaut mineur défaut majeur
A 88.76404 6.067416 5.168539
B 173.08989
               11.831461
                             10.078652
                              7.752809
C 133.14607
                9.101124
> chisq.test(qualite)
        Pearson's Chi-squared test
data: qualite
X-squared = 7.7117, df = 4, p-value = 0.1027
```

Expliquer ce que réalisent les instructions saisies, puis donner, en justifiant, le résultat du test effectué au risque 5%. Conclure.

Exercice 4

Dans une agence de location de voitures, le directeur veut savoir quelles sont les voitures qui n'ont roulé qu'en ville pour les revendre immédiatement.

Pour cela, il y a dans chaque voiture une boîte noire qui enregistre le nombre d'heures pendant lesquelles la voiture est restée au point mort, au premier rapport, au deuxième rapport, ..., au cinquième rapport.

On sait qu'une voiture qui ne roule qu'en ville passe en moyenne 10% de son temps au point mort, 5% en première, 30% en seconde, 30% en troisième, 20% en quatrième et 5% en cinquième.

1) a) Sur une première voiture, on a observé sur 2000 heures de conduite la répartition des rapports suivante :

Rapport	PM	1	2	3	4	5
Nombre d'heures	210	94	564	630	390	112

- b) Effectuer un test statistique au risque 5% pour répondre à la question suivante : la voiture n'a-t-elle roulé qu'en ville ? Présenter le détail des calculs permettant d'effectuer ce test.
 - c) En utilisant le logiciel R, on a obtenu les résultats suivants :

Expliquer ce que réalisent les deux instructions saisies, indiquer ce que représentent les trois valeurs calculées et interpréter les résultats obtenus. Comparer avec les résultats du 1)b).

2) Sur une deuxième voiture, on a obtenu les résultats suivants :

Rapport	PM	1	2	3	4	5
Nombre d'heures	220	80	340	600	480	280

En utilisant le logiciel R, on a obtenu les résultats suivants :

Peut-on considérer, au risque 5%, que cette voiture n'a roulé qu'en ville ? Justifier la réponse.

Formulaire de Statistique Inférentielle

1) Estimateurs

Paramètre	Estimateur	Statistique et sa loi
μ	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	$T = \frac{\overline{X} - \mu}{\frac{S_c}{\sqrt{n}}} : \begin{cases} \text{Student à } n - 1 \text{ d.d.l.} \\ \text{si échantillon gaussien} \end{cases}$
σ^2	$S_c^2 = \frac{n}{n-1} S^2$, avec $S^2 = \left(\frac{1}{n} \sum_{i=1}^n X_i^2\right) - (\overline{X})^2$	$Y^{2} = \frac{n-1}{\sigma^{2}} S_{c}^{2} : \begin{cases} \text{Khi deux à } n-1 \text{ d.d.l.} \\ \text{si échantillon gaussien} \end{cases}$
p	$F = \frac{\sum_{i=1}^{n} X_i}{n}$	$U = \frac{F - p}{\sqrt{\frac{p(1-p)}{n}}} : \text{Normale } \mathcal{N}(0;1) \text{ (approx.)}$ $\sin np \ge 10 \text{ et } n(1-p) \ge 10$

2) Intervalles de confiance au niveau $1-\alpha$

Paramètre	Intervalle de confiance	Valeurs tabulées
μ	$i_{\mu} = \left[\bar{x} - \frac{S_c}{\sqrt{n}} t_{\alpha} , \bar{x} + \frac{S_c}{\sqrt{n}} t_{\alpha} \right]$	t_{α} tel que $P(-t_{\alpha} < T < t_{\alpha}) = 1 - \alpha$
σ^2	$i_{\sigma^2} = \left[\frac{n-1}{b_\alpha} s_c^2 , \frac{n-1}{a_\alpha} s_c^2 \right]$	a_{α} et b_{α} tels que $P(Y^{2} \geq a_{\alpha}) = 1 - \frac{\alpha}{2}$ $P(Y^{2} \geq b_{\alpha}) = \frac{\alpha}{2}$
p	$i_p = \left[f - \sqrt{\frac{f(1-f)}{n-1}} u_\alpha , f + \sqrt{\frac{f(1-f)}{n-1}} u_\alpha \right]$	u_{α} tel que $P(-u_{\alpha} < U < u_{\alpha}) = 1 - \alpha$

3) Tests de conformité au risque α

\mathbf{H}_0	\mathbf{H}_1	Statistique de test	Valeur(s) test(s)
$\mu = \mu_0$	$\mu \neq \mu_0$ $\mu > \mu_0$ $\mu < \mu_0$	$T = \frac{\overline{X} - \mu_0}{\frac{S_c}{\sqrt{n}}}$	$t_{\alpha} \text{ tel que } P(-t_{\alpha} < T < t_{\alpha}) = 1 - \alpha$ $t'_{\alpha} \text{ tel que } P(T < t'_{\alpha}) = 1 - \alpha, \text{ i.e. } t'_{\alpha} = t_{2\alpha}$ $t''_{\alpha} \text{ tel que } P(T \ge t''_{\alpha}) = 1 - \alpha, \text{ i.e. } t''_{\alpha} = t_{2-2\alpha} = -t_{2\alpha}$
$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$ $\sigma^2 > \sigma_0^2$ $\sigma^2 < \sigma_0^2$	$Y^2 = \frac{n-1}{\sigma_0^2} S_c^2$	a_{α} et b_{α} tels que $P(a_{\alpha} < Y^2 < b_{\alpha}) = 1 - \alpha$ b'_{α} tel que $P(Y^2 \ge b'_{\alpha}) = \alpha$, i.e. $b'_{\alpha} = b_{2\alpha}$ a''_{α} tel que $P(Y^2 \ge a''_{\alpha}) = 1 - \alpha$, i.e. $a''_{\alpha} = a_{2\alpha}$
$p = p_0$	$p \neq p_0$ $p > p_0$ $p < p_0$	$U = \frac{F - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	u_{α} tel que $P(-u_{\alpha} < U < u_{\alpha}) = 1 - \alpha$ u'_{α} tel que $P(U < u'_{\alpha}) = 1 - \alpha$, i.e. $u'_{\alpha} = u_{2\alpha}$ u''_{α} tel que $P(U \ge u''_{\alpha}) = 1 - \alpha$, i.e. $u''_{\alpha} = -u_{2\alpha}$

Pour un intervalle de confiance de μ et/ou un test de conformité sur μ avec un grand échantillon (quelconque), on peut approcher la loi de Student par la loi Normale $\mathcal{N}(0;1)$, et remplacer t_{α} , t'_{α} et t''_{α} par u_{α} , u'_{α} et u''_{α} .

4) Tests d'homogénéité au risque α

\mathbf{H}_0	\mathbf{H}_1	Statistique de test et sa loi sous l'hypothèse \mathbf{H}_0	Valeur(s) test(s)
$\sigma_1 = \sigma_2$	$\sigma_1 \neq \sigma_2$	$F = \frac{S_{c,1}^2}{S_{c,2}^2}: $ Snédécor à $(n_1 - 1, n_2 - 1)$ d.d.l. si échantillons indépendants gaussiens	f_{α} tel que $P(F \ge f_{\alpha}) = \frac{\alpha}{2}$ en travaillant avec $f \ge 1$
$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$ $\mu_1 > \mu_2$ $\mu_1 < \mu_2$	$U = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\left(\frac{S_{c,1}^2}{n_1} + \frac{S_{c,2}^2}{n_2}\right)}} : $ Normale $\mathcal{N}(0;1)$ (approx.) si grands échantillons indépendants	$u_{lpha} \ u_{lpha}' \ u_{lpha}''$
$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$ $\mu_1 > \mu_2$ $\mu_1 < \mu_2$	$T = \frac{\overline{X_1} - \overline{X_2}}{s_{c,1,2}\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} : \frac{\text{Student à } n_1 + n_2 - 2 \text{ d.d.l.}}{(\text{approx.}) \text{ si petits échantillons}} \\ \text{indép. gaussiens et si } \sigma_1 = \sigma_2 \\ \text{avec } s_{c,1,2}^2 = \frac{(n_1 - 1)s_{c,1}^2 + (n_2 - 1)s_{c,2}^2}{n_1 + n_2 - 2}$	$t_{lpha} \ t_{lpha}' \ t_{lpha}''$
$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$ $\mu_1 > \mu_2$ $\mu_1 < \mu_2$	$U = \frac{\overline{D}}{\frac{S_{c,d}}{\sqrt{n}}}$, où $D = X_1 - X_2$: Normale $\mathcal{N}(0;1)$ (approx.) si grands échantillons appariés	u_{lpha} u_{lpha}' u_{lpha}''
$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$ $\mu_1 > \mu_2$ $\mu_1 < \mu_2$	Student à $n-1$ d.d.l. $T = \frac{\overline{D}}{\frac{S_{c,d}}{\sqrt{n}}}, \text{ où } D = X_1 - X_2: \text{ si petits \'echantillons appari\'es gaussiens}$	$t_lpha \ t'_lpha \ t''_lpha$
$p_1 = p_2$	$p_1 \neq p_2$ $p_1 > p_2$ $p_1 < p_2$	$U = \frac{F_1 - F_2}{\sqrt{(\frac{1}{n_1} + \frac{1}{n_2})f_{1,2}(1 - f_{1,2})}} : \begin{cases} \text{Normale } \mathcal{N}(0;1) \text{ (approx.)} \\ \sin n_1 f_1 \ge 5, n_1 (1 - f_1) \ge 5, \\ n_2 f_2 \ge 5, n_2 (1 - f_2) \ge 5, \end{cases}$ $\text{avec } f_{1,2} = \frac{n_1 f_1 + n_2 f_2}{n_1 + n_2}$	u_{lpha} u_{lpha}' u_{lpha}''

5) Test d'ajustement à une loi théorique à r modalités au risque α

Hypothèse H_0 : le caractère suit la loi théorique définie par les probabilités p_i .

Hypothèse $H_1 : \overline{H_0}$.

Statistique de test : $D = \sum_{i=1}^{r} \frac{(N_i - np_i)^2}{np_i}$.

Loi de *D* sous l'hypothèse H_0 : khi deux à r-1-k d.d.l.

Valeur test : b_{α} tel que $P(D \ge b_{\alpha}) = \alpha$.

6) Test d'indépendance entre deux caractères à r et s modalités au risque α

Hypothèse H_0 : les deux caractères sont indépendants.

Hypothèse $H_1 : \overline{H_0}$.

Hypothese
$$H_1: H_0$$
.
Statistique de test : $D = \sum_{i=1}^r \sum_{j=1}^s \frac{(N_{i,j} - np_{i,j})^2}{np_{i,j}}$, avec $np_{i,j} = \frac{n_{i,\bullet} n_{\bullet,j}}{n}$, $n_{i,\bullet} = \sum_{j=1}^s n_{i,j}$ et $n_{\bullet,j} = \sum_{i=1}^r n_{i,j}$.

Loi de D sous l'hypothèse H_0 : khi deux à (r-1)(s-1) d.d.l.

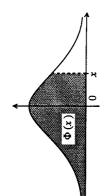

Valeur test : b_{α} tel que $P(D \ge b_{\alpha}) = \alpha$.

TABLE 1

Fonction de répartition de la loi normale réduite

Si U suit la loi normale réduite, pour $x \ge 0$, la table donne la valeur : $\phi(x) = P(U \leqslant x).$

La valeur x s'obtient par addition des nombres inscrits en marge. Pour x < 0, on a : $\phi(x) = 1 - \phi(-x).$

(table de l'écart réduit) Loi normale réduite

TABLE 2

Si U est une variable aléatoire qui suit la loi normale réduite, la table donne, pour α choisi, la valeur u_{α} telle que :

 $P(|U| \geqslant u_{\alpha}) = \alpha.$

La valeur α s'obtient par addition des nombres inscrits en marge.

. (2 2 2	o u_{α}
	212	- n ^a

8	0.00	0.01	0,02	0,03	0,04	0,05	90'0	0,07	80,0	60'0
		,								
6		2576	2326	2 170	2054	1 960	1.881	1.812	1.751	1,695
),),	3	0,7,7	2,740	2,1,0	5,0	20.74	100	7	, , , ,	1,211
0	1,645	1.598	1.555	1,514	1,476	1,440	1,40	1,5/2	1,341	116,1
, ,	1 282	1 254	1,227	1,200	1,175	1.150	1.126	1.103	1,080	1,058
7,0	1,207,	1,7	1,00	201,0	0,000	0,00	0,015	0,006	0.878	0.860
0.3	1.036	1,015	0,994	0,9/4	0,934	0,933	C1X,0	0,000	0,0,0	0,000
0,4	0.842	0,824	0.806	0.789	0.772	0.755	0.739	0,722	0,706	0,690
50	2,00	20,0	0,000	0,50	0,612	0,508	0.583	0.568	0.553	0.539
0.5	0,0/4	0,639	0,043	0,000	0,013	0,730	200,0	0,00	0,00	, ,
) V	0.524	0.510	0.496	0.482	0.468	0,454	0,440	0,426	0,412	0,399
2,0	0.205	0.377	0.358	0,345	0,332	0 319	0.305	0.292	0.279	0,266
<u>ک</u>	0,00	4/5,0	0,00	5,0	1000		, ,	7,0	0,151	0,130
~	0.253	0.240	0.228	0.215	0,202	0,189	0,1/0	0,164	161,0	0,130
2,0	0.106	0,113	0,100	0.088	0.075	0.063	0.050	0.038	0.025	0,013
ر د,ک	0,120	0,113	0,100	0,00	2,0,0	2006			,	

0,09	0,5359	0,6141	0,6517	0,6879	0,7224	0,7549	0,7852	0,8133	0,8389	0,8621	0,8830	0,9015	0,9177	0,9319	0 944 1	0.044 5	0.963.3	9 0 2 6 0	0,9767		1,381	0,9857	0,989 0	0,9916	0,9936	0,9952	0,9964	0,9974	0,9981	0,9986
80'0	0,5319	0,6103	0,6480	0,6844	0,7190	0,7517	0,7823	0,8106	0,8365	0,8599	0,8810	0,8997	0,9162	0,9306	0 042 0	0.45.5	0.962 5	0.9699	0,9761	0	7 186'0	0,9854	0,9887	0,9913	0,9934	0,9951	0,9963	0,9973	0,9980	0,9986
0,07	0,5279	0,6064	0,6443	0,6808	0,715.7	0,7486	0,7794	0,8078	0,8340	0,8577	0,8790	0,898.0	0,9147	0,9292	0 941 8		0.3616	0.9693	0,9756	0	0,980 8	0,9850	0,9884	0,9911	0,9932	0,9949	0,9962	0,9972	0,9979	0,998 5
90'0	0,5239	0,6026	0,6406	0,6772	0,7123	0,7454	0,7764	0,8051	0,831 5	0,8554	0,8770	0,8962	0,9131	0,9279	0 940 6	0.951.5		0.9686	0,9750	000	0,380 3	0,3846	0,9881	0,9909	0,9931	0,9948	0,9961	0,9971	0,9979	0,9985
0,05	0,5199	0,5987	0,6368	0,6736	0,7088	0,7422	0,7734	0,8023	0,8289	0,8531	0,8749	0,8944	0,9115	0,9265	N 939 4	0.950.5	0.959.9	0,9678	0,9744	0 070 0	0,3/88	0,9842	0,9878	0,9906	0,9929	0,9946	0,996,0	0,9970	0,9978	0,9984
0,04	0,5160	0,5948	0,6331	0,6700	0,7054	0,7389	0,7704	0,7995	0,8264	0,8508	0,8729	0,8925	0,9099	0,9251	0 938 2	0.949.5	0.9591	0,9671	0,9738	0.070.0	0,3733	0,9838	0,9875	0,9904	0,9927	0,9945	0,9959	0,9969	0,9977	0,9984
0,03	0,512 0 0,551 7	0,5910	0,6293	0,6664	0,7019	0,7357	0,7673	0,7967	0,8238	0,848 5	0,8708	0,8907	0,9082	0,9236	0.937.0	0.9484	0.9582	0,9664	0,9732	0 070 0	0,3/6,0	0,3834	0,9871	0,9901	0,992 5	0,9943	0,995 7	0,9968	0,9977	0,9983
0,02	0,508 0 0,547 8	0,5871	0,6255	0,6628	0,6985	0,7324	0,7642	0,7939	0,8212	0,8461	0,8686	0,8888	9 906'0	0,9222	0 935 7	0.9474	0.9573	0,9656	0,9726	6 070 0	0,970.0	0,983.0	0,9868	0,9898	0,9922	0,9941	0,9956	0,9967	0,9976	0,998 2
0,01	0,5040	0,5832	0,6217	0,6591	0,6950	0,7291	0,7611	0,7910	0,8186	0,8438	0,8665	0,8869	0,9049	0,9207	0.934.5	0.9463	0.9564	0,9649	0,9719	0 770 0	0 / / 6 / 0	0,382.6	0,9864	0,989 6	0,992 0	0,9940	0,995 5	9 966'0	0,997 5	0,998 2
00'00	0,5000	0,5793	0,6179	0,6554	0,6915	0,7257	0,7580	0,7881	0,8159	0,8413	0,8643	0,8849	0,9032	0,9192	0.9332	0.9452	0.9554	0,9641	0,9713	4 7 7 0 0	7 / 15.0	1,382 l	0,9861		0,9918	0,9938	0,9953	0,9965	0,9974	0,9981
×	0,0	0,2	0,3	4′0	0,5	9'0	0,7	8,0	6′0	1,0	Ξ.	1,2	1,3	4,	75	1.6	1.7	8,1	1,9	,	۲,0	7,	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9

TABLE 3

Lois de Student

Si T est une variabl loi de Student à v deg donne, pour a chois $P(|T| \ge t_{\alpha}) = \alpha.$

0,60

~

8

	ğ167	t_{α}
<	$\left(-\right)$	0
	217	-t _α

ν 21α	0,001	636,619	12,924	8,610	5,959	5,408	4,781	4,387	4,318	4,221	4,140	4,015	3,965	3,883	3,850	3,819	3,792	3,767	3,745	3,707	3,690	3,674
	0,01	63,657	5,841	4,604	3,707	3,355	3,250	3,106	3,055	3,012	2,947	2,921	2,898	2,861	2,845	2,831	2,819	7,02,7	767,7	2,79	2,771	2,763
	0,02	31,82, 6.965	4,541	3,747	3,143	2,896	2,821	2,718	2,681	2,650	2,024	2,583	2,567	2,539	2,528	2,518	2,508	2,500	2,492	2.479	2,473	2,467
214	90'0	12,706	3,182	2,776	2,447	2,305	2,262	2,2201	2,179	2,160	2,131	2,120	2,110	2,093	2,086	2,080	2,074	2,069	2,004	2.056	2,052	2,048
N	0,10	6,314 2,920	2,353	2,132	1,943	1,860	1,833	1,796	1,782	1,771	1,753	1,746	1,740	1,729	1,725	1,721	1,717	1,/14	1,/11	1,706	1,703	1,701
i suit la la table tel que	0,20	3,078	,638		64	27		33.7	99	S 7	2 ==	37	33	200	52	53	<u> </u>	2 0	ی و	15	14	13
aléatoire qui suit la rés de liberté, la table le nombre t _a tel que	0,30	1,963	Š		1,134	1,108	1,100	1,088	1,083	1,079	1,074	1,071	1,069	1,066	1,064	1,063	1,061	1,000	1,039	1,058	1,057	1,056
aléa rés d	50	900	99,	727	18	90	88	97	95	2 6	16	06	5 % 2 %		87	98	98	60 8	28	84	84	83

η17	0,001	636,619 31,598 8,610 6,869 5,959 5,959 5,959 5,959 5,959 6,959 6,959 6,959 6,959 7,913 7,921 7,921 7,922 3,922 3,922 3,923 3,924
	0,01	63,657 5,841 6,4604 6,04032 3,707 3,499 3,106 3,106 3,106 3,106 3,106 3,106 3,106 3,106 3,106 3,106 3,106 3,107 2,947 2,747
	0,02	31,82, 6,965 4,541 3,365 3,143 3,365 3,143 3,365 3,143 2,898 2,898 2,898 2,681 2,662 2,663
21α	50,0	12,706 3,182 2,776 2,577 2,577 2,577 2,201 2,100 2,110 2,101 2,101 2,101 2,101 2,101 2,103 2,086
N	0,10	6,314 2,352 2,352 2,353 2,132 2,132 1,343 1,895 1,782 1,782 1,773 1,746 1,746 1,725 1,725 1,725 1,727
i suit la la table tel que	0,20	3,078 1,638 1,638 1,533 1,440 1,440 1,440 1,337 1,337 1,345
ble aléatoire qui suit la egrés de liberté, la table isi, le nombre t _a tel que	0;30	1,963 1,1386 1,1386 1,1190 1,1100 1,1100 1,1003 1,004 1,005
ble aléa egrés d ísi, le n	0,50	1,000 0,816 0,741 0,718 0,718 0,701 0,703 0,703 0,703 0,697 0,697 0,697 0,699 0,699 0,699 0,699 0,699 0,698

Lorsque le degré de liberté est infini, il s'agit du nombre u_{α} correspondant à la loi normale centrée réduite (cf, table 2).

0,126

8

TABLE 4

Lois de Pearson ou lois du χ^2

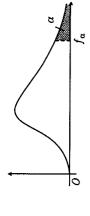
Si Y^2 est une variable aléatoire qui suit la loi du χ^2 à ν degrés de liberté, la table donne, pour α choisi, le nombre χ^2_a tel que $P(Y^2 \geqslant \chi^2_a) = \alpha$.

	χ_{α}^{2}
<u></u>	0

0,001	10,83 13,82 16,27 18,47	20,52 22,46 24,32 26,13 27,88 29,59	31,26 32,91 34,53 36,12 37,70 39,25 40,79 42,31 43,82 45,32	46,80 48,27 49,73 51,18 52,62 54,05 55,48 56,89 58,30 59,70
0,01	6,63 9,21 11,34 13,28	15,09 16,81 18,47 20,09 21,67 23,21	24,72 26,22 27,69 29,14 30,58 32,00 33,41 34,80 36,19 37,57	38,93 40,29 41,64 42,98 44,31 45,64 46,96 48,28 49,59 50,89
0,025	5,02 7,38 9,35 11,14	12,83 14,45 16,01 17,53 19,02 20,48	21,92 23,34 24,74 26,12 27,49 28,84 30,19 31,53 32,85 34,17	35,48 36,78 38,08 39,37 40,65 41,92 43,19 44,46 45,72
0,05	3,84 5,99 7,81 9,49	11,0/ 12,59 14,07 15,51 16,92 18,31	19,67 21,03 22,36 23,68 25,00 26,30 26,30 27,59 28,87 30,14 31,41	32,67 33,92 35,17 36,41 37,65 38,88 40,11 41,34 42,56
0,10	2,71 4,61 6,25 7,78	9,24 10,64 12,02 13,36 14,68	17,27 18,55 19,81 21,06 22,31 23,54 24,77 25,99 27,20 28,41	29,61 30,81 32,01 33,20 34,38 35,56 36,74 37,92 39,09
06,0	0,016 0,21 0,58 1,06	1,61 2,20 2,83 3,49 4,17 4,87	5,58 6,30 7,04 7,79 8,55 9,31 10,08 11,65	13,24 14,04 14,85 15,66 16,47 17,29 18,11 18,94 19,77
56,0	0,004 0,10 0,35 0,71	1,15 1,64 2,17 2,73 3,33 3,94	4,57 5,23 5,89 6,57 7,26 7,96 8,67 9,39 10,12	11,59 12,34 13,09 13,85 14,61 15,38 16,15 16,93 17,71 18,49
0,975	0,001 0,05 0,22 0,48	0,83 1,24 1,69 2,70 3,25	3,82 4,40 5,01 5,63 6,26 6,91 7,56 8,23 8,91 9,59	10,28 10,98 11,69 12,40 13,12 13,84 14,57 15,31 16,05
66'0	0,000 2 0,02 0,12 0,30	0,55 0,87 1,24 1,65 2,09 2,56	3,05 3,57 4,11 4,66 5,23 5,81 6,41 7,01 7,63 8,26	8,90 9,54 10,20 10,86 11,52 12,20 12,88 13,57 14,26 14,95
a a	-284	2 9 7 9 10 10 10 10 10 10 10 10 10 10 10 10 10	11	22 22 23 24 24 27 28 30

Lorsque le degré de liberté v est tel que v > 30, la variable aléatoire :

$$U = \sqrt{2Y^2} - \sqrt{2\nu - 1}$$


suit à peu près la loi normale réduite.

0,158 0,134 0,134 0,134 0,136 0,137 0,138 0,128 0,128 0,128 0,127

TABLE 5

Lois de Snédécor ($\alpha = 0,025$)

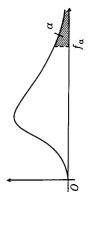

Si F est une variable aléatoire qui suit la loi de Snédécor à (v_1, v_2) degrés de liberté, la table donne le nombre f_α tel que $P(F \geqslant f_\alpha) = \alpha = 0,025$.

TABLE 6

Lois de Snédécor ($\alpha = 0.05$)

Si F est une variable aléatoire qui suit la loi de Snédécor à (v_1, v_2) degrés de liberté, la table donne le nombre f_α tel que $P(F \ge f_\alpha) = \alpha = 0.05$.

8	254 8,53 8,53 8,53 8,63 8,63 8,64 8,36 7,36 7,36 7,36 7,36 7,36 7,36 7,36 7	1,20
30	250 8,62 8,62 8,62 8,62 8,62 8,63 8,63 8,63 8,63 8,73 8	1,2/
20	248 8,66 8,666 8,666 8,666 8,666 8,666 8,666 8,666 8,666 8,666 8,666 8,666 8,666 8,666 8,666 8,666 8,666 8,77 8,73 8,73 8,73 8,73 8,73 8,73 8,73	1,08
15	246 8,70 5,86 3,94 3,94 3,51 3,51 3,51 2,62 2,62 2,63 2,63 2,63 2,63 2,63 2,63	1,77
10	242 1944 1944 1947 1947 1947 1947 1947 1947	1,93
∞	239 8,885 8,885 8,887 19,44 15,73 17,70 17	2,03 1,94
9	234 6,16 6,16 6,16 6,16 6,16 6,16 6,16 6,1	2,19
5	230 19,3 6,26 6,26 6,26 6,26 7,05 7,05 7,05 7,05 7,05 7,05 7,05 7,05	2,31
4	225 19,2 9,12 9,12 9,12 9,12 9,12 9,13 9,13 9,14 9	2,46
ь	19.16 19.26 6,59 6,59 7,41 7,41 7,51	2,70
2	200 19,0 1	3,08
-	161 17,7 17,7 17,7 17,7 17,7 18,5 5,5 99 6,6 17,7 18,6 17,7 18,6 18,6 18,6 18,6 18,6 18,6 18,6 18,6	3,94 4,82
v2 v2	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8

8	1018 8,56 8,26 6,02 6,02 6,02 1,44 1,48 1,59 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60
30	1,001 1,4,1 8,4,6 6,2,3 6,2,3 6,2,3 7,07 1,3,12
70	993 14,2 8,56 6,33 6,33 6,17 4,40 4,40 3,67 3,67 3,67 2,88 2,28 2,28 2,26 2,26 2,26 2,27 2,20 1,99 1,99 1,98 1,88 1,88 1,88
15	985 14,3 8,66 6,43 6,64 6,64 10,7 1
10	969 14,41 8,84 8,84 6,62 6,62 14,76 17,70 1
8	957 14,5 14,5 14,5 14,5 14,6 14,9 16,7 16,7 16,7 16,7 16,7 16,7 16,7 16,7
9	937 14,7 14,7 14,7 14,7 15,80 15,80 15,80 15,80 17,80
5	922 14,9 14,9 14,9 14,9 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0
4	900 15,1 9,60 7,39 9,60 7,39 9,60 7,39 9,60 9,60 9,60 9,60 9,60 9,60 9,60 9,73 9,73 9,73 9,73 9,73 9,73 9,73 9,73
3	864 15,4 15,4 9,98 7,76 6,60 5,89 5,88 4,83 4,44 4,15 4,01 1,90 3,90 3,90 3,90 3,90 3,90 3,90 3,90 3
2	800 16,0 10,6 8,43 7,26 6,06 6,06 5,71 5,46 4,97 4,62 4,62 4,62 4,62 4,62 4,62 4,62 4,62
	648 38,5 17,4 12,2 10,0 10,0 8,81 7,57 7,57 6,94 6,94 6,04 6,04 6,04 6,04 6,04 6,04 6,04 6,0
v ₂	100 100 100 100 100 100 100 100