The Lawrence-Krammer-Bigelow representation detects the dual braid length

Bert Wiest

IRMAR, Université de Rennes 1

Joint work with Tetsuya Ito (UBC, Vancouver)

1 Classical and dual Garside structure on braid groups

2 Labellings of curve diagrams

3 The Lawrence-Krammer-Bigelow representation

4 The LKB representation detects dual braid length

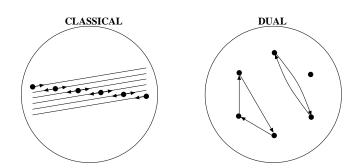
1 Classical and dual Garside structure on braid groups

2 Labellings of curve diagrams

- 3 The Lawrence-Krammer-Bigelow representation
- 4 The LKB representation detects dual braid length

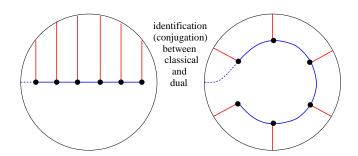
There are two Garside structures on the braid group B_n

- Classical Punctures lined up horizontally. $\Delta = \text{half-twist.}$ Divisors of $\Delta \leftrightarrow \text{permutations}$ of the n punctures
- **Dual** Punctures on a circle. $\delta = \frac{2\pi}{n}$ turn. Divisors of $\delta \leftrightarrow$ disjoint, non-nested polygons, (possibly degenerate, i.e. having only two vertices)



There are two Garside structures on the braid group B_n

- Classical Punctures lined up horizontally. $\Delta = \text{half-twist.}$ Divisors of $\Delta \leftrightarrow \text{permutations}$ of the n punctures
- **Dual** Punctures on a circle. $\delta = \frac{2\pi}{n}$ turn. Divisors of $\delta \leftrightarrow$ disjoint, non-nested polygons, (possibly degenerate, i.e. having only two vertices)



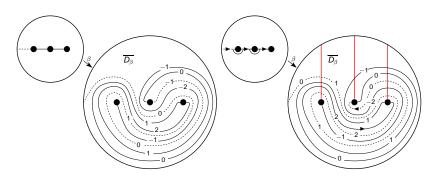
1 Classical and dual Garside structure on braid groups

2 Labellings of curve diagrams

3 The Lawrence-Krammer-Bigelow representation

4 The LKB representation detects dual braid length

For any braid $\beta \in B_n$, consider its *curve diagram* $\overline{D_\beta}$ with Winding number labeling (WNu) Wall crossing labeling (WCr)

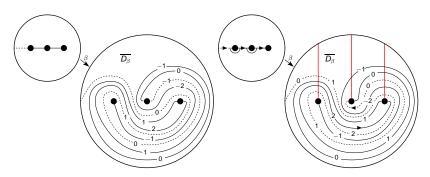


Look at the maximal and minimal labels of the solid arcs.

Thm 1 [W, 2010]Thm 2 [Ito & W, 2011]
$$Min_{WNu}(\beta) = \inf_{Class.Garside}(\beta)$$
 $Min_{WCr}(\beta) = \inf_{DualGarside}(\beta)$ $Max_{WNu}(\beta) = \sup_{Class.Garside}(\beta)$ $Max_{WCr}(\beta) = \sup_{DualGarside}(\beta)$

Thm 2 [Ito & W, 2011]
$$Min_{WCr}(\beta) = \inf_{DualGarside}(\beta)$$
 $Max_{WCr}(\beta) = \sup_{DualGarside}(\beta)$

For any braid $\beta \in B_n$, consider its *curve diagram* $\overline{D_{\beta}}$ with Winding number labeling (WNu) Wall crossing labeling (WCr)



Look at the maximal and minimal labels of the solid arcs.

Thm 1 [W, 2010]

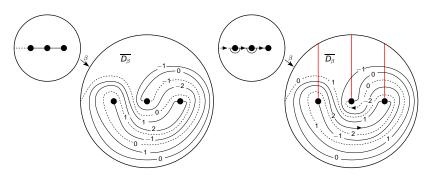
$$Min_{WNu}(\beta) = \inf_{Class. Garside}(\beta)$$

$$Max_{WNu}(\beta) = \sup_{Class. Garside}(\beta)$$

Thm 2 [Ito & W, 2011]
$$Min_{WCr}(\beta) = \inf_{DualGarside}(\beta)$$
 $Max_{WCr}(\beta) = \sup_{DualGarside}(\beta)$

We will use only this result

For any braid $\beta \in B_n$, consider its *curve diagram* $\overline{D_{\beta}}$ with Winding number labeling (WNu) Wall crossing labeling (WCr)



Look at the maximal and minimal labels of the solid arcs.

$$Min_{WNu}(\beta) = \inf_{Class. Garside}(\beta)$$

$$Max_{WNu}(\beta) = \sup_{Class. Garside}(\beta)$$

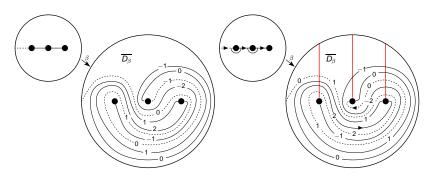
Thm 2 [Ito & W, 2011]

$$Min_{WCr}(\beta) = inf_{DualGarside}(\beta)$$

$$Max_{WCr}(\beta) = sup_{DualGarside}(\beta)$$

We will use only this result

For any braid $\beta \in B_n$, consider its *curve diagram* $\overline{D_{\beta}}$ with Winding number labeling (WNu) Wall crossing labeling (WCr)



Look at the maximal and minimal labels of the solid arcs.

$$\mathit{Min}_{\mathit{WNu}}(\beta) = \mathsf{inf}_{\mathit{Class.Garside}}(\beta)$$

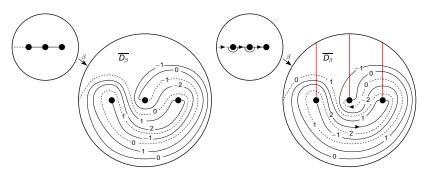
$$Max_{WNu}(\beta) = \sup_{Class. Garside}(\beta)$$

Thm 2 [Ito & W, 2011]

$$Min_{WCr}(\beta) = inf_{DualGarside}(\beta)$$

$$Max_{WCr}(\beta) = sup_{DualGarside}(\beta)$$

We will use only this result

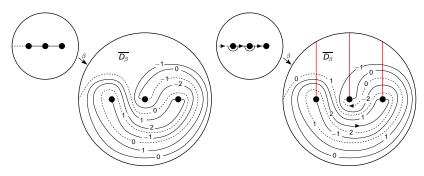


$$Min_{WNu}(\beta) = -2,$$

 $Max_{WNu}(\beta) = 2.$
Class. Gars. normal form of β is $\sigma_2^{-1}\sigma_1^{-1} \cdot \sigma_1^{-1} \cdot \sigma_2 \cdot \sigma_2 \sigma_1$

$$Min_{WCr}(\beta) = -2,$$

 $Max_{WCr}(\beta) = 2.$
Dual Gars. normal form of β is $a_{1,2}^{-1}.a_{1,3}^{-1}.a_{1,2}.a_{1,2}$.

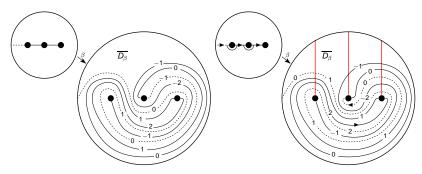


$$Min_{WNu}(\beta) = -2,$$

 $Max_{WNu}(\beta) = 2.$
Class. Gars. normal form of β is $\sigma_2^{-1}\sigma_1^{-1} \cdot \sigma_1^{-1} \cdot \sigma_2 \cdot \sigma_2\sigma_1$

$$Min_{WCr}(\beta) = -2,$$

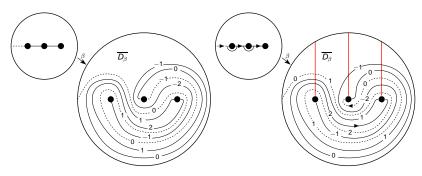
 $Max_{WCr}(\beta) = 2.$
Dual Gars. normal form of β is $a_{1,2}^{-1}.a_{1,3}^{-1}.a_{1,2}.a_{1,2}$. \checkmark



$$\begin{aligned} &\textit{Min}_{\textit{WNu}}(\beta) = -2, \\ &\textit{Max}_{\textit{WNu}}(\beta) = 2. \\ &\textit{Class. Gars. normal form of } \beta \text{ is} \\ &\sigma_2^{-1}\sigma_1^{-1} \cdot \sigma_1^{-1} \cdot \sigma_2 \cdot \sigma_2\sigma_1 \quad \checkmark \end{aligned}$$

$$Min_{WCr}(\beta) = -2,$$

 $Max_{WCr}(\beta) = 2.$
Dual Gars. normal form of β is $a_{1,2}^{-1}.a_{1,3}^{-1}.a_{1,2}.a_{1,2}$



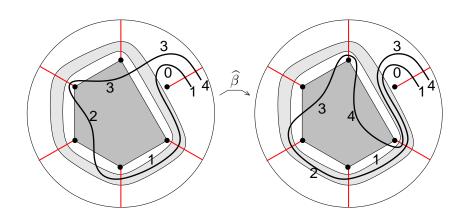
$$\begin{aligned} &\textit{Min}_{\textit{WNu}}(\beta) = -2, \\ &\textit{Max}_{\textit{WNu}}(\beta) = 2. \\ &\textit{Class. Gars. normal form of } \beta \text{ is} \\ &\sigma_2^{-1}\sigma_1^{-1} \cdot \sigma_1^{-1} \cdot \sigma_2 \cdot \sigma_2\sigma_1 \quad \checkmark \end{aligned}$$

$$Min_{WCr}(\beta) = -2,$$

 $Max_{WCr}(\beta) = 2.$
Dual Gars. normal form of β is $a_{1,2}^{-1}.a_{1,3}^{-1}.a_{1,2}.a_{1,2}$.

Proof of Theorem 2 (beginning)

Lemma Let $\beta \in B_n$, and $\widehat{\beta}$ a divisor of δ . Action of $\widehat{\beta}$ on D_{β} : an arc in D_{β} labelled k gives rise to one or several arcs in $D_{\widehat{\beta}\cdot\beta}$, labelled k or k+1.



Proof of Theorem 2 (end)

Thm 2 $Min_{WCr}(\beta) = \inf_{Dual}(\beta)$, $Max_{WCr}(\beta) = \sup_{Dual}(\beta)$. For simplicity, suppose $Min_{WCr}(\beta) = 0$.

Need to prove : $Max_{WCr}(\beta) = \sup_{Dual}(\beta)$

Proof of " \leqslant ": follows from Lemma (acting by a divisor of δ can only increase maximal label by 1).

Proof of " \geqslant ": by induction on $Max_{WCr}(\beta)$.

- 1 Construct a collection P of disjoint polygons intersecting all maximally labelled arcs, but none of the minimally labelled ones. Then let $\widehat{\beta}$ be the divisor of δ corresponding to P.
- 2 Prove that acting on D_{β} by $\widehat{\beta}^{-1}$ decreases the maximal label without decreasing the minimal label :
 - $Max_{WCr}(\widehat{\beta}^{-1}\beta) = Max_{WCr}(\beta) 1$
 - $Min_{WCr}(\widehat{\beta}^{-1}\beta) = Min_{WCr}(\beta) = 0$

Proof of Theorem 2 (end)

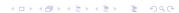
Thm 2 $Min_{WCr}(\beta) = \inf_{Dual}(\beta)$, $Max_{WCr}(\beta) = \sup_{Dual}(\beta)$. For simplicity, suppose $Min_{WCr}(\beta) = 0$.

Need to prove : $Max_{WCr}(\beta) = \sup_{Dual}(\beta)$

Proof of " \leq ": follows from Lemma (acting by a divisor of δ can only increase maximal label by 1).

Proof of " \geqslant ": by induction on $Max_{WCr}(\beta)$.

- 1 Construct a collection P of disjoint polygons intersecting all maximally labelled arcs, but none of the minimally labelled ones. Then let $\widehat{\beta}$ be the divisor of δ corresponding to P.
- ② Prove that acting on D_{β} by $\widehat{\beta}^{-1}$ decreases the maximal label without decreasing the minimal label :
 - $Max_{WCr}(\widehat{\beta}^{-1}\beta) = Max_{WCr}(\beta) 1$
 - $Min_{WCr}(\widehat{\beta}^{-1}\beta) = Min_{WCr}(\beta) = 0$



Proof of Theorem 2 (end)

Thm 2
$$Min_{WCr}(\beta) = \inf_{Dual}(\beta)$$
, $Max_{WCr}(\beta) = \sup_{Dual}(\beta)$. For simplicity, suppose $Min_{WCr}(\beta) = 0$.

Need to prove :
$$Max_{WCr}(\beta) = \sup_{Dual}(\beta)$$

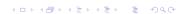
Proof of " \leqslant ": follows from Lemma (acting by a divisor of δ can only increase maximal label by 1).

Proof of " \geqslant ": by induction on $Max_{WCr}(\beta)$.

- **1** Construct a collection P of disjoint polygons intersecting all maximally labelled arcs, but none of the minimally labelled ones. Then let $\widehat{\beta}$ be the divisor of δ corresponding to P.
- 2 Prove that acting on D_{β} by $\widehat{\beta}^{-1}$ decreases the maximal label without decreasing the minimal label :

•
$$Max_{WCr}(\widehat{\beta}^{-1}\beta) = Max_{WCr}(\beta) - 1$$

•
$$Min_{WCr}(\widehat{\beta}^{-1}\beta) = Min_{WCr}(\beta) = 0$$



1 Classical and dual Garside structure on braid groups

2 Labellings of curve diagrams

3 The Lawrence-Krammer-Bigelow representation

4 The LKB representation detects dual braid length

Historical reminder

Question : Is B_n linear, i.e. the subgroup of a matrix group?

The *Burau* representation is *not* faithful for $n \ge 5$ [Bigelow, Long, Moody], it *is* faithful for n = 2, 3, and for n = 4 the question is open.

The first representation for which faithfulness for all *n* was proven was the representation of Ruth Lawrence

$$B_n \stackrel{\mathcal{L}}{\longrightarrow} GL\left(\mathbb{R}\left[q^{\pm 1}, t^{\pm 1}\right], \frac{n(n-1)}{2}\right)$$

(Actually, the matrix coefficients happen to lie in $\mathbb{Z}[q^{\pm 1}, t^{\pm 1}]$.)

Answer : Yes. Two proofs that \mathcal{L} is faithful :

by Daan Krammer and Stephen Bigelow.

Historical reminder

Question : Is B_n linear, i.e. the subgroup of a matrix group?

The *Burau* representation is *not* faithful for $n \ge 5$ [Bigelow, Long, Moody], it *is* faithful for n = 2, 3, and for n = 4 the question is open.

The first representation for which faithfulness for all n was proven was the representation of Ruth Lawrence

$$B_n \stackrel{\mathcal{L}}{\longrightarrow} \mathsf{GL}\left(\mathbb{R}\left[q^{\pm 1}, t^{\pm 1}\right], \frac{n(n-1)}{2}\right)$$

(Actually, the matrix coefficients happen to lie in $\mathbb{Z}[q^{\pm 1}, t^{\pm 1}]$.)

Answer : Yes. Two proofs that \mathcal{L} is faithful :

by Daan Krammer and Stephen Bigelow.

Explicit formula for the representation \mathcal{L}

$$B_n \stackrel{\mathcal{L}}{\longrightarrow} GL\left(\mathbb{R}\left[q^{\pm 1}, t^{\pm 1}\right], \frac{n(n-1)}{2}\right)$$

Denote the basis vectors of $\mathbb{R}^{\frac{n(n-1)}{2}}$ by $F_{i,j}$ (for $1 \le i < j \le n$). Then $\mathcal{L}(\sigma_k)$ sends

$$F_{i,j} \mapsto \begin{cases} F_{i,j} & k \notin \{i-1,i,j-1,j\} \\ qF_{k,j} + (q^2 - q)F_{k,i} + (1-q)F_{i,j} & k = i-1 \\ F_{i+1,j} & k = i \neq j-1 \\ qF_{i,k} + (1-q)F_{i,j} + (q-q^2)tF_{k,j} & k = j-1 \neq i \\ F_{i,j+1} & k = j \\ -q^2tF_{i,j} & k = i = j-1 \end{cases}$$

For any $\beta \in B_n$, consider the maximal and minimal powers of t occurring in the matrix $\mathcal{L}(\beta)$.

Krammer's main lemma (which implies faithfulness):

maximal power of
$$t$$
 in $\mathcal{L}(\beta) = \sup_{ClassicalGarside}(\beta)$

minimal power of
$$t$$
 in $\mathcal{L}(\beta) = \inf_{Classical Garside}(\beta)$

Krammer conjectured

maximal power of
$$q$$
 in $\mathcal{L}(\beta) = 2 \cdot \sup_{DualGarside}(\beta)$

minimal power of q in $\mathcal{L}(\beta) = 2 \cdot \inf_{DualGarside}(\beta)$

Theorem (Ito,W) Krammer's conjecture is true.

For any $\beta \in B_n$, consider the maximal and minimal powers of t occurring in the matrix $\mathcal{L}(\beta)$.

Krammer's main lemma (which implies faithfulness):

maximal power of
$$t$$
 in $\mathcal{L}(\beta) = \sup_{Classical Garside}(\beta)$

minimal power of
$$t$$
 in $\mathcal{L}(\beta) = \inf_{Classical Garside}(\beta)$

Krammer conjectured

maximal power of
$$q$$
 in $\mathcal{L}(\beta) = 2 \cdot \sup_{DualGarside}(\beta)$

minimal power of
$$q$$
 in $\mathcal{L}(\beta) = 2 \cdot \inf_{DualGarside}(\beta)$

Theorem (Ito,W) Krammer's conjecture is true.

For any $\beta \in B_n$, consider the maximal and minimal powers of t occurring in the matrix $\mathcal{L}(\beta)$.

Krammer's main lemma (which implies faithfulness):

maximal power of
$$t$$
 in $\mathcal{L}(\beta) = \sup_{Classical Garside}(\beta)$

minimal power of
$$t$$
 in $\mathcal{L}(\beta) = \inf_{Classical Garside}(\beta)$

Krammer conjectured

maximal power of
$$q$$
 in $\mathcal{L}(\beta) = 2 \cdot \sup_{DualGarside}(\beta)$

minimal power of
$$q$$
 in $\mathcal{L}(\beta) = 2 \cdot \inf_{DualGarside}(\beta)$

Theorem (Ito,W) Krammer's conjecture is true.

For any $\beta \in B_n$, consider the maximal and minimal powers of t occurring in the matrix $\mathcal{L}(\beta)$.

Krammer's main lemma (which implies faithfulness):

maximal power of
$$t$$
 in $\mathcal{L}(\beta) = \sup_{Classical Garside}(\beta)$

minimal power of
$$t$$
 in $\mathcal{L}(\beta) = \inf_{Classical Garside}(\beta)$

Krammer conjectured

maximal power of
$$q$$
 in $\mathcal{L}(\beta) = 2 \cdot \sup_{DualGarside}(\beta)$

minimal power of
$$q$$
 in $\mathcal{L}(\beta) = 2 \cdot \inf_{DualGarside}(\beta)$

Theorem (Ito,W) Krammer's conjecture is true.

We unsuccessfully tried to also reprove Krammer's result using our techniques.

Bigelow's proof that \mathcal{L} is faithful

Let X be the configuration space of unordered pairs of points in the n-times punctured disk D_n :

$$X = \Big\{ \{x_1, x_2\} \mid x_1, x_2 \in D_n \; , \; x_1 \neq x_2 \Big\}$$

equipped with a basepoint $\{d_1, d_2\}$ (see blackboard).

There is a homomorphism

$$\pi_1(X) \to \mathbb{Z}^2 = \langle q, t \rangle, \ \ \gamma = \{\gamma_1, \gamma_2\} \mapsto q^a t^b$$

where

a= sum of the winding numbers of γ_1 and γ_2 around all n punctures $b=2\cdot$ (relative winding number of γ_1 and γ_2)

Let \widetilde{X} be the cover corresponding to $\ker (\pi_1(X) \to \mathbb{Z}^2)$. Choose a basepoint $\{\widetilde{d}_1, \widetilde{d}_2\}$. Covering group $(\widetilde{X}) = \mathbb{Z}^2$.

Bigelow's proof that \mathcal{L} is faithful

Let X be the configuration space of unordered pairs of points in the n-times punctured disk D_n :

$$X = \Big\{ \{x_1, x_2\} \mid x_1, x_2 \in D_n \; , \; x_1 \neq x_2 \Big\}$$

equipped with a basepoint $\{d_1, d_2\}$ (see blackboard). There is a homomorphism

$$\pi_1(X) \to \mathbb{Z}^2 = \langle q, t \rangle, \ \ \gamma = \{\gamma_1, \gamma_2\} \mapsto q^a t^b$$

where

a= sum of the winding numbers of γ_1 and γ_2 around all n punctures $b=2\cdot$ (relative winding number of γ_1 and γ_2)

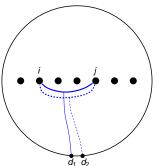
Let \widetilde{X} be the cover corresponding to $\ker (\pi_1(X) \to \mathbb{Z}^2)$. Choose a basepoint $\{\widetilde{d}_1, \widetilde{d}_2\}$. Covering group $(\widetilde{X}) = \mathbb{Z}^2$.

Note: the B_n -action on X by homeos lifts to a B_n -action on \widetilde{X} . Hence B_n acts on the second homology $H_2(\widetilde{X}, \mathbb{R}[q^{\pm 1}, t^{\pm 1}])$ by automorphisms.

Proposition (Bigelow) The second homology

$$H_2(\widetilde{X},\mathbb{R}[q^{\pm 1},t^{\pm 1}])$$
 is of dimension $\frac{n(n-1)}{2}$

with generators $F_{i,j}$ ("forks") as in the following figure.



Moreover, the B_n -action on $H_2(\widetilde{X}, \mathbb{R}[q^{\pm 1}, t^{\pm 1}])$ coincides with the representation \mathcal{L} .

Bigelow's Key Lemma

- Recall X is a 4-dim. mfd. with covering action by $\mathbb{Z}^2 = \langle q, t \rangle$.
- Recall the "fork" $F_{i,j}$ is a surface (more precisely a square) in \widetilde{X} representing a generator of $H_2(\widetilde{X}, \mathbb{R}[q^{\pm 1}, t^{\pm 1}])$.
- Let $\widetilde{X}_{0,0}$ be a fund. domain of the \mathbb{Z}^2 -action containing the basept. $\{\widetilde{d}_1, \widetilde{d}_2\}$ and all forks $F_{i,j}$. Let $\widetilde{X}_{a,b} = q^a t^b. X_{0,0}$.

Handwaving version of Bigelow's "Key Lemma" Let $\beta \in B_n$ and $1 \le i < j \le n$, and consider $\beta(F_{i,j}) \subset \widetilde{X}$. Among the fundamental domains $\widetilde{X}_{a,b}$ intersected by $\beta(F_{i,j}) \subset \widetilde{X}$, select the one $\widetilde{X}_{a_{\max},b_{\max}}$ with maximal (a,b) (lexicographically). Now in $H_2(\widetilde{X},\mathbb{R}[q^{\pm 1},t^{\pm 1}])$ we can write uniquely

$$\beta(F_{i,j}) = \sum_{1 \le i' < i' \le n} P_{i',j'}(q,t) F_{i',j'} \text{ (with } P_{i',j'} \in \mathbb{R}[q^{\pm 1}, t^{\pm 1}])$$

Then in one of the polynomials $P_{i',j'}$, the term $q^{a_{max}}t^{b_{max}}$ occurs with non-zero coeff. ("contributions do not cancel in homology").

Bigelow's Key Lemma

- Recall \widetilde{X} is a 4-dim. mfd. with covering action by $\mathbb{Z}^2 = \langle q, t \rangle$.
- Recall the "fork" $F_{i,j}$ is a surface (more precisely a square) in \widetilde{X} representing a generator of $H_2(\widetilde{X}, \mathbb{R}[q^{\pm 1}, t^{\pm 1}])$.
- Let $\widetilde{X}_{0,0}$ be a fund. domain of the \mathbb{Z}^2 -action containing the basept. $\{\widetilde{d}_1, \widetilde{d}_2\}$ and all forks $F_{i,j}$. Let $\widetilde{X}_{a,b} = q^a t^b . X_{0,0}$.

Handwaving version of Bigelow's "Key Lemma" Let $\beta \in B_n$ and $1 \le i < j \le n$, and consider $\beta(F_{i,j}) \subset \widetilde{X}$. Among the fundamental domains $\widetilde{X}_{a,b}$ intersected by $\beta(F_{i,j}) \subset \widetilde{X}$, select the one $\widetilde{X}_{a_{\max},b_{\max}}$ with maximal (a,b) (lexicographically). Now in $H_2(\widetilde{X},\mathbb{R}[q^{\pm 1},t^{\pm 1}])$ we can write uniquely

$$\beta(F_{i,j}) = \sum_{1 \le i' < j' \le n} P_{i',j'}(q,t) F_{i',j'} \text{ (with } P_{i',j'} \in \mathbb{R}[q^{\pm 1}, t^{\pm 1}])$$

Then in one of the polynomials $P_{i',j'}$, the term $q^{a_{max}}t^{b_{max}}$ occurs with non-zero coeff. ("contributions do not cancel in homology").

1 Classical and dual Garside structure on braid groups

2 Labellings of curve diagrams

3 The Lawrence-Krammer-Bigelow representation

4 The LKB representation detects dual braid length

The LKB representation detects $\sup_{DualGarside}(\beta)$

Proof that $2 \cdot \sup_{DualGarside}(\beta) = \max_{\beta} power of q in \mathcal{L}(\beta)$

<u>Proof of " \geqslant "</u> is easy (\mathcal{L} : divisors of $\delta \mapsto$ matrix of q-degree 2).

Proof of " \leqslant ":

 $2 \cdot \sup_{Dual}(\beta) \stackrel{\mathsf{Thm}\ 2}{=} 2 \cdot \mathit{Max}_{WCr}(\beta)$, the max. wall crossing labeling the maximal number a such that $\beta \cdot F_{i,i+1}$ intersects $q^a t^b \cdot X_{0,0}$ for some i, b

Now according to Bigelow's Key Lemma, the monomial $q^a t^b$ occurs somewhere in the matrix $\mathcal{L}(\beta)$.

Questions

1 Recall Theorem 2 : for a braid β , we can read the length of β from the wall crossing labellings occurring in the curve diagram of β .

Question : is there some analogue for $Out(F_n)$, with the sphere system in $(S^1 \times S^2) \# \dots \# (S^1 \times S^2)$ playing the role of the curve diagram?

- 2 Is there a generalization of our main theorem to Artin-Tits groups of finite type? The question makes sense, as
 - there are dual Garside structures on such groups (Bessis, T.Brady-Watt)
 - there are Lawrence-Krammer-Bigelow type representations on such groups (Digne, Cohen-Wales).

Questions

1 Recall Theorem 2 : for a braid β , we can read the length of β from the wall crossing labellings occurring in the curve diagram of β .

Question : is there some analogue for $Out(F_n)$, with the sphere system in $(S^1 \times S^2) \# \dots \# (S^1 \times S^2)$ playing the role of the curve diagram?

- 2 Is there a generalization of our main theorem to Artin-Tits groups of finite type? The question makes sense, as
 - there are dual Garside structures on such groups (Bessis, T.Brady-Watt)
 - there are Lawrence-Krammer-Bigelow type representations on such groups (Digne, Cohen-Wales).

1 Classical and dual Garside structure on braid groups

2 Labellings of curve diagrams

3 The Lawrence-Krammer-Bigelow representation

4 The LKB representation detects dual braid length