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homogeneous relations w.r.t. the atoms  

prefixes of   

Garside monoids Properties 
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M = Garside monoid 

It has a Lattice structure 

It has a Garside element 

The set of simple elements is finite Finite number of atoms 

…and maybe M is homogeneous 



Garside monoids Counting elements 
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M = Homogeneous Garside monoid 

All representatives have the same length 

How many elements are there of length k? 

(number of atoms) 

…
 

and then? 



Garside monoids Counting elements 
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M = Homogeneous Garside monoid Atoms  = 

In         we have: 



Garside monoids Counting elements 
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M = Homogeneous Garside monoid Atoms  = 

Therefore, by the inclusion-exclusion principle: 

Example: In the monoid of 4-strands braids, 

The spherical growth function is the inverse of a polynomial 

Spherical growth function  = 

Delinge (1972) 
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New formula Growth function for types A, B, D 

(monoid of n-strands braids) 

Artin-Tits monoid of type An-1 

Theorem (GM, 2011) The spherical growth function of this monoid is: 
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New formula 

(monoid of n-strands braids) 

Artin-Tits monoid of type An-1 

Example: For  n  = 8  

Growth function for types A, B, D 
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Artin-Tits monoid of type Bn 

4 

New formula Growth function for types A, B, D 
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Artin-Tits monoid of type Dn 

New formula Growth function for types A, B, D 
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Growth rate Types A, B, D 

r = smallest root of p(t)  =  radius of convergence 

Polynomial 

=   Growth rate of the monoid 

If we know well the polynomial, we could say something about the growth rate. 

Spherical growth series: 
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Growth rate Types A, B, D 

Example: 

(3-strands braid monoid) 

Golden ratio 

Tribonacci constant 

Fibonacci constant of order p 
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Growth rate Type A 

For type A  (braid monoids) 

What is the smallest root of ? 

n=5 
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Growth rate Type A 

For type A  (braid monoids) 

What is the smallest root of ? 

n=9 
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Growth rate Type A 

For type A  (braid monoids) 

What is the smallest root of ? 

n=24 

Conjecture: 



Second application Generating random braids 

Problem: 
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There can be many representatives of the same braid     

We want to generate a random positive braid of length  k. 

Not all braids have the same number of representatives 

Given a braid , its Lex-representative, w , is the 

(lexicographically) smallest word representing . 

We generate Lex-representatives 



Generating random braids  The result 
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Teorem: (Gebhardt-GM, 2011)  There is an algorithm which generates a 

random positive braid in Bn
+ of length k, having polynomial time and space 

complexity in n and k. 

Complexity:                  

Time in s to generate a braid 
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The first letter can be anyone. 

Ingredients of the algorithm Forbidden prefixes 

Say     . 

Suppose we want to write down a lex-representative     . 

Forbidden prefixes of 
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The first letter can be anyone. 

Ingredients of the algorithm Forbidden prefixes 

Say     . 

Suppose we want to write down a lex-representative     . 

Forbidden prefixes of 
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The first letter can be anyone. 

Ingredients of the algorithm Forbidden prefixes 

Say     . 

Suppose we want to write down a lex-representative     . 

The second letter cannot be Suppose it is 

Forbidden prefixes of 

The third letter cannot be 
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Ingredients of the algorithm Forbidden prefixes 

In general: =  Lex-representative 

=  { Forbidden prefixes of       such that          is a lex-representative} 

² Forbidden prefixes are always simple elements Finite number of states! 

Can construct an automaton ²                only depends on            and  j 

This works for every Garside monoid 



Finite State Automata Recognizing Lex-representatives 
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Automaton accepting Lex-representantives of B3
+ 
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Automaton accepting Lex-representatives of B4
+ 

Finite State Automata Recognizing Lex-representatives 
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Example: 

Forbidden prefixes for 

How big is the automaton? Type A 

In the braid monoid Bn
+, sets of forbidden prefixes have at most n elements  

If the automaton is small, it can be efficiently used to generate random braids! 

Theorem (Gebhardt-GM, 2011) The described automata are the smallest  

possible ones, and their size is exponential in n. 

Using them would not be efficient 
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Smallest possible automaton Type A 

Why is this automaton the smallest possible one? 

Because each state 

encodes all future 

accepted paths. 

Two words with 

same state in some 

automaton… 

 

 

 

also have the same 

state here. 



Generating random braids Braid tree 
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Example, in B4
+ : 

19 braids of length 3 in B4
+. 

Lex-representatives form a tree. 



Generating random braids Braid tree 

Juan González-Meneses 

Example, in B4
+ : 

Lex-representatives form a tree. 

19 braids of length 3 in B4
+. 



Generating random braids Generation procedure 
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To generate a random braid: 

1) Compute the number of leaves of the tree: 19 

2) Choose a random number between 1 and 19: 16 

3) Find the braid corresponding to the 16th leaf: In polynomial time! 

Warning: the tree is exponentially big! 



Generating random braids Generation procedure 
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To generate a random braid: 

1) Compute the number of leaves of the tree: 19 

2) Choose a random number between 1 and 19: 16 

3) Find the braid corresponding to the 16th leaf: Next 
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Finding the rth braid of length k Hanging leaves 

Question: How many lex-representatives start with a given prefix? 

7 leaves hanging 

       from  
2 leaves hanging 

      from  



… … 
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Finding the rth braid of length k Hanging leaves 

=  lex-representative =  vertex of the tree 

=  leaves hanging from        but not from  
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Finding the rth braid of length k The procedure 

To find the rth braid: Binary search 
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Finding the rth braid of length k The procedure 

To find the rth braid: Binary search 
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Finding the rth braid of length k The procedure 

To find the rth braid: Binary search 

The first letter is      

Now do binary search with  
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Finding the rth braid of length k The procedure 

To find the rth braid: Binary search 

The first letter is      

The second letter is      

Now do binary search with  

etc. 

We find each letter in            steps 
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Computing hanging leaves  

… … 

How to compute the number                     ? 

It is the number of braids of length   

minus the number of braids having some prefix from:   

We know it 

Computed with the 

inclusion-exculsion 

principle 



Conclusion 
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Thanks to the lattice structure of Garside monoids we have obtained: 

² An efficient algorithm to generate random elemens. 

² A new formula for the growth function. 

² The smallest possible finite state automata recognizing lex-representatives. 

(type A) 

(type A,B,D) 

(all Garside monoids) 


