Combinatorics of Garside monoids

Juan González-Meneses

Universidad de Sevilla

With Volker Gebhardt (U. Western Sydney)

Garside theory: State of the art and prospects Cap Hornu, 30 may 2012. M = Garside monoid

How many elements are there of length k?

$$\alpha_k = |M_k| = |\{x \in M; \ |x| = k\}|$$

$$\alpha_0 = 1$$

 $\alpha_1 = n$ (number of atoms)
:
and then?

Garside monoids

M = Homogeneous Garside monoid Atoms = $\{a_1, a_2, a_3\}$

Therefore, by the inclusion-exclusion principle:

$$\alpha_{k} = \alpha_{k-1} + \alpha_{k-1} + \alpha_{k-1} - \alpha_{k-|a_{1} \vee a_{2}|} - \alpha_{k-|a_{1} \vee a_{3}|} - \alpha_{k-|a_{2} \vee a_{3}|} + \alpha_{k-|a_{1} \vee a_{2} \vee a_{3}|}$$
The spherical growth function is the inverse of a polynomial
Delinge (1972)
Example: In the monoid of 4-strands braids, $\alpha_{k} = 3\alpha_{k-1} - \alpha_{k-2} - 2\alpha_{k-3} + \alpha_{k-6}$
Spherical growth function $= \frac{1}{1 - 3t + t^{2} + 2t^{3} - t^{6}}$
Juan González-Meneses

Artin-Tits monoid of type A_{n-1}

(monoid of n-strands braids)

Theorem (GM, 2011) The spherical growth function of this monoid is:

$$g(t) = \begin{vmatrix} 1 & 1 & 0 & 0 & \cdots & 0 \\ t & 1 & 1 & 0 & \ddots & \vdots \\ t^3 & t & 1 & 1 & \ddots & 0 \\ t^6 & t^3 & t & 1 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 1 \\ t^{\binom{n}{2}} & \cdots & t^6 & t^3 & t & 1 \end{vmatrix}^{-1}$$

Artin-Tits monoid of type A_{n-1}

(monoid of n-strands braids)

Example: For n = 8

$$g(t) = \begin{vmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ t & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ t^3 & t & 1 & 1 & 0 & 0 & 0 & 0 \\ t^6 & t^3 & t & 1 & 1 & 0 & 0 & 0 \\ t^{10} & t^6 & t^3 & t & 1 & 1 & 0 & 0 \\ t^{15} & t^{10} & t^6 & t^3 & t & 1 & 1 & 0 \\ t^{21} & t^{15} & t^{10} & t^6 & t^3 & t & 1 & 1 \\ t^{28} & t^{21} & t^{15} & t^{10} & t^6 & t^3 & t & 1 \end{vmatrix}$$

Exponents are $\binom{i}{2}$

New formula

New formula

Artin-Tits monoid of type D_n

$$g(t) = \begin{vmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 2t & -t^2 & 1 & 1 & 0 & 0 & 0 & 0 \\ 2t^3 & -t^6 & t & 1 & 1 & 0 & 0 & 0 \\ 2t^6 & -t^{12} & t^3 & t & 1 & 1 & 0 & 0 \\ 2t^{10} & -t^{20} & t^6 & t^3 & t & 1 & 1 & 0 \\ 2t^{15} & -t^{30} & t^{10} & t^6 & t^3 & t & 1 & 1 \\ 2t^{21} & -t^{42} & t^{15} & t^{10} & t^6 & t^3 & t & 1 \end{vmatrix}$$

Exponents are $i(i-1)$

Exponents are $\binom{i}{2}$

Spherical growth series:
$$g(t) = \frac{1}{p(t)}$$
 \leftarrow Polynomial

r =smallest root of p(t) =radius of convergence

If we know well the polynomial, we could say something about the growth rate.

Example: $M = A_2$ \Rightarrow $\rho =$ Golden ratio(3-strands braid monoid) $M = B_2$ \Rightarrow $\rho =$ Tribonacci constant $M = B_2$ \Rightarrow $\rho =$ Tribonacci constant $M = I_2(p)$ \Rightarrow $\rho =$ Fibonacci constant of order p

For type A (braid monoids)

What is the smallest root of

For type A (braid monoids)

What is the smallest root of

For type A (braid monoids)

What is the smallest root of

Conjecture: When $n \to \infty$

$$B_n^+ = A_{n-1} = \left\langle \sigma_1, \sigma_2, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & |i-j| > 1 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & |i-j| = 1 \end{array} \right\rangle$$

Problem: We want to generate a random positive braid of length k.

There can be many representatives of the same braid

Not all braids have the same number of representatives

Given a braid α , its Lex-representative, $w(\alpha)$, is the (lexicographically) smallest word representing α .

We generate Lex-representatives

Teorem: (Gebhardt-GM, 2011) There is an algorithm which generates a random positive braid in B_n^+ of length k, having polynomial time and space complexity in n and k.

Complexity: $O(n^4 \ln n \ k^{\alpha+2}) \leftarrow \alpha = \log_2 3 \approx 1.585$

	n							
	4	8	16	32	64	128	256	512
4	1.09e0	1.33e0	1.76e0	2.07e0	2.45e0	2.95e0	$3.58\mathrm{e0}$	8.03e0
8	$4.62\mathrm{e0}$	$6.39\mathrm{e}0$	$5.79\mathrm{e0}$	$6.10\mathrm{e0}$	1.26e1	$2.19\mathrm{e}1$	$3.13\mathrm{e}1$	$4.84\mathrm{e}1$
16	2.20e1	5.10e1	4.56e1	7.52e1	9.73 e1	1.35e2	2.31e2	2.42e2
32	$1.07\mathrm{e}2$	$3.81\mathrm{e}2$	4.63e2	$6.70\mathrm{e}2$	8.81e2	1.01e3	1.15e3	$1.79\mathrm{e}3$
k 64	4.84e2	2.07e3	4.55e3	$6.72\mathrm{e}3$	$5.72\mathrm{e}3$	$7.94\mathrm{e}3$	7.61e3	7.72e3
128	$2.01\mathrm{e}3$	9.55e3	$3.30\mathrm{e}4$	$5.24\mathrm{e}4$	$5.70\mathrm{e}4$	1.03e5	1.13e5	1.04e5
256	8.42e3	4.27 e 4	1.90e5	4.17e5	6.06e5	1.20e6	1.81e6	2.06e6
512	4.36e4	1.78e5	9.70e5	3.27e6	5.85e6	$1.23\mathrm{e}7$	$2.56\mathrm{e}7$	$3.29\mathrm{e}7$
1024	2.52e5	7.24e5	4.77e6	$2.07 e^{-7}$	5.22e7	1.25e8	2.78e8	4.29e8

Time in μ s to generate a braid

Suppose we want to write down a lex-representative w.

The first letter can be anyone.

Say
$$\sigma_{4.}$$

$$w = \sigma_4 w_1$$

$$\begin{array}{c} \sigma_{4} \preccurlyeq w \\ \sigma_{1} \preccurlyeq w \\ \sigma_{2} \preccurlyeq w \\ \sigma_{3} \preccurlyeq w \end{array} \Leftrightarrow \begin{array}{c} \sigma_{4} \preccurlyeq w \\ \sigma_{1} \lor \sigma_{4} \preccurlyeq w \\ \sigma_{2} \lor \sigma_{4} \preccurlyeq w \\ \sigma_{3} \lor \sigma_{4} \preccurlyeq w \end{aligned} \Leftrightarrow \begin{array}{c} \sigma_{4}^{-1}(\sigma_{1} \lor \sigma_{4}) \preccurlyeq w_{1} \\ \sigma_{4}^{-1}(\sigma_{2} \lor \sigma_{4}) \preccurlyeq w_{1} \\ \sigma_{4}^{-1}(\sigma_{3} \lor \sigma_{4}) \preccurlyeq w_{1} \\ \sigma_{3} \sigma_{4} \preccurlyeq w_{1} \end{array} \Leftrightarrow \begin{array}{c} \sigma_{1} \preccurlyeq w_{1} \\ \sigma_{2} \preccurlyeq w_{1} \\ \sigma_{3} \sigma_{4} \preccurlyeq w_{1} \end{array}$$

Forbidden prefixes of w_1

Ingredients of the algorithm

Suppose we want to write down a lex-representative w.

The first letter can be anyone. S

Say
$$\sigma_{4.}$$

$$w = \sigma_4 w_1$$

$$\sigma_1 \not\preccurlyeq w_1$$
$$\sigma_2 \not\preccurlyeq w_1$$
$$\sigma_3 \sigma_4 \not\preccurlyeq w_1$$

The second letter cannot be σ_1, σ_2 . Suppose it is σ_3 .

 $w = \sigma_4 \sigma_3 w_2$

$$\begin{array}{c} \sigma_{3} \preccurlyeq w_{1} \\ \sigma_{1} \preccurlyeq w_{1} \\ \sigma_{2} \preccurlyeq w_{1} \\ \sigma_{3}\sigma_{4} \preccurlyeq w_{1} \end{array} \Leftrightarrow \begin{array}{c} \sigma_{3}^{-1}(\sigma_{1} \lor \sigma_{3}) \preccurlyeq w_{2} \\ \sigma_{3}^{-1}(\sigma_{2} \lor \sigma_{3}) \preccurlyeq w_{2} \\ \sigma_{3}^{-1}(\sigma_{3}\sigma_{4} \lor \sigma_{3}) \preccurlyeq w_{2} \end{array} \Leftrightarrow \begin{array}{c} \sigma_{1} \preccurlyeq w_{2} \\ \sigma_{2}\sigma_{3} \preccurlyeq w_{2} \\ \sigma_{4} \preccurlyeq w_{2} \end{array}$$

Forbidden prefixes of w_2

The third letter cannot be σ_1, σ_4 .

In general: w = Lex-representative

 $F(w) = \{$ Forbidden prefixes of w' such that ww' is a lex-representative $\}$

$$F(w\sigma_j) = F(\sigma_j) \cup \sigma_j^{-1}(F(w) \lor \sigma_j)$$

- $F(w\sigma_j)$ only depends on F(w) and j Can construct an automaton
- Forbidden prefixes are always simple elements Finite number of states!

This works for every Garside monoid

In the braid monoid B_n^+ , sets of forbidden prefixes have at most *n* elements

Example:

Forbidden prefixes for $w = \sigma_8 \sigma_7 \sigma_6 \sigma_6 \sigma_5 \sigma_4 \sigma_4 \sigma_3 \sigma_3 \sigma_2 \sigma_2 \sigma_1 \sigma_4 \sigma_3 \sigma_3$:

 $F(w) = \{\sigma_1, \sigma_2\sigma_3, \sigma_4\sigma_3, \sigma_5\sigma_4\sigma_3\sigma_2\sigma_1, \sigma_6, \sigma_7\sigma_6\sigma_5\sigma_4\sigma_3\sigma_2\sigma_1, \sigma_8\}.$

If the automaton is small, it can be efficiently used to generate random braids!

Theorem (Gebhardt-GM, 2011) The described automata are the smallest possible ones, and their size is exponential in n.

Using them would not be efficient

Smallest possible automaton

 σ_1 $\{\sigma_2\sigma_1, \sigma_3\sigma_2\sigma_1\}$ Because each state σ_1 encodes all future $\{\sigma_1, \sigma_3\sigma_2\sigma_1\}$ start > Ø σ_3 accepted paths. σ_2 σ_{2} σ_2 σ_3 $\overline{\{\sigma_1, \sigma_2\sigma_1, \sigma_2\sigma_3\}}$ $\{\sigma_1\sigma_2\}$ σ_2 σ_3 $\{\sigma_1\sigma_2, \sigma_3\sigma_2\sigma_1\}$ σ_3 σ_1 σ_3 σ_2 σ_3 $\{\sigma_1, \sigma_2\sigma_3\}$ $\{\sigma_2, \sigma_3\sigma_2\sigma_1\}$ $\{\sigma_2\}$ $\{\sigma_1, \sigma_3\}$ σ_1 σ_2 Two words with $\{\sigma_2\sigma_1\}$ σ_1 σ_1 $\{\sigma_1, \sigma_2\}$ σ_2 same state in some σ_3 σ_2 σ_2 automaton... σ_3 $\{\sigma_1, \sigma_3\sigma_2\}$ $\{\sigma_1\sigma_2, \sigma_3\sigma_2\}$ $\{\sigma_1$ $\{\sigma_2, \sigma_3\}$ σ_2 σ_2 σ_1 also have the same $\{\sigma_2\sigma_1,\sigma_3\}$ $\{\sigma_1\sigma_2,\sigma_3\}$ state here. σ_2 Juan González-Meneses

Why is this automaton the smallest possible one?

Braid tree

Lex-representatives form a tree.

Example, in B_4^+ :

19 braids of length 3 in B_4^+ .

Braid tree

Lex-representatives form a tree.

Example, in B_4^+ :

19 braids of length 3 in B_4^+ .

1) Compute the number of leaves of the tree: 19

2) Choose a random number between 1 and 19: 16

3) Find the braid corresponding to the 16th leaf: $\sigma_3 \sigma_2 \sigma_1$

Warning: the tree is exponentially big!

In polynomial time!

Finding the rth braid of length k

Question: How many lex-representatives start with a given prefix?

w = lex-representative = vertex of the tree $m \in \{0, \dots, n-1\}$

 $x_{n,k}(w,m)$ = leaves hanging from w but not from $w\sigma_1,\ldots,w\sigma_m$

We find each letter in $\log n$ steps

wHow to compute the number $x_{n,k}(w,m)$? $\sigma_m \sigma_{m+1}$ σ_1 σ_{n-1} $x_{n,k}(w,m)$ It is the number of braids of length |k - |w| We know it minus the number of braids having some prefix from: Computed with the $\{\sigma_1,\ldots,\sigma_m\} \cup F(w)$ inclusion-exculsion principle

Thanks to the lattice structure of Garside monoids we have obtained:

- An efficient algorithm to generate random elemens. (type A)
- A new formula for the growth function. (type A,B,D)
- The smallest possible finite state automata recognizing lex-representatives. (all Garside monoids)

