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@ Classical and dual Garside structure on braid groups
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There are two Garside structures on the braid group B,
e Classical Punctures lined up horizontally. A = half-twist.
Divisors of A + permutations of the n punctures

o Dual Punctures on acircle. § = 2 turn.

Divisors of § < disjoint, non-nested polygons, (possibly
degenerate, i.e. having only two vertices)
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There are two Garside structures on the braid group B,
e Classical Punctures lined up horizontally. A = half-twist.
Divisors of A + permutations of the n punctures
e Dual Punctures on acircle. 6§ = ZT” turn.

Divisors of § «+ disjoint, non-nested polygons, (possibly
degenerate, i.e. having only two vertices)

identification
(conjugation)
between
classica
and

dual



@ Labellings of curve diagrams
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For any braid 8 € By, consider its curve diagram D_g with
Winding number labeling (WNu)  Wall crossing labeling (WCr)

Look at the maximal and minimal labels of the solid arcs.
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For any braid 8 € By, consider its curve diagram D_g with
Winding number labeling (WNu)  Wall crossing labeling (WCr)

Look at the maximal and minimal labels of the solid arcs.
Thm 1 [W, 2010]

Minwnu(8) = infciass.carside (3)
Maxwnu(f) = SUPclass.carside (3)

6/20



6/20

For any braid 8 € By, consider its curve diagram D_g with
Winding number labeling (WNu)  Wall crossing labeling (WCr)

Look at the maximal and minimal labels of the solid arcs.
Thm 1 [W, 2010] Thm 2 [lto & W, 2011]

MinWNu(/B) = infCIa\ss.Garside(ﬁ) I\/“nWCr (ﬁ) = infDualGarside(ﬁ)
MaXWNu(/B) = SupCIass.Garside(/B) MaXWCr(/B) = SupDuaIGarside(/B)
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For any braid 8 € By, consider its curve diagram D_g with
Winding number labeling (WNu)  Wall crossing labeling (WCr)

Look at the maximal and minimal labels of the solid arcs.
Thm 1 [W, 2010] Thm 2 [lto & W, 2011]

MinWNu(/B) = infCIa\ss.Garside(ﬁ) I\/“nWCr (ﬁ) = infDualGarside(ﬁ)
MaXWNu(/B) = SupCIass.Garside(/B) MaXWCr(/B) = SupDuaIGarside(/B)

We will use only this result



Details for this example : 3 = (0, 01)?

Check the theorems in this special case :

Minwnu(8) = -2,
Maxwnu(8) = 2.
Class. Gars. normal form of 3 is

-1 _-1 -1
02 O‘l 'Ul + 020201
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Details for this example : 3 = (0, 01)?

Check the theorems in this special case :

Minwnu(8) = -2,
Maxwnu(8) = 2.
Class. Gars. normal form of 3 is

-1 -1 -1
0,70, 0, 020201 V
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Details for this example : 3 = (0, 01)?

Check the theorems in this special case :

Minwnu(8) = -2, Minyc (8) = -2,
Maxwnu(8) = 2. Maxwcr (8) = 2.
Class. Gars. normal form of g is ~ Dual Gars. normal form of g is

1 -1 -1

-1 - -1 -1
0,707 017020201 v 3172.8173.31’2.31’2
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Details for this example : 3 = (0, 01)?

Check the theorems in this special case :

Minwnu(8) = -2, Minyc (8) = -2,
Maxwnu(8) = 2. Maxwcr (8) = 2.
Class. Gars. normal form of g is ~ Dual Gars. normal form of g is

1 -1 -1

-1 - -1 -1
0,707 017020201 v 3172.8173.31’2.31’2 v
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Proof of Theorem 2 (beginning)

Lemma Let S € By, and Ba divisor of §. Action of Bon Dg :
an arc in Dg labelled k gives rise to one or several arcs in D3
labelled k or k + 1.

B-p’




Proof of Theorem 2 (end)

Thm 2 MinWCr(/B) = infpyal (/8)1 MaXWCr(/B) = SUPpyal (/B)
For simplicity, suppose Minyc,(8) = 0.

Need to prove : Maxwc(8) = SUPpyq (5)
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Proof of Theorem 2 (end)

Thm 2 MinWCr(/B) = infpyal (/8)1 MaXWCr(/B) = SUPpyal (/B)
For simplicity, suppose Minyc,(8) = 0.

Need to prove : Maxwc(8) = SUPpyq (5)

Proof of “ <" : follows from Lemma (acting by a divisor of §
can only increase maximal label by 1).
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Proof of Theorem 2 (end)

Thm 2 MinWCr(/B) = infpyal (/8)1 MaXWCr(/B) = SUPpyal (/B)
For simplicity, suppose Minyc,(8) = 0.

Need to prove : Maxwc(8) = SUPpyq (5)

Proof of “ <" : follows from Lemma (acting by a divisor of §
can only increase maximal label by 1).
Proof of “ =" : by induction on Maxyc,(3).

@ Construct a collection P of disjoint polygons intersecting all
maximally labelled arcs, but none of the minimally labelled
ones. Then let 5 be the divisor of ¢ corresponding to P.

@ Prove that acting on Dg by B‘l decreases the maximal
label without decreasing the minimal label :

. MaXWCr(ﬁilﬁ) = Maxwc(8) — 1
o Minwc, (3718) = Minwe (8) =0 U
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©® The Lawrence-Krammer-Bigelow representation
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Historical reminder
Question : Is By, linear, i.e. the subgroup of a matrix group ?

The Burau representation is not faithful for n > 5 [Bigelow,
Long, Moody], it is faithful for n = 2,3, and for n = 4 the
guestion is open.
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Historical reminder
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Question : Is By, linear, i.e. the subgroup of a matrix group ?

The Burau representation is not faithful for n > 5 [Bigelow,
Long, Moody], it is faithful for n = 2,3, and for n = 4 the
guestion is open.

The first representation for which faithfulness for all n was
proven was the representation of Ruth Lawrence

B, -5 GL (R [qi17til] 7 n(nz— 1))

(Actually, the matrix coefficients happen to lie in Z[g*!,t*1].)
Answer : Yes. Two proofs that £ is faithful :

by Daan Krammer and Stephen Bigelow.



Explicit formula for the representation L

B, =5 GL (R [qﬂ:l’til] ’ n(”z— 1)>

n(n—1)

Denote the basis vectors of R
Then L(ok) sends

by Fij (for 1 <i <j<n).

i ¢ {i = 1ij - 1,j}
aF,; + (CI2 —qQ)Fi+(1—-ag)F; k=i-1
Eos d Fiv k=i#j-1
Y qu,k + (1 — q)Fi,j + (q — qz)tFkJ k :J: -1 7é i
[ —q%tFi k=i=j—1
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Krammer’s proof that L is faithful

For any 5 € By, consider the maximal and minimal powers of t
occurring in the matrix £(3).

Krammer's main lemma  (which implies faithfulness) :

maximal power oftin E(ﬂ) = S‘upCIassicaIGarside(ﬂ)

minimal power of t in £L(8) = infcjassicaicarside (3)
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Krammer’s proof that L is faithful

For any 5 € By, consider the maximal and minimal powers of t
occurring in the matrix £(3).

Krammer's main lemma  (which implies faithfulness) :

maximal power oftin E(ﬂ) = S‘upCIassicaIGarside(ﬂ)

minimal power oftin E(ﬂ) = infCIassicaIGarside(ﬂ)

Krammer conjectured
maximal power of q in £(8) = 2 - sUppyacarside ()

minimal power of q in £(8) = 2 - infpyaicarside (5)
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Krammer’s proof that L is faithful

For any 5 € By, consider the maximal and minimal powers of t
occurring in the matrix £(3).

Krammer's main lemma  (which implies faithfulness) :
maximal power of t in E(ﬂ) = S‘upCIassicaIGarside(ﬂ)

minimal power oftin E(ﬂ) = infCIassicaIGarside(ﬂ)

Krammer conjectured
maximal power of q in £(8) = 2 - sUppyacarside ()

minimal power of q in £(8) = 2 - infpyaicarside (5)

Theorem (Ito,W) Krammer’s conjecture is true.
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Krammer’s proof that L is faithful

For any 5 € By, consider the maximal and minimal powers of t
occurring in the matrix £(3).

Krammer's main lemma  (which implies faithfulness) :
maximal power of t in E(ﬂ) = S‘upCIassicaIGarside(ﬂ)

minimal power oftin E(ﬂ) = infCIassicaIGarside(ﬂ)

Krammer conjectured
maximal power of q in £(8) = 2 - sUppyacarside ()

minimal power of q in £(8) = 2 - infpyaicarside (5)

Theorem (Ito,W) Krammer’s conjecture is true.

We unsuccessfully tried to also reprove Krammer's result using our techniques.
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Bigelow’s proof that £ is faithful

Let X be the configuration space of unordered pairs of points in
the n-times punctured disk Dy, :

X = {{XLXZ} | X1,X2 € Dp , X1 # Xz}

equipped with a basepoint {d;,d,} (see blackboard).
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Bigelow’s proof that L is faithful
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Let X be the configuration space of unordered pairs of points in
the n-times punctured disk Dy, :

X = {{XLXZ} | X1,X2 € Dp , X1 # Xz}

equipped with a basepoint {d;,d,} (see blackboard).
There is a homomorphism

7T1(X) — Zz = <q7t>7 v = {71772} = qatb
where

a = sum of the winding numbers of v; and ~, around all n punctures

b = 2 . (relative winding number of v, and ;)

Let X be the cover corresponding to ker (m1(X) — Z2).
Choose a basepoint {d;, d5}. Covering group(X) = Z2.



Note : the Bn-action on X by homeos lifts to a By-action on X.
Hence By acts on the second homology Hx(X, R[g*?, t*1]) by
automorphisms.

Proposition (Bigelow)  The second homology
Ha (X, R[q ™, t1]) is of dimension 2(0-1)

with generators F; j (“forks”) as in the following figure.

d; d;

Moreover, the B,-action on Hy (X, R[g*1, t¥1]) coincides with

the representation L.
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Bigelow’s Key Lemma

e Recall X is a 4-dim. mfd. with covering action by Z? = (g, t).
e Recall the “fork” F;  is a surface (more precisely a square)
in X representing a generator of Ho (X, R[g*L, t£1]).

o Let Xo70 be a fund. domain of the Z?-action containing the
basept. {d,d,} and all forks Fij. Let Xap = q2t? Xo 0.
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Bigelow’s Key Lemma
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e Recall X is a 4-dim. mfd. with covering action by Z? = (g, t).
e Recall the “fork” F;  is a surface (more precisely a square)

in X representing a generator of Ho (X, R[g*L, t£1]).
o Let Xo70 be a fund. domain of the Z?-action containing the

basept. {al,az} and all forks F;;. Let )?a,b = qatb.Xop.

Handwaving version of Bigelow’s “Key Lemma” Let 8 € By
and 1 <i <j < n, and consider 3(F;j) C X. Among the
fundamental domains )N(a,b intersected by 3(F; ;) C X, select the
one Xamax,bmax with maximal (a,b) (lexicographically). Now in

Ho (X, R[g*L, t£1]) we can write uniquely

/B(FMJ) = Z Pi/,j/(qat)Fi’,j/ (Wlth Pilvj/ c R[qil,til])
1<i’<j’<n

Then in one of the polynomials P;. ., the term q@maxtPmax gccurs
with non-zero coeff. (“contributions do not cancel in homology”).



@ The LKB representation detects dual braid length
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The LKB representation detects  SUPpyaicarsige(?)
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Proof that 2 - suppacarside(3) = maximal power of q in £(5)

Proof of “>" is easy (L : divisors of § — matrix of q-degree 2).

Proof of “<”:

2 - suppyal (8) hmz . Maxwcr (), the max. wall crossing labeling

= the maximal number a such that 3.F; ;1
intersects qatb.XQo for somei,b

Now according to Bigelow’s Key Lemma, the monomial q2t°
occurs somewhere in the matrix £(3). O



Questions

@ Recall Theorem 2 : for a braid 3, we can read the length
of 5 from the wall crossing labellings occurring in the curve
diagram of 5.

Question : is there some analogue for Out(Fy), with the

sphere system in (St x S?)# ... #(S! x S?) playing the
role of the curve diagram ?
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Questions

@ Recall Theorem 2 : for a braid 3, we can read the length
of 5 from the wall crossing labellings occurring in the curve
diagram of 5.

Question : is there some analogue for Out(Fy), with the
sphere system in (St x S?)# ... #(S! x S?) playing the
role of the curve diagram ?

® Is there a generalization of our main theorem to Artin-Tits
groups of finite type ? The question makes sense, as
o there are dual Garside structures on such groups (Bessis,
T.Brady-Watt)
o there are Lawrence-Krammer-Bigelow type representations
on such groups (Digne, Cohen-Wales).
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