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1. Overview master thesis

2. Jespers and Okninski: Right non-degenerate monoids of skew
type satisfy the ascending chain condition on right ideals. The
semigroup algebra of a right non-degenerate monoid of skew
type is Noetherian.

3. Proving this theorem (on semigroup level) for a bigger class of
monoids (that also contains the class of left divisibility
monoids defined by ('2’) relations).

4. Work in progress: Is the semigroup algebra of such a monoid
Noetherian?
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Definition

FaM),, free abelian monoid with generators u, ..., up,.

Monoid S = (x1,...,xy,) is of left /-type if there exists a bijection
(left [-structure) v : FaM, — S such that

v(l)=1 en {v(wa),...,v(upa)} = {xv(a),...,xpv(a)}

for all a € FaM,,.

Proposition (E. Jespers, J. Okninski)

A monoid of |-type has a presentation of the form
<X1, ooy Xp | Xfui(j)Xﬁ(i) = Xfuj(,-)Xfl(J-), 1<i<j< n>.
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Monoids of /-type

Examples

1. The free abelian monoid FaM,
2. (E. Jespers, J. Okniski) The monoid S = (x1, % | xZ = x3)
Fa, = grp(a, b | ab = ba)
Symy = {1, 0} symmetric group on {a, b}
G = Fap xs Symp
ST ={(c,0c) | c € FaM,} C G where

| o if c odd length
¢~ 1 if c even length

v:FaMy, — T : cw (c,o0c) right I-structure
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Divisibility monoids

Definition: left divisibility monoid

Notation: a,b € S monoid:
a < bif ais a left divisor of b (ac = b for some ¢ € S)
If <, partial order — V, A

Ilb={aeS|a<g b}

Definition
Monoid (S, <) is left divisibility monoid if

1. S is cancellative

2. (S\{1})\(5\{1})? is a finite set of generators for S
3. | x is a distributive lattice, for all x € S.
4

. x Ny exists for all x,y € §

Remark: if S is a left divisibility monoid, then (S, <) is a poset.
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Proposition (D. Kuske)

(S,-,1) left divisibility monoid and X set of its atoms. Let ~
denote the least congruence on the free monoid X* containing
E :={(ab,cd) | a,b,c,d € X and a- b= c-d}. Then ~ is the
kernel of the natural epimorphism [.] : X* — S. In particular,
SEX*/ ~.




Divisibility monoids

Proposition (D. Kuske)

(S,-,1) left divisibility monoid and X set of its atoms. Let ~
denote the least congruence on the free monoid X* containing
E :={(ab,cd) | a,b,c,d € X and a- b= c-d}. Then ~ is the
kernel of the natural epimorphism [.] : X* — S. In particular,
TS O

Theorem (D. Kuske)

T finite set, E set of equations of the form ab = cd, with
a,b,c,d € T. Let ~ be the least congruence on T* containing E.
S :=T*/ ~ is a left divisibility monoid < ¥ a,b,c,a’,b',c’ € T:
(i) (4 (a-b-c),<y) is a distributive lattice;
(i)a-b-c=a-b-c'=b-c=b-c and
b-c-a=b-c-a=b-c=b-c;

(i) a-b=a-b,a-c=4-c anda+#a imply b=c.




Divisibility monoids

Let S = (x1,...,xn) be a left divisibility monoid. Then there are at
most (5) defining relations for S.




Divisibility monoids

Examples




Divisibility monoids

Examples

1. The free abelian monoid FaM, with generators uy, ..., uy,
(also of I-type)



Divisibility monoids

Examples

1. The free abelian monoid FaM, with generators uy, ..., uy,
(also of I-type)

2. There are (up to isomorphism) precisely 3 left divisibility
monoids on two generators a and b, namely the free monoid,
and those defined by the following set of equations

{ab = ba}
{aa = bb}
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Divisibility monoids

Examples

3. (Christian Pech) There are (up to isomorphism) precisely 15
left divisibility monoids on three generators a, b and ¢, namely
the free monoid and those defined by the following sets of
equations

{ab= ba} {ab= ba,bc =cb} {ab= ba,bc = cbh,ac = ca}
{aa = bb} {ab= bc,ac =ca} {aa= bb,bc = cb,ac = ca}
{ab= bc} {ab= bc,ba=cb} {ab= bc,ba= cb,ac = ca}
{aa = bc} {ab= bc,ac =cb} {aa= bb,ac = cb,ca= bc}

{aa = bc,cc = ba} {aa= bc,bb = ca,cc = ab}

Furthermore there are 219 left divisibility with four generators
and 8371 with five generators.



Garside monoids

Definition and examples: Garside monoids




Garside monoids

Definition and examples: Garside monoids

A monoid S is a Garside monoid if

1. S is generated by its atoms

2. |Ix|l < o0

3. S is cancellative

4. xVy,xNy, xVy, xAy exist

5. 3 Garside element A (i.e. | A = A | is finite and generates
S)

Examples:

1. FaMy, = (a, b | ab = ba), Garside element: ab
2. (P. Dehornoy) S = (a, b | aba = b?), Garside element: b3



I-type vs left divisibility




Links

I-type vs left divisibility

Theorem (E. Jespers, J. Okninski, MVC)
1. If S is a monoid of I-type, then S is a left divisibility monoid.




Links

I-type vs left divisibility

Theorem (E. Jespers, J. Okninski, MVC)
1. If S is a monoid of I-type, then S is a left divisibility monoid.

2. Conversely, if S = (x1,...,xn) is a left divisibility monoid
defined by (g) relations, then S is a monoid of I-type.
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& x; and xj have a commun upperboud for the left divisor
relation Vi, j (i.e. x; and x; admit right common multiples).
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Garside vs left divisibility

Theorem (M. Picantin)

1. Let S = (x1,...,xn) be a left divisibility monoid. Then S is
Garside monoid
& x; and xj have a commun upperboud for the left divisor
relation Vi, j (i.e. x; and x; admit right common multiples).
& S is defined by (3) relations.

2. Let S be a Garside monoid. Then S is a left divisibility monoid
& the lattice (S, V, \) of its simple elements is a hypercube.
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I-type vs Garside

Theorem (F. Chouraqui)
1. If S is a monoid of I-type, then S is a Garside monoid.

2. IfS=(x1,...,xn) is Garside monoid defined by (3) relations
and xjxj appears at most once in the defining relations for
any, then S monoid of |-type.
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Conclusion

A monoid is of I-type if and only if it is both a left divisibility and
a Garside monoid.
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Definition

Monoid of skew type: S = (xi,...,x, | R).
R finite set of (5) relations of the form x;x; = xcx; with i # J,
k # 1, (i,j) # (k,I) and every word x;x; (with i # j) appears in
exactly one defining relation.




Skew type/Quadratic type

Definitions

Definition

Monoid of skew type: S = (xi,...,x, | R).

R finite set of (5) relations of the form xjx; = xkx; with i % j,
k # 1, (i,j) # (k,I) and every word x;x; (with i # j) appears in
exactly one defining relation.

Definition

Monoid of quadratic type: S = (x1,...,x, | R).

R finite set of (5) relations of the form xjx; = xkx; with

(i,j) # (k,!) and every word x;x; appears in at most one defining
relation.
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Skew type/Quadratic type

Definitions

S ={(x1,...,%n), n =2 monoid defined by quadratic relations such
that for every x,y € X = {x1,...,x,} the word xy appears in at
most one of the defining relations.

Associated bijective map r: X x X — X x X defined by

r(xi, x;) = (xk, x)

if x;x; = xiX; is a defining relation for S, and r(x;, x;) = (xi, xj)
otherwise.

Definition
S is right non-degenerate, if for all x, x’ € X, there exist unique
elements y, y’ € X such that r(x,y) = (x,y).
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Lemma (E. Jespers, J. Okninski, MVC)

S ={(x1,...,%, | R) monoid of quadratic type. Are equivalent:

1. S is right non-degenerate;
2. (i) there are no defining relations of the form xy = xy’, fory # y’;
(i) ifxy =x"y" and xz = x'Z', with x,x',y,y’,z,z € X and
x # x' it follows that y = z.
In particular, if S is right non-degenerate, then for any x € X,
there exists a unique y € X so that xy does not appear in any
defining relation (we also say xy is not rewritable).
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Lemma (E. Jespers, J. Okninski, MVC)

S ={(x1,...,%, | R) monoid of quadratic type. Are equivalent:

1. S is right non-degenerate;
2. (i) there are no defining relations of the form xy = xy’, fory # y’;
(i) ifxy =x"y" and xz = x'Z', with x,x',y,y’,z,z € X and
x # x' it follows that y = z.
In particular, if S is right non-degenerate, then for any x € X,
there exists a unique y € X so that xy does not appear in any
defining relation (we also say xy is not rewritable).

Note: left divisibility monoids with (’2') relations and right
non-degenerate monoids of skew type satisfy these conditions.



Some results

Property

Proposition (E. Jespers, J. Okninski, MVC)

S = (X; R) right non-degenate monoid of quadratic type. For
every w,a € S, there exist k > 1 and b € S such that wka = ab
(S satisfies the over-jumping property).




Some results

Lemmas

S monoid with generating set X = {x1,...,x,} and Y C X.

Sy=()yS and S= ] Sy
yEY YgX7|Y‘:J



Some results

Lemmas

S monoid with generating set X = {x1,...,x,} and Y C X.

Sy=()yS and S= ] Sy
yEY YgX7|Y‘:J

Dy = {s € Sy | if s=xt for some x € X and t € S, then x € Y}



Some results

Lemmas

S monoid with generating set X = {x1,...,x,} and Y C X.

Sy=()yS and S= ] Sy
yEY YgX7|Y‘:J

Dy = {s € Sy | if s=xt for some x € X and t € S, then x € Y}

Lemma (E. Jespers, J. Okniriski, MVC)

1. S=(x1,...,xn), n = 2 right non-degenate monoid of
quadratic type. Then every S; is an ideal of S.




Some results

Lemmas

S monoid with generating set X = {x1,...,x,} and Y C X.

Sy=()yS and S= ] Sy
yEY YgX7|Y‘:J

Dy = {s € Sy | if s=xt for some x € X and t € S, then x € Y}

Lemma (E. Jespers, J. Okniriski, MVC)

1. S=(x1,...,Xn), n = 2 right non-degenate monoid of
quadratic type. Then every S; is an ideal of S.

2. 5= {(x1,...,Xn), n =2 right non-degenate monoid of
quadratic type. Then $1\S is the set of non-rewritable
elements of S.
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Proposition (E. Jespers, J. Okninski, MVC)

Let S = (x1,...,xn | R) be a right non-degenerate monoid of
quadratic type. Then

S\{1} ={wy---wy | 1 < qg< nw € Ag for some 1 < k < n},

where $1\S, = A1 U ---U A, is the set of all non-rewritable
elements in' S and each A; consists of subwords of an infinite
periodic word of period < n. In particular: GKdim(S) < n.




Some results

Proposition

Proposition (E. Jespers, J. Okniriski, MVC)
Let S = (x1,...,xn | R) be a right non-degenerate monoid of
quadratic type. Then

S\{1} ={wy---wy | 1 < qg< nw € Ag for some 1 < k < n},

where $1\S, = A1 U ---U A, is the set of all non-rewritable
elements in' S and each A; consists of subwords of an infinite
periodic word of period < n. In particular: GKdim(S) < n.

Lemma (E. Jespers, J. Okninski, MVC)

S =(x1,...,%n), n = 2 right non-degenate monoid of quadratic
type, Y C X, |Y|=i—1and ZC Y. Ifbe Dy and |b| = k, then

(5,'_1)k N Dy C bS.




Main theorem

Theorem

Theorem (E. Jespers, J. Okninski, MVC)

A right non-degenate monoid S of quadratic type satisfies the
ascending chain condition on right ideals.
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> S,,QS,,_l---51§5and 5,,.1_1:(2)
Clearly: S/5; = {1} acc

» To prove: S/S; acc = S/Sj11 acc

» By contradiction: assume s1,s5,... € S\ Sj+1 such that
strictly ac of right ideals:

5$1SC51SUS Cs55SUsSUs3SC -
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Clearly: S/5; = {1} acc

» To prove: S/S; acc = S/Sj11 acc

» By contradiction: assume s1,s5,... € S\ Sj+1 such that
strictly ac of right ideals:
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By going to a subsequence (a;); of (s;);: there exists a
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» By going to a subsequence again: a; € Dz for some Z C X

» |Z| =i (using the IH)
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» Fix x € Z and write a; = v;t;, where v; is the non-rewritable
word of maximal length, starting with x

> 4 ¢S

» By going to a subsequence: t;S D 1S DO --- (using the IH)

» There are infinitely many distinct
Vi = (X o Xig) (X =+ X3, )Y (Kigr -+ X))

» By going to a subsequence: v; = uw®z, hence
aj = uw%izt; = ub;

> b1S C h1SUbS C biSUbSU b3S C - -+ strictly ac and
bj € SP\S/ ™

» Using the over-jumping property: b; = vc; with ¢; € S,-’/\
and r' <r

» By the minimality of r, the chain
S CaSUS CaSUoSUcS C--- is not strictly
ascending

r'4+1
Si
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Main theorem

Corollary

» The chain b1S C 1S U bS C b1SU byS U b3S C --- is not
strictly ascending, final contradiction

Let S = (x1,...,xn), n = 2, be a right non-degenate monoid of
quadratic type and assume additionally that S is cancellative.
Then the group of quotients of S is abelian-by-finite.
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