

Vrije Universiteit Brussel

Some concrete classes of finitely presented monoids

Maya Van Campenhout

Cap Hornu, May 31, 2012

1. Overview master thesis

- 1. Overview master thesis
- Jespers and Okniński: Right non-degenerate monoids of skew type satisfy the ascending chain condition on right ideals. The semigroup algebra of a right non-degenerate monoid of skew type is Noetherian.

- 1. Overview master thesis
- Jespers and Okniński: Right non-degenerate monoids of skew type satisfy the ascending chain condition on right ideals. The semigroup algebra of a right non-degenerate monoid of skew type is Noetherian.
- Proving this theorem (on semigroup level) for a bigger class of monoids (that also contains the class of left divisibility monoids defined by ⁿ₂ relations).

- 1. Overview master thesis
- Jespers and Okniński: Right non-degenerate monoids of skew type satisfy the ascending chain condition on right ideals. The semigroup algebra of a right non-degenerate monoid of skew type is Noetherian.
- Proving this theorem (on semigroup level) for a bigger class of monoids (that also contains the class of left divisibility monoids defined by ⁿ₂ relations).
- 4. Work in progress: Is the semigroup algebra of such a monoid Noetherian?

Definition: monoid of left *I*-type

Definition: monoid of left *I*-type

Definition

 FaM_n free abelian monoid with generators u_1, \ldots, u_n . Monoid $S = \langle x_1, \ldots, x_n \rangle$ is of **left** *I*-type if there exists a bijection (left *I*-structure) $v : FaM_n \to S$ such that

$$v(1) = 1$$
 en $\{v(u_1a), \dots, v(u_na)\} = \{x_1v(a), \dots, x_nv(a)\}$

for all $a \in FaM_n$.

Definition: monoid of left *I*-type

Definition

 FaM_n free abelian monoid with generators u_1, \ldots, u_n . Monoid $S = \langle x_1, \ldots, x_n \rangle$ is of **left** *I*-type if there exists a bijection (left *I*-structure) $v : FaM_n \to S$ such that

$$v(1) = 1$$
 en $\{v(u_1a), \dots, v(u_na)\} = \{x_1v(a), \dots, x_nv(a)\}$

for all $a \in FaM_n$.

Proposition (E. Jespers, J. Okniński)

A monoid of I-type has a presentation of the form $\langle x_1, \ldots, x_n \mid x_{f_{u_i}(j)} x_{f_1(i)} = x_{f_{u_j}(i)} x_{f_1(j)}, \ 1 \leq i < j \leq n \rangle.$

1. The free abelian monoid FaM_n

- 1. The free abelian monoid FaM_n
- 2. (E. Jespers, J. Okniński) The monoid $S = \langle x_1, x_2 \mid x_1^2 = x_2^2 \rangle$

- 1. The free abelian monoid FaM_n
- 2. (E. Jespers, J. Okniński) The monoid $S = \langle x_1, x_2 \mid x_1^2 = x_2^2 \rangle$ $Fa_2 = grp(a, b \mid ab = ba)$

- 1. The free abelian monoid FaM_n
- 2. (E. Jespers, J. Okniński) The monoid $S = \langle x_1, x_2 | x_1^2 = x_2^2 \rangle$ $Fa_2 = grp(a, b | ab = ba)$ $Sym_2 = \{1, \sigma\}$ symmetric group on $\{a, b\}$

1. The free abelian monoid FaM_n

2. (E. Jespers, J. Okniński) The monoid
$$S = \langle x_1, x_2 | x_1^2 = x_2^2 \rangle$$

 $Fa_2 = grp(a, b | ab = ba)$
 $Sym_2 = \{1, \sigma\}$ symmetric group on $\{a, b\}$
 $G = Fa_2 \rtimes_{\sigma} Sym_2$

- 1. The free abelian monoid FaM_n
- 2. (E. Jespers, J. Okniński) The monoid $S = \langle x_1, x_2 \mid x_1^2 = x_2^2 \rangle$ $Fa_2 = grp(a, b \mid ab = ba)$ $Sym_2 = \{1, \sigma\}$ symmetric group on $\{a, b\}$ $G = Fa_2 \rtimes_{\sigma} Sym_2$ $S \cong T = \{(c, \sigma_c) \mid c \in FaM_2\} \subseteq G$ where $\sigma_c = \begin{cases} \sigma & \text{if } c \text{ odd length} \\ 1 & \text{if } c \text{ even length} \end{cases}$

- 1. The free abelian monoid FaM_n
- 2. (E. Jespers, J. Okniński) The monoid $S = \langle x_1, x_2 \mid x_1^2 = x_2^2 \rangle$ $Fa_2 = grp(a, b \mid ab = ba)$ $Sym_2 = \{1, \sigma\}$ symmetric group on $\{a, b\}$ $G = Fa_2 \rtimes_{\sigma} Sym_2$ $S \cong T = \{(c, \sigma_c) \mid c \in FaM_2\} \subseteq G$ where $\sigma_c = \begin{cases} \sigma & \text{if } c \text{ odd length} \\ 1 & \text{if } c \text{ even length} \end{cases}$

 $v: FaM_2 \rightarrow T: c \mapsto (c, \sigma_c)$ right *I*-structure

Notation: $a, b \in S$ monoid: $a \leq_I b$ if a is a **left divisor** of b (ac = b for some $c \in S$)

Notation: $a, b \in S$ monoid: $a \leq_I b$ if a is a **left divisor** of b (ac = b for some $c \in S$) If \leq_I partial order $\rightarrow \lor, \land$

Notation: $a, b \in S$ monoid: $a \leq_I b$ if a is a **left divisor** of b (ac = b for some $c \in S$) If \leq_I partial order $\rightarrow \lor, \land$ $\downarrow b = \{a \in S \mid a \leq_I b\}$

Notation: $a, b \in S$ monoid: $a \leq_I b$ if a is a **left divisor** of b (ac = b for some $c \in S$) If \leq_I partial order $\rightarrow \lor, \land$ $\downarrow b = \{a \in S \mid a \leq_I b\}$

Definition

Notation: $a, b \in S$ monoid: $a \leq_I b$ if a is a **left divisor** of b (ac = b for some $c \in S$) If \leq_I partial order $\rightarrow \lor, \land$ $\downarrow b = \{a \in S \mid a \leq_I b\}$

Definition

Monoid (S, \leq_l) is **left divisibility monoid** if

1. S is cancellative

Notation: $a, b \in S$ monoid: $a \leq_I b$ if a is a **left divisor** of b (ac = b for some $c \in S$) If \leq_I partial order $\rightarrow \lor, \land$ $\downarrow b = \{a \in S \mid a \leq_I b\}$

Definition

- 1. S is cancellative
- 2. $(S \setminus \{1\}) \setminus (S \setminus \{1\})^2$ is a finite set of generators for S

Notation: $a, b \in S$ monoid: $a \leq_I b$ if a is a **left divisor** of b (ac = b for some $c \in S$) If \leq_I partial order $\rightarrow \lor, \land$ $\downarrow b = \{a \in S \mid a \leq_I b\}$

Definition

- 1. S is cancellative
- 2. $(S \setminus \{1\}) \setminus (S \setminus \{1\})^2$ is a finite set of generators for S
- 3. $\downarrow x$ is a distributive lattice, for all $x \in S$.

Notation: $a, b \in S$ monoid: $a \leq_I b$ if a is a **left divisor** of b (ac = b for some $c \in S$) If \leq_I partial order $\rightarrow \lor, \land$ $\downarrow b = \{a \in S \mid a \leq_I b\}$

Definition

- 1. S is cancellative
- 2. $(S \setminus \{1\}) \setminus (S \setminus \{1\})^2$ is a finite set of generators for S
- 3. $\downarrow x$ is a distributive lattice, for all $x \in S$.
- 4. $x \wedge y$ exists for all $x, y \in S$

Notation: $a, b \in S$ monoid: $a \leq_I b$ if a is a **left divisor** of b (ac = b for some $c \in S$) If \leq_I partial order $\rightarrow \lor, \land$ $\downarrow b = \{a \in S \mid a \leq_I b\}$

Definition

Monoid (S, \leq_l) is **left divisibility monoid** if

- 1. S is cancellative
- 2. $(S \setminus \{1\}) \setminus (S \setminus \{1\})^2$ is a finite set of generators for S
- 3. $\downarrow x$ is a distributive lattice, for all $x \in S$.
- 4. $x \wedge y$ exists for all $x, y \in S$

Remark: if S is a left divisibility monoid, then (S, \leq_l) is a poset.

Proposition (D. Kuske)

 $(S, \cdot, 1)$ left divisibility monoid and X set of its atoms. Let \sim denote the least congruence on the free monoid X* containing $E := \{(ab, cd) \mid a, b, c, d \in X \text{ and } a \cdot b = c \cdot d\}$. Then \sim is the kernel of the natural epimorphism $[.] : X^* \to S$. In particular, $S \cong X^* / \sim$.

Proposition (D. Kuske)

 $(S, \cdot, 1)$ left divisibility monoid and X set of its atoms. Let \sim denote the least congruence on the free monoid X* containing $E := \{(ab, cd) \mid a, b, c, d \in X \text{ and } a \cdot b = c \cdot d\}$. Then \sim is the kernel of the natural epimorphism $[.] : X^* \to S$. In particular, $S \cong X^* / \sim$.

Theorem (D. Kuske)

T finite set, E set of equations of the form ab = cd, with $a, b, c, d \in T$. Let \sim be the least congruence on T^* containing E. $S := T^* / \sim$ is a left divisibility monoid $\Leftrightarrow \forall a, b, c, a', b', c' \in T$: (i) $(\downarrow (a \cdot b \cdot c), \leqslant_l)$ is a distributive lattice; (ii) $a \cdot b \cdot c = a \cdot b' \cdot c' \Rightarrow b \cdot c = b' \cdot c'$ and $b \cdot c \cdot a = b' \cdot c' \cdot a \Rightarrow b \cdot c = b' \cdot c'$; (iii) $a \cdot b = a' \cdot b'$, $a \cdot c = a' \cdot c'$ and $a \neq a'$ imply b = c.

Corollary

Let $S = \langle x_1, \dots, x_n \rangle$ be a left divisibility monoid. Then there are at most $\binom{n}{2}$ defining relations for S.

 The free abelian monoid FaM_n with generators u₁,..., u_n (also of *I*-type)

- The free abelian monoid FaM_n with generators u₁,..., u_n (also of *I*-type)
- 2. There are (up to isomorphism) precisely 3 left divisibility monoids on two generators *a* and *b*, namely the free monoid, and those defined by the following set of equations

$$\{ ab = ba \} \\ \{ aa = bb \}$$

3. (Christian Pech) There are (up to isomorphism) precisely 15 left divisibility monoids on three generators *a*, *b* and *c*, namely the free monoid and those defined by the following sets of equations

Furthermore there are 219 left divisibility with four generators and 8371 with five generators.

Definition and examples: Garside monoids
Definition and examples: Garside monoids

Definition

A monoid S is a Garside monoid if

- 1. S is generated by its atoms
- 2. $||x|| < \infty$
- 3. S is cancellative
- 4. $x \lor y$, $x \land y$, $x \tilde{\lor} y$, $x \tilde{\land} y$ exist
- 5. \exists Garside element Δ (i.e. $\downarrow \Delta = \Delta \downarrow$ is finite and generates S)

Examples:

- 1. $FaM_2 = \langle a, b \mid ab = ba \rangle$, Garside element: ab
- 2. (P. Dehornoy) $S = \langle a, b \mid aba = b^2 \rangle$, Garside element: b^3

I-type vs left divisibility

I-type vs left divisibility

Theorem (E. Jespers, J. Okniński, MVC)

1. If S is a monoid of I-type, then S is a left divisibility monoid.

I-type vs left divisibility

Theorem (E. Jespers, J. Okniński, MVC)

- 1. If S is a monoid of I-type, then S is a left divisibility monoid.
- Conversely, if S = ⟨x₁,..., x_n⟩ is a left divisibility monoid defined by ⁽ⁿ⁾₂ relations, then S is a monoid of I-type.

Theorem (M. Picantin)

1. Let $S = \langle x_1, \dots, x_n \rangle$ be a left divisibility monoid. Then S is Garside monoid

 \Leftrightarrow x_i and x_j have a commun upperboud for the left divisor relation $\forall i, j$ (i.e. x_i and x_j admit right common multiples).

Theorem (M. Picantin)

1. Let $S = \langle x_1, \dots, x_n \rangle$ be a left divisibility monoid. Then S is Garside monoid

 $\Leftrightarrow x_i \text{ and } x_j \text{ have a commun upperboud for the left divisor relation } \forall i, j (i.e. <math>x_i \text{ and } x_j \text{ admit right common multiples}).$ $\Leftrightarrow S \text{ is defined by } \binom{n}{2} \text{ relations.}$

Theorem (M. Picantin)

1. Let $S = \langle x_1, \dots, x_n \rangle$ be a left divisibility monoid. Then S is Garside monoid

 $\Leftrightarrow x_i \text{ and } x_j \text{ have a commun upperboud for the left divisor relation } \forall i, j (i.e. <math>x_i$ and x_j admit right common multiples). $\Leftrightarrow S$ is defined by $\binom{n}{2}$ relations.

Let S be a Garside monoid. Then S is a left divisibility monoid
 ⇔ the lattice (S, ∨, ∧) of its simple elements is a hypercube.

I-type vs Garside

I-type vs Garside

Theorem (F. Chouraqui)

1. If S is a monoid of I-type, then S is a Garside monoid.

I-type vs Garside

Theorem (F. Chouraqui)

- 1. If S is a monoid of I-type, then S is a Garside monoid.
- If S = ⟨x₁,..., x_n⟩ is Garside monoid defined by ⁿ₂ relations and x_ix_j appears at most once in the defining relations for any, then S monoid of I-type.

Conclusion

Conclusion

Theorem

A monoid is of I-type if and only if it is both a left divisibility and a Garside monoid.

Definition

Monoid of **skew type**: $S = \langle x_1, \ldots, x_n | R \rangle$. *R* finite set of $\binom{n}{2}$ relations of the form $x_i x_j = x_k x_l$ with $i \neq j$, $k \neq l$, $(i,j) \neq (k,l)$ and every word $x_i x_j$ (with $i \neq j$) appears in exactly one defining relation.

Definition

Monoid of **skew type**: $S = \langle x_1, \ldots, x_n | R \rangle$. *R* finite set of $\binom{n}{2}$ relations of the form $x_i x_j = x_k x_l$ with $i \neq j$, $k \neq l$, $(i,j) \neq (k,l)$ and every word $x_i x_j$ (with $i \neq j$) appears in exactly one defining relation.

Definition

Monoid of **quadratic type**: $S = \langle x_1, \ldots, x_n | R \rangle$. *R* finite set of $\binom{n}{2}$ relations of the form $x_i x_j = x_k x_l$ with $(i,j) \neq (k, l)$ and every word $x_i x_j$ appears in at most one defining relation.

 $S = \langle x_1, \ldots, x_n \rangle$, $n \ge 2$ monoid defined by quadratic relations such that for every $x, y \in X = \{x_1, \ldots, x_n\}$ the word xy appears in at most one of the defining relations. Associated bijective map $r : X \times X \to X \times X$ defined by

$$r(x_i, x_j) = (x_k, x_l)$$

if $x_i x_j = x_k x_l$ is a defining relation for *S*, and $r(x_i, x_j) = (x_i, x_j)$ otherwise.

Definition

S is **right non-degenerate**, if for all $x, x' \in X$, there exist unique elements $y, y' \in X$ such that r(x, y) = (x', y').

Lemma (E. Jespers, J. Okniński, MVC)

 $S = \langle x_1, \ldots, x_n \mid R \rangle$ monoid of quadratic type. Are equivalent:

- 1. *S* is right non-degenerate;
- (i) there are no defining relations of the form xy = xy', for y ≠ y';
 (ii) if xy = x'y' and xz = x'z', with x, x', y, y', z, z' ∈ X and x ≠ x' it follows that y = z.

In particular, if S is right non-degenerate, then for any $x \in X$, there exists a unique $y \in X$ so that xy does not appear in any defining relation (we also say xy is not rewritable).

Lemma (E. Jespers, J. Okniński, MVC)

 $S = \langle x_1, \dots, x_n \mid R \rangle$ monoid of quadratic type. Are equivalent:

- 1. *S* is right non-degenerate;
- (i) there are no defining relations of the form xy = xy', for y ≠ y';
 (ii) if xy = x'y' and xz = x'z', with x, x', y, y', z, z' ∈ X and x ≠ x' it follows that y = z.

In particular, if S is right non-degenerate, then for any $x \in X$, there exists a unique $y \in X$ so that xy does not appear in any defining relation (we also say xy is not rewritable).

Note: left divisibility monoids with $\binom{n}{2}$ relations and right non-degenerate monoids of skew type satisfy these conditions.

Property

Proposition (E. Jespers, J. Okniński, MVC)

 $S = \langle X; R \rangle$ right non-degenate monoid of quadratic type. For every $w, a \in S$, there exist $k \ge 1$ and $b \in S$ such that $w^k a = ab$ (S satisfies the over-jumping property).

S monoid with generating set $X = \{x_1, \ldots, x_n\}$ and $Y \subseteq X$.

$$S_Y = \bigcap_{y \in Y} yS$$
 and $S_j = \bigcup_{Y \subseteq X, |Y|=j} S_Y$.

S monoid with generating set $X = \{x_1, \ldots, x_n\}$ and $Y \subseteq X$.

$$S_Y = \bigcap_{y \in Y} yS$$
 and $S_j = \bigcup_{Y \subseteq X, |Y|=j} S_Y.$

 $D_Y = \{s \in S_Y \mid \text{if } s = xt \text{ for some } x \in X \text{ and } t \in S, \text{ then } x \in Y\}$

S monoid with generating set $X = \{x_1, \ldots, x_n\}$ and $Y \subseteq X$.

$$S_Y = \bigcap_{y \in Y} yS$$
 and $S_j = \bigcup_{Y \subseteq X, |Y|=j} S_Y.$

 $D_Y = \{s \in S_Y \mid \text{if } s = xt \text{ for some } x \in X \text{ and } t \in S, \text{ then } x \in Y\}$

Lemma (E. Jespers, J. Okniński, MVC)

1. $S = \langle x_1, ..., x_n \rangle$, $n \ge 2$ right non-degenate monoid of quadratic type. Then every S_i is an ideal of S.

S monoid with generating set $X = \{x_1, \ldots, x_n\}$ and $Y \subseteq X$.

$$S_Y = \bigcap_{y \in Y} yS$$
 and $S_j = \bigcup_{Y \subseteq X, |Y|=j} S_Y$.

 $D_Y = \{s \in S_Y \mid \text{if } s = xt \text{ for some } x \in X \text{ and } t \in S, \text{ then } x \in Y\}$

Lemma (E. Jespers, J. Okniński, MVC)

- 1. $S = \langle x_1, ..., x_n \rangle$, $n \ge 2$ right non-degenate monoid of quadratic type. Then every S_j is an ideal of S.
- S = ⟨x₁,...,x_n⟩, n ≥ 2 right non-degenate monoid of quadratic type. Then S₁\S₂ is the set of non-rewritable elements of S.

Proposition

Proposition (E. Jespers, J. Okniński, MVC)

Let $S = \langle x_1, \dots, x_n \mid R \rangle$ be a right non-degenerate monoid of quadratic type. Then

 $S \setminus \{1\} = \{w_1 \cdots w_q \mid 1 \leqslant q \leqslant n, w_i \in A_k \text{ for some } 1 \leqslant k \leqslant n\},\$

where $S_1 \setminus S_2 = A_1 \cup \cdots \cup A_n$ is the set of all non-rewritable elements in S and each A_j consists of subwords of an infinite periodic word of period $\leq n$. In particular: $GKdim(S) \leq n$.

Proposition

Proposition (E. Jespers, J. Okniński, MVC)

Let $S = \langle x_1, \dots, x_n \mid R \rangle$ be a right non-degenerate monoid of quadratic type. Then

 $S \setminus \{1\} = \{w_1 \cdots w_q \mid 1 \leqslant q \leqslant n, w_i \in A_k \text{ for some } 1 \leqslant k \leqslant n\},$

where $S_1 \setminus S_2 = A_1 \cup \cdots \cup A_n$ is the set of all non-rewritable elements in S and each A_j consists of subwords of an infinite periodic word of period $\leq n$. In particular: $GKdim(S) \leq n$.

Lemma (E. Jespers, J. Okniński, MVC)

 $S = \langle x_1, \ldots, x_n \rangle$, $n \ge 2$ right non-degenate monoid of quadratic type, $Y \subseteq X$, |Y| = i - 1 and $Z \subseteq Y$. If $b \in D_Z$ and |b| = k, then $(S_{i-1})^k \cap D_Y \subseteq bS$.

Theorem

Theorem (E. Jespers, J. Okniński, MVC)

A right non-degenate monoid S of quadratic type satisfies the ascending chain condition on right ideals.

•
$$S_n \subseteq S_{n-1} \cdots S_1 \subseteq S$$
 and $S_{n+1} = \emptyset$

►
$$S_n \subseteq S_{n-1} \cdots S_1 \subseteq S$$
 and $S_{n+1} = \emptyset$
Clearly: $S/S_1 = \{1\}$ acc

►
$$S_n \subseteq S_{n-1} \cdots S_1 \subseteq S$$
 and $S_{n+1} = \emptyset$
Clearly: $S/S_1 = \{1\}$ acc

• To prove:
$$S/S_i$$
 acc $\Rightarrow S/S_{i+1}$ acc

► $S_n \subseteq S_{n-1} \cdots S_1 \subseteq S$ and $S_{n+1} = \emptyset$ Clearly: $S/S_1 = \{1\}$ acc

• To prove: S/S_i acc $\Rightarrow S/S_{i+1}$ acc

► By contradiction: assume s₁, s₂, ... ∈ S \ S_{i+1} such that strictly ac of right ideals:

$$s_1S \subset s_1S \cup s_2S \subset s_1S \cup s_2S \cup s_3S \subset \cdots$$

- ► $S_n \subseteq S_{n-1} \cdots S_1 \subseteq S$ and $S_{n+1} = \emptyset$ Clearly: $S/S_1 = \{1\}$ acc
- To prove: S/S_i acc $\Rightarrow S/S_{i+1}$ acc
- By contradiction: assume s₁, s₂, ... ∈ S \ S_{i+1} such that strictly ac of right ideals:

$$s_1S \subset s_1S \cup s_2S \subset s_1S \cup s_2S \cup s_3S \subset \cdots$$

By going to a subsequence (a_j)_j of (s_j)_j: there exists a minimal non-negative integer r for wich there is a strictly ac of right ideals:

$$a_1S \subset a_1S \cup a_2S \subset a_1S \cup a_2S \cup a_3S \subset \cdots,$$

such that $a_j \in S_i^r \setminus S_i^{r+1}$

- ► $S_n \subseteq S_{n-1} \cdots S_1 \subseteq S$ and $S_{n+1} = \emptyset$ Clearly: $S/S_1 = \{1\}$ acc
- To prove: S/S_i acc $\Rightarrow S/S_{i+1}$ acc
- By contradiction: assume s₁, s₂, ... ∈ S \ S_{i+1} such that strictly ac of right ideals:

$$s_1S \subset s_1S \cup s_2S \subset s_1S \cup s_2S \cup s_3S \subset \cdots$$

By going to a subsequence (a_j)_j of (s_j)_j: there exists a minimal non-negative integer r for wich there is a strictly ac of right ideals:

$$a_1S \subset a_1S \cup a_2S \subset a_1S \cup a_2S \cup a_3S \subset \cdots,$$

such that $a_j \in S_i^r \setminus S_i^{r+1}$

▶ By going to a subsequence again: $a_j \in D_Z$ for some $Z \subseteq X$

- ► $S_n \subseteq S_{n-1} \cdots S_1 \subseteq S$ and $S_{n+1} = \emptyset$ Clearly: $S/S_1 = \{1\}$ acc
- To prove: S/S_i acc $\Rightarrow S/S_{i+1}$ acc
- By contradiction: assume s₁, s₂, ... ∈ S \ S_{i+1} such that strictly ac of right ideals:

$$s_1S \subset s_1S \cup s_2S \subset s_1S \cup s_2S \cup s_3S \subset \cdots$$

By going to a subsequence (a_j)_j of (s_j)_j: there exists a minimal non-negative integer r for wich there is a strictly ac of right ideals:

$$a_1S \subset a_1S \cup a_2S \subset a_1S \cup a_2S \cup a_3S \subset \cdots,$$

such that $a_j \in S_i^r \setminus S_i^{r+1}$

By going to a subsequence again: a_j ∈ D_Z for some Z ⊆ X
 |Z| = i (using the IH)
Fix x ∈ Z and write a_j = v_jt_j, where v_j is the non-rewritable word of maximal length, starting with x

Fix x ∈ Z and write a_j = v_jt_j, where v_j is the non-rewritable word of maximal length, starting with x

•
$$t_j \notin S_i$$

- Fix x ∈ Z and write a_j = v_jt_j, where v_j is the non-rewritable word of maximal length, starting with x
- ► $t_j \notin S_i$
- ▶ By going to a subsequence: $t_1S \supseteq t_2S \supseteq \cdots$ (using the IH)

- Fix x ∈ Z and write a_j = v_jt_j, where v_j is the non-rewritable word of maximal length, starting with x
- ► $t_j \notin S_i$
- ▶ By going to a subsequence: $t_1S \supseteq t_2S \supseteq \cdots$ (using the IH)
- There are infinitely many distinct

$$v_j = (x_{i_1} \cdots x_{i_q})(x_{i_{q+1}} \cdots x_{i_p})^{\alpha_j}(x_{i_{q+1}} \cdots x_{i_{s_j}}),$$

- Fix x ∈ Z and write a_j = v_jt_j, where v_j is the non-rewritable word of maximal length, starting with x
- ► $t_j \notin S_i$
- ▶ By going to a subsequence: $t_1S \supseteq t_2S \supseteq \cdots$ (using the IH)
- There are infinitely many distinct
 - $v_j = (x_{i_1} \cdots x_{i_q})(x_{i_{q+1}} \cdots x_{i_p})^{\alpha_j}(x_{i_{q+1}} \cdots x_{i_{s_j}}),$
- ▶ By going to a subsequence: v_j = uw^{α_j}z, hence a_j = uw^{α_j}zt_j = ub_j

- Fix x ∈ Z and write a_j = v_jt_j, where v_j is the non-rewritable word of maximal length, starting with x
- ► $t_j \notin S_i$
- ▶ By going to a subsequence: $t_1S \supseteq t_2S \supseteq \cdots$ (using the IH)
- There are infinitely many distinct
 - $\mathbf{v}_j = (\mathbf{x}_{i_1} \cdots \mathbf{x}_{i_q})(\mathbf{x}_{i_{q+1}} \cdots \mathbf{x}_{i_p})^{\alpha_j}(\mathbf{x}_{i_{q+1}} \cdots \mathbf{x}_{i_{s_j}}),$
- ► By going to a subsequence: $v_j = uw^{\alpha_j}z$, hence $a_j = uw^{\alpha_j}zt_j = ub_j$
- ▶ $b_1S \subset b_1S \cup b_2S \subset b_1S \cup b_2S \cup b_3S \subset \cdots$ strictly ac and $b_j \in S_i^r \setminus S_i^{r+1}$

- Fix x ∈ Z and write a_j = v_jt_j, where v_j is the non-rewritable word of maximal length, starting with x
- ► $t_j \notin S_i$
- ▶ By going to a subsequence: $t_1S \supseteq t_2S \supseteq \cdots$ (using the IH)
- There are infinitely many distinct
 - $\mathbf{v}_j = (\mathbf{x}_{i_1} \cdots \mathbf{x}_{i_q}) (\mathbf{x}_{i_{q+1}} \cdots \mathbf{x}_{i_p})^{\alpha_j} (\mathbf{x}_{i_{q+1}} \cdots \mathbf{x}_{i_{s_j}}),$
- By going to a subsequence: v_j = uw^{α_j}z, hence a_j = uw^{α_j}zt_i = ub_j
- ▶ $b_1S \subset b_1S \cup b_2S \subset b_1S \cup b_2S \cup b_3S \subset \cdots$ strictly ac and $b_j \in S_i^r \setminus S_i^{r+1}$
- ▶ Using the over-jumping property: $b_j = vc_j$ with $c_j \in S_i^{r'} \setminus S_i^{r'+1}$ and r' < r

- Fix x ∈ Z and write a_j = v_jt_j, where v_j is the non-rewritable word of maximal length, starting with x
- ► $t_j \notin S_i$
- ▶ By going to a subsequence: $t_1S \supseteq t_2S \supseteq \cdots$ (using the IH)
- There are infinitely many distinct
 - $\mathbf{v}_j = (\mathbf{x}_{i_1} \cdots \mathbf{x}_{i_q}) (\mathbf{x}_{i_{q+1}} \cdots \mathbf{x}_{i_p})^{\alpha_j} (\mathbf{x}_{i_{q+1}} \cdots \mathbf{x}_{i_{s_j}}),$
- By going to a subsequence: v_j = uw^{α_j}z, hence a_j = uw^{α_j}zt_i = ub_j
- ▶ $b_1S \subset b_1S \cup b_2S \subset b_1S \cup b_2S \cup b_3S \subset \cdots$ strictly ac and $b_j \in S_i^r \setminus S_i^{r+1}$
- ▶ Using the over-jumping property: $b_j = vc_j$ with $c_j \in S_i^{r'} \setminus S_i^{r'+1}$ and r' < r
- ▶ By the minimality of *r*, the chain $c_1 S \subset c_1 S \cup c_2 S \subset c_1 S \cup c_2 S \cup c_3 S \subset \cdots$ is not strictly ascending

Corollary

▶ The chain $b_1S \subset b_1S \cup b_2S \subset b_1S \cup b_2S \cup b_3S \subset \cdots$ is not strictly ascending, final contradiction

Corollary

The chain b₁S ⊂ b₁S ∪ b₂S ⊂ b₁S ∪ b₂S ∪ b₃S ⊂ · · · is not strictly ascending, final contradiction

Corollary

Let $S = \langle x_1, ..., x_n \rangle$, $n \ge 2$, be a right non-degenate monoid of quadratic type and assume additionally that S is cancellative. Then the group of quotients of S is abelian-by-finite.

References

- F. Chouraqui, Garside groups and Yang-Baxter equation, Mathematics ArXiv, arXiv:0912.4827, 2009
- M. Droste and D. Kuske, Recognizable languages in divisibility monoids, Math. Stuct. in Comp. Science, Vol. 11, p. 743-770, Cambridge University Press, United Kingdom, 2001.
- P. Dehornoy, Groupes de Garside, Ann. Scient. Ec. Norm. Sup 35 (2002), p. 267-306.
- D. Kuske, Contributions to a Trace theory beyond Mazurkiewicz Traces, Habilitationsschrift, TU Dresden, 2000
- M. Picantin, Garside monoids vs divisibility monoids, Math. Stuct. in Comp. Science, Vol. 15, p. 231-242, Cambridge University Press, United Kingdom, 2005.