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1. Simulations

1.1. Loi de Bernoulli et simulation

Soit ��,A,P� un espace probabilisé.
Une variable aléatoireX suit la loi de Bernoulli de paramètrep � �0,1�, que l’on noteB�p�, si et

seulement siX est à valeurs dans�0;1�, etP�X � 1� � p et P�X � 0� � 1 � p.
Une telle variable aléatoire permet d’indiquer si un événement A est réalisé (X � 1) ou pas (X � 0).

Comme exemples d’application on peut citer :
- lancer d’une pièce menant à Pile ou Face,A � "obtenir Pile" ;
- tirer une boule dans une urne contenant des boules blancheset noires,A � "obtenir une blanche" ;
- choisir d’un individu dans la population,A � "l’individu est malade".

Ainsi , une telle variablepermet de représenter un caractère qualitatif à deux modalités.

Simulation 1
p étant donné dans�0,1�, on considère une urne contenant une proportionp de boules blanches. Plus

précisément, on considère l’entierN plus petit multiple de 10 tel queNp soit entier, et ainsi une urne
contenantN boules, dontNp boules blanches etN�1 � p� boules noires. Par exemple, pourp � 0,42, on a
N � 100,Np � 42 etN�1 � p� � 58.

On suppose que lesN boules sont numérotées de 1 àN, de 1 àNp pour les boules blanches, deNp� 1 àn
pour les noires.

A l’expérience aléatoire " tirer une boule au hasard dans l’urne ", on peut associer l’univers
� � �1, . . . ,N� et le munir de l’équiprobabilitéP.

Dans ce contexte, l’événementA "obtenir une boule blanche" estA � �1, . . . ,Np�, sa probabilité étant

alorsP�A� � cardA
card�

�
Np
N

� p.

Considérant la variable aléatoireX qui à chaque tirage d’une boule associe 1 si elle est blanche et 0 sinon,
on a�X � 1� � A et �X � 0� � A, et doncP�X � 1� � P�A� � p et P�X � 0� � P�A� � 1 � P�A� � 1 � p.

Utilisation du tableur Excel (voir fichier excel - feuille Bernoulli simulation 1)
Le tirage d’une boule de l’urne est simulé par l’instruction�ALEA.ENTRE.BORNES(1;N) à entrer dans

la cellule B8 (par exemple).
La valeur correspondante deX est alors obtenue par l’instruction�SI(B8��Np;1;0).

Simulation 2
A l’expérience aléatoire "choisir un nombre au hasard dans l’intervalle �0;1�" on peut associer une

variable aléatoireY suit la loi Uniforme sur l’intervalle�0;1� (loi à densité) ;Y indique le nombre obtenu. On
sait que pour touty � �0;1�, P�Y � y� � y.

p étant donné dans�0,1�, on a alorsP�Y � p� � p. Considérant la variable aléatoireX définie par
�X � 1� � �Y � p� et �X � 0� � �Y � p� � �Y � p�, X suit la loi de BernoulliB�p�.

Utilisation du tableur Excel (voir fichier excel - feuille Bernoulli simulation 2)
Une valeur deY est simulée par l’instruction�ALEA() à entrer dans la cellule B7 (par exemple).
La valeur correspondante deX est alors obtenue par l’instruction�SI(B7��p;1;0).
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1.2. Loi binomiale et simulation

Reprenons l’exemple d’une urne contenant une proportionp � 0,42 de boules blanches.
On tire une boule au hasard dans l’urne : le nombre de "boule blanche" obtenu en un tirage est une

variable aléatoireX de loi de BernoulliB�p� : P�X � 1� � p � 0.42 et P�X � 0� � 1 � p � 0,58. On a
E�X� � p � 0,42 etVar�X� � p�1 � p� � 0,2436.

Si on effectuen � 50 tirages avec remise d’une boule, on observe la réalisation de X1 , X2 , ... , X50 ,
variables aléatoires indépendantes de même loi queX. On dit que l’on a un échantillon aléatoire simple de
taille n � 50 de loi de Bernoulli de paramètrep � 0,42.

La proportion de "boules blanches" obtenue est une variablealéatoire :

Fn �
X1 � X2 � � � X50

50
�

�
i�1

n

Xi

n

où�
i�1

n

Xi représente le nombre de "boules blanches" obtenues enn � 50 tirages.

Ayant procédé par répétitions d’expériences indépendantes, nFn � �
i�1

n

Xi est une variable aléatoire de la

loi BinomialeB�50;0,42� � B�n,p�.
On a doncnE�Fn� � E�nFn� � np et n2Var�Fn� � Var�nFn� � np�1 � p�, d’où E�Fn� � p � 0,42 et

Var�Fn� �
p�1 � p�

n �
0,2436

n .
On constate donc que lorsqu’on augmente la taillen de l’échantillon, l’espérance deFn reste constante,

égale à 0,42, alors que la variance diminue.
Utilisation du tableur Excel (voir fichier excel - feuille Bernoulli simulation 1 et 2)
On reprend les simulations 1 et 2 en répétant 50 les instructions précédentes sur 50 lignes. Il suffit ensuite

de "sommer" les valeurs deX obtenues pour avoir le nombre de boules blanches obtenues, puis de diviser par
50 pour avoir la fréquence.

2. Echantillonnage : cas d ’une proportion

2.0. Quel cadre mathématique?

Statistique et probabilités:
Description des observations et modèle théorique.
La Statistique consiste à étudier un ensemble d’objets (on parle de population, composée d’individus ou

unités statistiques) sur lesquels on observe des caractéristiques, appelées variables statistiques.
Le calcul des Probabilités permet de proposer un modèle théorique d’une situation concrète afin de

quantifier la fiabilité des affirmations.

Population et échantillon:
Dans certains cas on peut obtenir les valeurs de ces variables sur l’ensemble de la population ; en

appliquant les méthodes de la statistique descriptive il est possible, au moyen de tableaux, graphiques,
paramètres, d’analyser ces résultats. Exemples : Recensement de la population française, notes obtenues par
tous les candidats à un examen, salaires de tous les employésd’une entreprise, etc...

Mais la population peut être trop vaste pour être étudiée dans sa totalité, par manque de moyens, ou de
temps. (C’est le cas si on s’intéresse aux intentions de votedes Français pour une élection). Elle peut même
être considérée comme infinie. C’est le cas si l’on note la qualité (défectueuse ou non) des pièces produites
par un certain procédé : le nombre de ces pièces est a priori illimité, et on ne peut toutes les tester.

De même, si l’on s’intéresse aux fréquences d’obtentions de"pile" et "face" avec une pièce de monnaie,
le nombre de lancers de pièce à étudier est a priori infini : ona ici une population latente infinie.

Il arrive aussi que la mesure d’une variable soit destructrice pour l’individu : si on étudie la durée de vie
de certains appareils, il serait absurde de les faire tous fonctionner jusqu’à la panne, les rendant inutilisables.

Dans tous ces cas, on est amené à n’étudier qu’une partie de lapopulation, un échantillon, obtenu par
sondage, dans le but d’extrapoler à la population entière des observations faites sur l’échantillon.
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Fluctuation d’échantillonnage
Lorsqu’on étudie un caractère sur plusieurs échantillons d’une même population, on peut observer que les

résultats ne sont pas identiques selon les échantillons. Plus la taille de l’échantillon étudié est grande, plus les
résultats obtenus seront fiables. Cela s’explique par la diminution de la variance, et aussi par la loi des grands
nombres.

La fluctuation d’échantillonnage représente la fluctuation entre les différents résultats obtenus d’une
même enquête sur différents échantillons d’une même population.

Ces différents résultats présentent une certaine régularité, ce qui se traduit par la notion d’intervalle de
confiance.

2.1. Caractère statistique et variable aléatoire

Considérons une population� sur laquelle on définit un caractère qualitatif à deux modalitésA et B. On
convient de représenter la modalitéA par 1 et la modalitéB par 0.

Le caractère est ainsi représenté par une applicationX de� dans� qui, à tout individu�, associe un réel
x � X��� � X��� � �X � �0,1� ensemble des "valeurs" du caractère.

Cette application modélise le caractère de façon déterministe : si on connaît l’individu�, on connaît
aussitôt la valeurx. Son étude relève de la statistique descriptive qui conduit, par exemple, au tableau des
couples�xi , f i � oùxi est une valeur observée etf i sa fréquence.

Supposons maintenant que l’on tire au hasard un individu� dans cette population� pour consigner la
valeurx du caractère. Ne pouvant pas prévoir quel individu précis sera tiré, on ne peut pas prévoir non plus la
valeur précise dex qui sera consigner. On aimerait donc disposer d’un moyen d’attribuer une probabilité aux
éléments de�X.

Ici, X est une variable aléatoire de loi de BernoulliB�p� où p est la proportion d’individus ayant la
modalitéA dans la population :P�X � 1� � p et P�X � 0� � 1 � p.

2.2. Echantillonnage

Lorsqu’on n’a pas accès à l’ensemble de la population, la proportion p est inconnue. On procède à un
échantillonnage, i.e. au choix den individus dans la population, sur lesquels on observe la valeur x du
caractèreX. Lorsque les tirages ont lieu avec (respectivement sans) remise, l’échantillonnage est dit
non-exhaustif (resp. exhaustif). Lorsque la taillen de l’échantillon est faible par rapport à celleN de la
population (N � 10n), alors tout échantillonnage est assimilable au cas non-exhaustif.

Pour un premier échantillonnage, on observera des valeursx1, x2, ..., xn du caractère. Pour un deuxième
échantillonnage de même taille, on observera des valeursx1

� , x2
� , ...,xn

� du caractère. Et ainsi de suite. On peut
alors considérer la suitex1, x1

� , ... comme les valeurs observées d’une même variable aléatoire X1, la suitex2,
x2
� , ... comme les valeurs observées d’une même variable aléatoire X2, ... Ainsi, pour touti � 1, . . . ,n, la

variable aléatoireXi correspond aux valeurs du caractère dui-ème individu obtenu par échantillonage, et aura
donc lamême loi de probabilité queX. De plus, l’échantillonnage étant non-exhaustif (tiragesavec remise),
les variables aléatoiresXi sont indépendantes.

Plus précisément, les variables aléatoiresXi sont des applications de�n dans �, qui à tout
échantillonnage��1,�2, . . . ,�n� associexi � Xi��1,�2, . . . ,�n� � X�� i �

On dira que�X1,X2, . . . ,Xn� est unéchantillon (aléatoire simple)de taille n de X, et que�x1,x2, . . . ,xn�
est une observation de l’échantillon.

Le terme d’échantillon désigne à la fois lesn individus choisis et len-uple de variables aléatoires
�X1,X2, . . . ,Xn�.

2.3. Estimateur et estimation d’une proportion

Objectif : déterminerp à l’aide d’informations obtenues à partir d’un échantillonnage de taillen extrait
de la population. Impossible tant quen � N, mais la théorie de l’échantillonnage conduit à desestimations�p
dep, d’autant meilleures quen est grand.
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Estimateur du paramètrep : proportion (ou fréquence)d’échantillon Fn �

�
i�1

n

Xi

n , où�
i�1

n

Xi représente

le nombre d’individus de l’échantillonnage ayant la modalité A.

Pour une observation�x1,x2, . . . ,xn� de l’échantillon (en pratique on observe souvent directement �
i�1

n

xi),

uneestimation ponctuelledep estfn �

�
i�1

n

xi

n �
�p.

2.4. Proportion d ’échantillon

Un exemple sur la proportion
Un groupe de 4 enfants, Alexis, Benjamin, Cyril et David, d’âges respectifs 12, 13, 14 et 15 ans.
On choisit un enfant au hasard dans le groupe, on peut considérer :

- X, indicatrice du fait que l’enfant plus 14,5 ans,
variable aléatoire de loi de BernoulliB 1

4
:

P�X � 1� � 1
4

� p et P�X � 0� � 3
4

� 1 � p.

Cherchons à retrouver ou à approcher ces résultats à partir d’échantillons non-exhaustifs (avec remise) de
taille n � 3. Il y en a 43 � 64, ils forment un univers��, ensemble des résultats possibles de l’expérience
aléatoire "choisir un échantillon".

On peut munir�� de la tribu des événementsA � � P���� et de l’équiprobabilitéP� sur ���,A ��. A
chacun des résultats (échantillons)�, on peut associer la proportionFn��� � fn d’enfants ayant plus de 14,5
ans. On obtient les résultats suivants :

� f n

�A,A,A� 0

�A,A,B� 0

�A,A,C� 0

�A,A,D� 1/3

�A,B,A� 0

�A,B,B� 0

�A,B,C� 0

�A,B,D� 1/3

�A,C,A� 0

�A,C,B� 0

�A,C,C� 0

�A,C,D� 1/3

�A,D,A� 1/3

�A,D,B� 1/3

�A,D,C� 1/3

�A,D,D� 2/3

� fn

�B,A,A� 0

�B,A,B� 0

�B,A,C� 0

�B,A,D� 1/3

�B,B,A� 0

�B,B,B� 0

�B,B,C� 0

�B,B,D� 1/3

�B,C,A� 0

�B,C,B� 0

�B,C,C� 0

�B,C,D� 1/3

�B,D,A� 1/3

�B,D,B� 1/3

�B,D,C� 1/3

�B,D,D� 2/3

� fn

�C,A,A� 0

�C,A,B� 0

�C,A,C� 0

�C,A,D� 1/3

�C,B,A� 0

�C,B,B� 0

�C,B,C� 0

�C,B,D� 1/3

�C,C,A� 0

�C,C,B� 0

�C,C,C� 0

�C,C,D� 1/3

�C,D,A� 1/3

�C,D,B� 1/3

�C,D,C� 1/3

�C,D,D� 2/3

� fn

�D,A,A� 1/3

�D,A,B� 1/3

�D,A,C� 1/3

�D,A,D� 2/3

�D,B,A� 1/3

�D,B,B� 1/3

�D,B,C� 1/3

�D,B,D� 2/3

�D,C,A� 1/3

�D,C,B� 1/3

�D,C,C� 1/3

�D,C,D� 2/3

�D,D,A� 2/3

�D,D,B� 2/3

�D,D,C� 2/3

�D,D,D� 1

On définit ainsi une variable aléatoireFn, dont on peut obtenir la loi de probabilité :

xi 0 1/3 2/3 1

P�Fn � xi � 27/64 27/64 9/64 1/64

On peut alors calculer :
- E�Fn� � 1

4
: on remarque queE�Fn� � p � E�X�.

- Var�Fn� � 1
16

: on remarque queVar�Fn� �
p�1 � p�

n �
Var�X�

n .
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Propriétés générales deFn �

�
i�1

n

Xi

n .

nFn � �
i�1

n

Xi suit la loi Binomiale B�n,p�. On a alors nE�Fn� � E�nFn� � np et

n2Var�Fn� � Var�nFn� � np�1 � p�, d’où E�Fn� � p et Var�Fn� �
p�1 � p�

n .
On a ainsiE�Fn� � p et on dit queFn est unestimateur sans biaisdep.
On a de plus lim

n���
Var�Fn� � 0 et on dit queFn est unestimateur convergentdep.

Théorème. Loi faible des grands nombres
Si lesXi sont indépendantes et admettent la même espérancep et la même variance�2,
alors pour tout� � 0, lim

n���
P�|Fn � p| � �� � 0 ; cette convergence étant uniforme enp.

Cela signifie que�Fn� converge en probabilité versp.

Théorème central limite
Si lesXi sont indépendantes, de même espérance mathématique� et de même écart-type�,

et siXn �

�
i�1

n

Xi

n , alorsZn �
Xn � �

�
n

suit approximativement la loi normaleN�0;1� ;

autrement dit queXn suit approximativement la loi normaleN �; �
n

.

De plus, sinp � 10 et n�1 � p� � 10, on peut approcher la loi BinomialeB�n,p� par la loi normale
N np ; np�1 � p� . On en déduit quenFn suit approximativement la loi normaleN np ; np�1 � p� , et

donc Fn suit approximativement la loi normaleN p ;
p�1 � p�

n . Ainsi, U �
Fn � p

p�1 � p�
n

suit

approximativement la loi normaleN�0;1�.

Commentaires de ces résultats
Fn a toujours pour espérancep : la proportion dans l’échantillon est, "en moyenne", cellede la

population.
La variance deFn est d’autant plus faible quen est grand : la proportion dans l’échantillon varie d’autant

moins d’un échantillon à l’autre que la taille de cet échantillon est grande.
A la limite, si n tend vers l’infini,Var�Fn� tend vers 0 et doncFn tend vers la constantep.
Dans la pratique, l’approximation de la loi deFn par une loi normale est correcte dès quenp � 10 et

n�1 � p� � 10, ou dès quenp�1 � p� � 18, ou sous d’autres conditions proches, d’autant plus quen est grand
et p proche de 0.5.

Lorsquep n’est pas connu, on vérifie ces conditions sur la fréquencefn observée.

3. Intervalle de fluctuation et intervalle de confiance pour u ne proportion

Considérons une variable aléatoireX de loi de BernoulliB�p�, où p est la proportion d’individus de la
population ayant une propriété donnée, un échantillon�X1,X2, . . . ,Xn� de taille n de X et la proportion (ou

fréquence) d’échantillonFn �

�
i�1

n

Xi

n , où�
i�1

n

Xi représente le nombre d’individus de l’échantillonnage ayant

la propriété. On sait que sinp � 10 etn�1 � p� � 10, alorsU �
Fn � p

p�1 � p�
n

suit approximativement la loi

normaleN�0;1�. On détermine comme le réelu� tel queP��u� � U � u�� � 1 � � grâce à la table 2. Pour
� � 5%, on au� � 1.96.

Remarque. Lorsquen est petit, on doit utiliser la loi exacte denFn, à savoir la loi BinomialeB�n,p�.
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3.1. Intervalle de fluctuation de la fréquenceFn

On suppose que l’on connaitp.

On en déduit que P p �
p�1 � p�

n u� � Fn � p �
p�1 � p�

n u� � 1 � �, et donc

P�Fn � IFp� � 1 � �, avec IFp � p �
p�1 � p�

n u� ; p �
p�1 � p�

n u� intervalle de fluctuation IFp

de Fn au niveau1 � � � 0.95.

3.2. Intervalle de confiance de la proportionp
On suppose que l’on ne connait pasp mais que l’on a une observationfn deFn à partir d’un échantillon.

On a P Fn �
p�1 � p�

n u� � p � Fn �
p�1 � p�

n u� � 1 � �, et donc P�p � ICp� � 1 � �, avec

ICp � Fn �
p�1 � p�

n u� ; Fn �
p�1 � p�

n u� intervalle de confiance ICp de p au niveau

1 � � � 0.95.

Comme
Fn�1 � Fn�

n � 1
est un estimateur sans biais de

p�1 � p�
n , on en déduit, sinfn � 10 et

n�1 � fn� � 10, un intervalle de confiance de la proportionp au niveau 1� � :

icp � fn �
fn�1 � fn�

n � 1
u� , fn �

fn�1 � fn�
n � 1

u� .

Exemple d’ intervalle de confiance
Dans une certaine espèce de rongeur, on a compté 206 mâles sur400 naissances.
On peut considérer la situation suivante.
Population : les rongeurs d’une certaine espèce.
Variable : le sexe, à deux modalités (mâle et femelle), représenté par une variable aléatoire de loi de

Bernoulli B�p�, où p est la proportion de mâles dans la population ; on a ainsiP�X � 1� � p et
P�X � 0� � 1 � p.

Echantillon�X1,X2, . . . ,Xn� de taillen � 400 deX.
Observation de l’échantillon :�x1,x2, . . . ,xn� � �1,1,0,1, . . . ,0�.

Estimateur de la proportionp : Fn �

�
i�1

n

Xi

n , proportion (ou fréquence) de mâles dans l’échantillon, où

�
i�1

n

Xi représente le nombre de mâles de l’échantillon.

Estimation ponctuelle de la proportionp : fn �

�
i�1

n

xi

n � 206
400

� 0.515, fréquence (ou proportion) de

mâles dans l’observation de l’échantillon.
Intervalle de confiance de la proportionp :

nfn � 206 � 10 etn�1 � fn� � 194 � 10
Pour� � 0,05 (i.e. 5%�, on au� � 1,96.

icp � fn �
fn�1 � fn�

n � 1
u� ; fn �

fn�1 � fn�
n � 1

u� � 0,466 ; 0,564 .

Exemple d’application de l’ intervalle de fluctuation
Reprenons l’exemple précédent et supposons savoir qu’il y aéquiprobabilité male/femelle à chaque

naissance, autrement dit quep � 0,5.
Pour un échantillon de n � 400 naissances, l’intervalle de fluctuation deFn est

p �
p�1 � p�

n u� ; p �
p�1 � p�

n u� � 0.5�
0.5�1 � 0.5�

400
� 1.96 ;0.5�

0.5�1 � 0.5�
400

� 1.96

Ainsi, 95 % des échantillons de 400 naissances donneront unefréquence d’échantillon comprise entre
0.451 et 0.551.

L’échantillon étudié donne une fréquence observéefn � 0.515 qui appartient à l’intervalle de fluctuation
: il est donc représentatif d’une population pour laquellep � 0,5.
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3.3. Intervalle de fluctuation de la fréquenceFn et loi binomiale

On considère une population dans laquelle on suppose que la proportion d’un certain caractère estp. Pour
juger de cette hypothèse, on y prélève, au hasard et avec remise, un échantillon de taillen sur lequel on
observe une fréquencefn du caractère.

On rejette l’hypothèse selon laquelle la proportion dans lapopulation estp lorsque la fréquencefn

observée est trop éloignée dep, dans un sens ou dans l’autre. On choisit de fixer le seuil de décision de sorte
que la probabilité de rejeter l’hypothèse, alors qu’elle est vraie, soit inférieure à 5 %.

Lorsque la proportion dans la population vautp, la variable aléatoireX correspondant au nombre de fois
où le caractère est observé dans un échantillon aléatoire detaille n, suit la loi binomiale de paramètresn et p.
On cherche à partager l’intervalle�0,n�, où X prend ses valeurs, en trois intervalles�0,a � 1�, �a,b� et
�b � 1,n� de sorte queX prenne ses valeurs dans chacun des intervalles extrêmes avec une probabilité proche
de 0,025, sans dépasser cette valeur.

En tabulant les probabilités cumuléesP�X � k�, pourk allant de 0 àn, il suffit de déterminer le plus petit
entier a tel que P�X � a� � 0,025 et le plus petit entierb tel que P�X � b� � 0,975, c’est-à-dire
P�X � b� � 0,025. Autrement dit,a est le plus grand entier tel queP�X � a� � 0.25. On observe aussi que
a � b.

On a ainsiP��X � a� � �X � b�� � P�X � a� � P�X � b� � 0.05
et doncP�a � X � b� � P �X � a� � �X � b� � 0.95, en étant "assez proche" de 0.95.

CommeFn � X
n , on a ainsiP a

n � Fn � b
n � 0.95, en étant "assez proche" de 0.95.

La règle de décision est la suivante : si la fréquence observée fn appartient à l’intervalle de fluctuation à
95 % a

n , b
n , on considère que l’hypothèse selon laquelle la proportionestp dans la population n’est pas

remise en question et on l’accepte ; sinon, on rejette l’hypothèse selon laquelle cette proportion vautp.
Pour n � 30, n � p � 5 et n � �1 � p� � 5, on observe que l’intervalle de fluctuationa

n , b
n est

sensiblement le même que l’intervallep � 1
n

, p � 1
n

proposé dans le programme de seconde.

Exemple d’exercice
Monsieur Z, chef du gouvernement d’un pays lointain, affirme que 52 % des électeurs lui font confiance.

On interroge 100 électeurs au hasard (la population est suffisamment grande pour considérer qu’il s’agit de
tirages avec remise) et on souhaite savoir à partir de quelles fréquences, au seuil de 5 %, on peut mettre en
doute le pourcentage annoncé par Monsieur Z, dans un sens, oudans l’autre.

1. On fait l’hypothèse que Monsieur Z dit vrai et que la proportion des électeurs qui lui font confiance dans
la population estp � 0,52. Montrer que la variable aléatoireX, correspondant au nombre d’électeurs lui
faisant confiance dans un échantillon de 100 électeurs, suit la loi binomiale de paramètresn � 100 et
p � 0,52.

2. On donne ci-contre un extrait de la table des probabilitéscumuléesP�X � k�

oùX suit la loi binomiale de paramètresn � 100 etp � 0,52.

Déterminera et b tels que définis précédemment et comparer les intervalles

de fluctuation à 95 % a
n , b

n et p � 1
n

, p � 1
n

.

3. Énoncer la règle décision permettant de rejeter ou non l’hypothèsep � 0,52,

selon la valeur de la fréquencef des électeurs favorables à Monsieur Z obtenue

sur l’échantillon.

4. Sur les 100 électeurs interrogés au hasard, 43 déclarent avoir confiance

en Monsieur Z. Peut-on considérer, au seuil de 5 %, l’affirmation de Monsieur Z

comme exacte ?

k P�X � k�

40 0,0106

41 0,0177

42 0,0286

43 0,0444

...

61 0,9719

62 0,9827

63 0,9897

64 0,9941

Remarque : la recherche de l’intervalle de fluctuation peut-être illustrée par le diagramme en bâton de la loi
binomiale de paramètresn � 100 etp � 0,52.
Utilisation du tableur Excel

Construire la table des probabilités et des probabilités cumulées de la loi Binomiale de paramètres
n � 100et p � 0,52. Construire le diagramme en bâton de cette loi.
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4. Test de conformité pour une proportion p

On s’intéresse à la question suivante : étant donnée une population dans laquelle une proportionp
d’individu ont une certaine propriéte, peut-on raisonnablement supposer quep est égal à une certaine valeur
p0 donnée a priori ?

Par exemple, des tests en laboratoire permettent d’affirmer qu’un certain médicament est efficace sur une
proportionp0 d’individus atteints d’une certaine maladie. Mais après samise sur le marché, le médicament
a-t-il la même efficacité sur l’ensemble des individus malades ? Comment savoir si la proportionp de
malades guéris par le médicament est bien égale àp0 ?

La réponse à la question est donnée par la mise en place d’un test de conformité.
De façon générale, untest statistiqueest une procédure permettant de calculer la valeur d’une certaine

fonction des observations d’un ou de plusieurs échantillon, qui conduit à rejeter ou non, avec un certain
risque d’erreur, une hypothèse généralement appeléehypothèse nulleet notéeH0. Celle-ci porte sur la (ou
les) population(s) d’où est (sont) issu(s) le(s) échantillon(s). Elle s’oppose à unehypothèsedite alternative
et notéeH1.

Considérons une variable aléatoireX de loi de BernoulliB�p�, où p est la proportion d’individus de la
population ayant une propriété donnée, un échantillon�X1,X2, . . . ,Xn� de taille n de X et la proportion (ou

fréquence) d’échantillonF �

�
i�1

n

Xi

n , où�
i�1

n

Xi représente le nombre d’individus de l’échantillonnage ayant la

propriété. On sait que sinp � 10 et n�1 � p� � 10, alorsU �
F � p

p�1 � p�
n

suit approximativement la loi

normaleN�0;1�.

Test (bilatéral)de H0 : p � p0 contre H1 : p � p0.
On utilise alors une variable aléatoire dont on connait la loi de probabilité lorsqueH0 est vraie. Par

exempleU �
F � p

p�1 � p�
n

, car lorsqueH0 est vraie, on sait queU �
F � p0

p0�1 � p0�
n

suit la loiN�0;1�.

On fixe une valeur� � �0,1�. En général, on prend� petit, le plus souvent 0,05, 0,01, 0,001. On peut
trouver un réelu� tel queP��u� � U � u�� � 1 � �. Ce réelu� peut être trouvé dans la table 2.

On est donc amené à comparer la proportionF de l’échantillon à la proportion théoriquep � p0.
L’hypothèse H0 signifiera que les différences observées sont seulement dûes aux fluctuations
d’échantillonnage (i.e. ne sont pas significatives).

On ne rejettera pasH0 si les différences observées ne sont pas significatives, c’est-à-dire siU est "petite",
ce que l’on peut traduire par�u� � U � u�, c’est-à-dire|U| � u�.

On rejetera doncH0 si les différences observées sont significatives, ce que l’on peut traduire parU � u�

ou U � �u�, c’est-à-dire|U| � u�. Par construction deu�, on aP�U � u�� � P�U � �u�� � �
2

, soit encore

P�|U| � u�� � �, i.e.P�U 	 ��u�,u� �� � �.

En pratique, on calculeu �
f � p0

p0�1 � p0�
n

et on décide

- de rejeterH0 si u 	 ��u�,u� �, car siH0 était vraie, l’événementU 	 ��u�,u� � aurait une probabilité
faible de se réaliser ; on pourra dire que la valeur observéex n’est pas conforme à la valeur théorique�0 mais
on ne pourra pas donner de valeur acceptable de� ;

- de ne pas rejeterH0 si u � ��u�,u� �, car si H0 était vraie, l’événementU � ��u�,u� � aurait une
probabilité forte de se réaliser ; on pourra dire que la valeur observéef est conforme à la valeur théoriquep0

et que la valeurp0 ne peut être rejeter. Attention : d’autres valeursp0
� , p0

��, ... peuvent également convenir.

Erreurs de décision.
Lorsqu’on rejetteH0 alors queH0 est vraie, on commet une erreur. On a donc une probabilité� de se

tromper : � est appeléeerreur de première espèce. En effet, lorsque H0 est vraie, on a
P�U 	 ��u�,u� �� � �.
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Lorsque l’on ne rejette pasH0 alors queH0 est fausse, on commet une erreur. On a une probabilité� de
se tromper :� est appeléeerreur de deuxième espèce. Cette erreur est difficilement calculable. La plupart
du temps, on ne connait pas la loi deU lorsqueH0 est fausse. La valeur 1� � est appelée lapuissance du
test.

Test (bilatéral)de H0 : p � p0 contre H1 : p � p0.

On calculeu �
f � p0

p0�1 � p0�
n

. On détermineu� tel queP��u� � U � u�� � 1 � �, et on décide que :

- si u � ��u�,u� �, alors on ne peut rejeterH0 ;
- si u 	 ��u�,u� �, alors on rejetteH0 avec une probabilité� de se tromper.

Exemple
Reprenons l’exemple précédents sur les rongeurs.
Sur un échantillon de 400 naissances, on a observé 206 mâles,soit une fréquence de mâles de

f � 206
400

� 0.515.

On se demande s’il y a autant de mâles que de femelles dans la population ; autrement dit si la proportion
de mâles dans la population estp � 0.5.

On peut effectuer le test statistique deH0 : p � p0 contre H1 : p � p0, avecp0 � 0.5.

On calculeu �
f � p0

p0�1 � p0�
n

� 0.515� 0.5
0.5�1 � 0.5�

400

� 0.6. Pour� � 0,05 (i.e. 5%�, on au� � 1,96.

Commeu � ��u�,u� �, alors on ne peut rejeterH0 : il est donc possible quep � 0.5.

Test (unilatéral)de H0 : p � p0 contre H1 : p � p0.
On détermineu�

� tel queP�U � u�
� � � 1 � �, i.e.u�

� � ��1�1 � �� � u2�, et on décide que :
- si u � u�

� , alors on ne peut rejeterH0 ;
- si u � u�

� , alors on rejetteH0 avec une probabilité� de se tromper.

Test (unilatéral)de H0 : p � p0 contre H1 : p � p0.
On détermineu�

�� tel queP�U � u�
��� � 1 � �, i.e.u�

�� � ��1��� � u2�2� � �u2�, et on décide que :
- si u � u�

��, alors on ne peut rejeterH0 ;
- si u � u�

��, alors on rejetteH0 avec une probabilité� de se tromper.

Remarque : la p-valeur.
L’utilisation de logiciels (tels R) évite d’avoir à mener ces calculs. Lors de la mise en oeuvre de tout test

avec un logiciel (cela sera valable dans tous les chapitres suivants de ce cours), ce dernier fournit souvent la
p-valeur qui sera comparée au risque� pour la prise de décision. Ainsi, lorsquep � �, on rejetteH0 au risque
� ; lorsquep � �, on ne peut rejeterH0 au risque�.

L’interprétation de lap-valeur est simple : plus elle est faible, plus la décision derejeterH0 est fiable.
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5. Comparaison de deux proportions
Dans deux populationsP1 et P2 on étudie le même caractère ”avoir ou non une propriété donnée”. Soient

X1 et X2 des variables aléatoires de loi de BernoulliB�p1� et B�p2� représentant le caractère dans chaque
population, oùp1 (respectivementp2) est la proportion d’individus ayant la propriété dansP1 (respectivement
dansP2). De P1 et P2 on extrait un échantillonE1 � �X1,1,X1,2, . . . ,X1,n1 � de taillen1 deX1 et un échantillon
E2 � �X2,1,X2,2, . . . ,X2,n2 � de taillen2 deX2.

Les fréquences d’échantillon sont alorsF1 �

�
i�1

n1

X1,i

n1
et F2 �

�
i�1

n2

X2,i

n2
.

5.1. Cas d’échantillons indépendants
Les échantillonsE1 et E2 sont supposés indépendants.

Test (bilatéral)de H0 : p1 � p2 � p contre H1 : p1 � p2.
Supposons que n1f1 � 5, n1�1 � f1� � 5, n2f2 � 5, n2�1 � f2� � 5. Sous l’hypothèse H0,

U �
F1 � F2

� 1
n1

� 1
n2
�p�1 � p�

suit approximativement la loi normaleN�0;1�, et en regroupant les deux

échantillons, on peut estimerp par f1,2 �
n1f1 � n2f2

n1 � n2
. On calculeu �

f1 � f2

� 1
n1

� 1
n2
�f1,2�1 � f1,2�

. On

détermineu� tel queP��u� � U � u�� � 1 � �, i.e.u� � ��1 1 � �
2

(table 2) et on décide que :

- si u � ��u�,u� �, alors on ne peut rejeterH0 ;
- si u 	 ��u�,u� �, alors on rejetteH0 avec une probabilité� de se tromper.

Test (unilatéral)de H0 : p1 � p2 contre H1 : p1 � p2.
On détermineu�

� tel queP�U � u�
� � � 1 � �, i.e.u�

� � ��1�1 � �� � u2�, et on décide que :
- si u � u�

� , alors on ne peut rejeterH0 ;
- si u � u�

� , alors on rejetteH0 avec une probabilité� de se tromper.

Test (unilatéral)de H0 : p1 � p2 contre H1 : p1 � p2.
On détermineu�

�� tel queP�U � u�
��� � 1 � �, i.e.u�

�� � ��1��� � u2�2� � �u2�, et on décide que :
- si u � u�

��, alors on ne peut rejeterH0 ;
- si u � u�

��, alors on rejetteH0 avec une probabilité� de se tromper.

5.2. Cas d’échantillons appariés: test de McNemar
Deux échantillonsE1 et E2 sont ditsappariéslorsque chaque observationx1,i de E1 est associée à une

valeurx2,i deE2 (appariés� associés par paires). C’est par exemple le cas lorsqueE1 et E2 proviennent d’un
même groupe de malades avant et après traitement. Deux échantillons appariés ont donc la même taille
n1 � n2 � n.

On utilise le tableau suivant des effectifs de présence ou absence de la propriété étudiée :

P1 \ P2 présent absent totaux

présent

absent

a

c

b

d

a � b

c � d

totaux a � c b� d n

Le test de McNemar s’appuie sur le calcul deu � b � c
b � c

, et se poursuit de façon analogue au cas

d’échantillons indépendants (paragraphe 5.1). On peut l’utiliser dès queb � c � 10.
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5.3. Exemple
Dans une même catégorie sociale, un échantillon de 40 hommesa fourni 8 fumeurs et un échantillon de

60 femmes a fourni 18 fumeuses. On se demande si la proportionde fumeurs est la même pour les deux
sexes.

On peut considérer la situation suivante.
Population 1 : hommes.

VariableX1 : être fumeur, représenté par une variable aléatoireX1 de loi de BernoulliB�p1�, où p1

est la proportion d’hommes fumeurs.
Echantillon de taillen1 � 40.
Estimateur dep1 : fréquence d’échantillonF1. Estimation dep1 : f1 � 8

40
� 0,2.

Population 2 : femmes.
VariableX2 : être fumeuse, représenté par une variable aléatoireX2 de loi de BernoulliB�p2�, où p2

est la proportion de femmes fumeuses
Echantillon de taillen2 � 60.
Estimateur dep2 : fréquence d’échantillonF2. Estimation dep2 : f2 � 18

60
� 0,3.

Les échantillonsE1 et E2 sont indépendants.

Test (bilatéral) deH0 : p1 � p2 � p contreH1 : p1 � p2.
Supposons quen1f1 � 8 � 5, n1�1 � f1� � 32 � 5, n2f2 � 18 � 5, n2�1 � f2� � 42 � 5.

Sous l’hypothèseH0, U �
F1 � F2

� 1
n1

� 1
n2
�p�1 � p�

suit approximativement la loi normaleN�0;1�, et en

regroupant les deux échantillons, on peut estimerp par f1,2 �
n1f1 � n2f2

n1 � n2
� 8 � 18

40� 60
� 0,26 . En

remplaçantp parf1,2, on ne modifie pas la loi approchée deU.

On calculeu �
f1 � f2

� 1
n1

� 1
n2
�f1,2�1 � f1,2�

�
0,2� 0,3

1
40 � 1

60 0,26�1 � 0,26�

 �1,12.

On détermineu� tel queP��u� � U � u�� � 1 � � (table 2) : pour� � 0,05, on trouveu� � 1,96.
Commeu � ��u�,u� �, on ne peut rejeterH0 : la proportion de fumeurs ne diffère pas significativement

entre les deux sexes. Pour cette décision de non-rejet, on neconnait pas la probabilité de se tromper (erreur de
deuxième espèce).

6. Exercices

Exercice 1.
On admet que dans la population d’enfants de 11 à 14 ans d’un département français, le pourcentage

d’enfants ayant déjà eu une crise d’asthme dans leur vie est de 13%.
Un médecin d’une ville de ce département est surpris par le nombre important d’enfants le consultant

pour des crises d’asthmes. Il décide de mener une étude statistique en choisissant de manière aléatoire 100
enfants de 11 à 14 ans de la ville. Il observe que 19 d’entre euxont déjà eu une crise d’asthmes.

1) Utiliser un intervalle de fluctuation pour aider le médecin à décider s’il y a plus d’enfants ayant des
crises d’asthmes dans la ville que dans le département.

2) Le médecin n’est pas convaincu par la décision obtenue et pense que le nombre d’enfants interrogés
était insuffisant. Combien d’enfants faudrait-il interroger pour qu’une fréquence observée de 0,19 amène à
conclure qu’il y a plus d’enfants ayant des crises d’asthmesdans la ville que dans le département.

Exercice 2.
Un groupe d’étudiants en Statistique réalise une enquête auprès d’une population d’étudiants en

sociologie en interrogeant un échantillon de 135 individus. Ils désirent connaître, entre autres, la proportionp
d’étudiants ayant suivi des études secondaires scientifiques.

Pour accélérer le traitement, ils partagent le dépouillement en deux groupes. Un groupe constate que sur
60 des étudiants interrogés, 24 ont suivi des études secondaires scientifiques. L’autre groupe constate que sur
les 75 des étudiants interrogés restant, 33 ont suivi des études secondaires scientifiques.

1) Déterminer trois estimations ponctuelles dep.
2) A partir de l’échantillon des 135 étudiants, déterminer un intervalle de confiance dep au seuil� � 5%.
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3) On souhaite estimerp avec une précision de 0,05. Quelle devrait être la taillen de l’échantillon ?
Exercice 3.

Pour obtenir une estimation de la proportion d’hyperglycémiques parmi les personnes âgées de plus de
soixante ans (population P), on choisit au hasard 170 personnes dans P. On constate que parmi celles-ci, 31
sont hyperglycémiques.

1) Donnez un intervalle de confiance au niveau 95% pour la proportionp de personnes hyperglycémiques
de P.

2) Si on effectuait 200 fois le tirage de 170 personnes de P, onpourrait construire 200 intervalles de
confiance du type précédent. Parmi ces 200 intervalles, combien, en moyenne, contiendraient la valeur dep ?

Exercice 4.
Un sondage effectué sur un échantillon de 400 électeurs donne 212 intentions de vote en faveur d’un

candidat C.
1) Déterminer un intervalle de confiance au niveau 95% pour la proportion d’électeurs, dans l’ensemble

de la population électorale, ayant l’intention de voter en faveur de C.
2) Quelle taille minimale de l’échantillon faudrait-il prendre pour que l’intervalle (au même niveau 95%)

ne contienne pas la valeur 0,50 ?

Exercice 5.
Lors d’une précédente consultation électorale, le candidat A avait obtenu 51% des suffrages exprimés. A

l’approche de nouvelles élections, il réalise un sondage sur un échantillon de 400 électeurs choisis au hasard
dans sa circonscription. Il obtient 196 intentions de votes.

Peut-il conclure que sa cote de popularité est restée stable?

Exercice 6.
Une agence de publicité affirme qu’un produit d’entretien est efficace à 90% pour déboucher éviers et

lavabos en deux heures, quelle que soit la nature de l’obstruction. Une association de défense du
consommateur a fait une enquête qui relève que sur 100 lavabos bouchés, 80 seulement sont débouchés en
deux heures en utilisant le produit d’entretien.

1) Doit-on faire un procès à l’agence de publicité ? Faire un test au risque 5%, puis 1%.
2) En utilisant le logiciel R, on a obtenu les résultats suivants :

Cela confirme-t-il les résultats du 1) ?

Exercice 7.
On compare les effets d’un même traitement dans deux hopitaux différents. Dans le premier hopital, 70

des 100 malades traités montrent des signes de guérison. Dans le deuxième hopital, c’est le cas pour 100 des
150 malades traités.

Quelle conclusion peut-on en tirer ?
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Exercice 8. D’après examen de mars 2011
Afin d’évaluer l’impact d’une campagne média anti-tabac, on s’est intéressé à la proportion de fumeurs

menant des actions pour essayer d’arrêter de fumer (diminution de la consommation, achat de patchs
anti-tabac, consultations médicales, ...), c’est-à-direà la proportion de fumeurs "actifs" pour arrêter.

Un sondage "avant campagne" a été effectué auprès de 3000 fumeurs, et un sondage "après campagne" a
été effectué auprès d’un autre échantillon de 3000 fumeurs ;les deux échantillons sont donc indépendants.

Le premier sondage donne une proportion de 0,15 de fumeurs "actifs", alors que le deuxième sondage
donne une proportion de 0,17 de fumeurs "actifs".

On veut savoir si la campagne a été efficace ; autrement dit sila proportion de fumeurs "actifs" a
augmenté après la campagne.

1) a) Déterminer un intervalle de confiance au niveau 95% de la proportion de fumeurs "actifs" avant la
campagne. Préciser la population et le caractère étudié, lataille d’échantillon, le(s) estimateur(s) mis en jeu.

b) De façon analogue, donner (sans détailler les calculs) unintervalle de confiance au niveau 95% de
la proportion de fumeurs "actifs" après la campagne.

c) Peut-on déduire de ces deux intervalles que la campagne a été efficace ?
2) a) Expliquer brièvement ce que représentent les erreurs de première et deuxième espèce d’un test

statistique.
b) Effectuer un test statistique au risque 5%, puis 10%, poursavoir si la campagne a été efficace. En

cas de décisions contradictoires avec les deux risques 5% et10%, préciser et justifier la décision à retenir.

Exercice 9.
Sous forme de comprimé un médicament est efficace dans le traitement d’une maladie dans 80% des cas.

Le pharmacien du laboratoire qui commercialise ce médicament, essaie une forme injectable par voie
intra-musculaire, de ce même médicament. Il observe sur un échantillon de 50 malades, 35 guérisons.
L’efficacité de la forme intra-musculaire est-elle différente de celle en comprimé ? Lui est-elle inférieure ?
(conclure au risque de 5%).

Exercice 10.
On sait qu’une maladie atteint 10% des individus d’une population P donnée. Un chercheur a

expérimenté un traitement sur un échantillon den individus : il a alors recensé 5% de malades. Déterminer la
valeur minimale den qui permette au chercheur de conclure à l’efficacité du traitement au risque de 5%.

Exercice 11.
Pour traiter un certain type de tumeur, on a utilisé deux schémas thérapeutiques :

- sur 40 malades traités avec le schéma A, on a observé une mortalité à 5 ans de 15 % ;
- sur 60 malades traités avec le schéma B, on a observé une mortalité à 5 ans de 25 %.

Si l’on considère la mortalité à 5 ans, peut-on dire que les schémas A et B diffèrent significativement au
risque 10 % ? au risque 5 % ?

Exercice 12.
Pour comparer deux somnifères A et B, on procède aux deux expériences suivantes.
1) Dans la première expérience, on compare deux séries, constituées par tirage au sort, de 64 sujets

ayant reçu A pour la première, de 64 sujets ayant reçu B pour laseconde. Considérant qu’un soporifique
donne un succès en cas de durée de sommeil supérieure ou égaleà 6 heures, on obtient les résultats suivants :

A B

Succès 42 32

Echec 22 32

Au risque 5%, les différences observées entre les deux somnifères sont-elles significatives ?
2) Dans la deuxème expérience, on utilise 64 sujets recevantune fois A et une fois B, dans un ordre tiré

au sort. On obtient les résultats suivants :

Succès avec B Echec avec B

Succès avec A 27 15

Echec avec A 5 17

Les somnifères A et B ont-ils la même efficacité ?
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