Groups, Group rings and the Yang-Baxter equation

Garside theory: state of the art and prospects

Cap Hornu (Baie de Somme)

May 30th – june 2nd 2012

Eric Jespers

Lecture Outline

Motivation

Lecture Outline

Motivation

Set-theoretic solutions

Lecture Outline

Motivation

Set-theoretic solutions

Strategy 1 to determine set-theoretic solutions and Problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Lecture Outline

Motivation

Set-theoretic solutions

Strategy 1 to determine set-theoretic solutions and Problems

Decomposability and Multipermutation Solutions: Strategy 2

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Lecture Outline

Motivation

Set-theoretic solutions

Strategy 1 to determine set-theoretic solutions and Problems

Decomposability and Multipermutation Solutions: Strategy 2

Braces and the Yang-Baxter equation: strategy 3

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Lecture Outline

Motivation

Set-theoretic solutions

Strategy 1 to determine set-theoretic solutions and Problems

Decomposability and Multipermutation Solutions: Strategy 2

Braces and the Yang-Baxter equation: strategy 3

Braces, group rings and the Yang-Baxter equation: strategy 4

Lecture Outline

Motivation

Set-theoretic solutions

Strategy 1 to determine set-theoretic solutions and Problems

Decomposability and Multipermutation Solutions: Strategy 2

Braces and the Yang-Baxter equation: strategy 3

Braces, group rings and the Yang-Baxter equation: strategy 4

Construction of Braces

Motivation

(ロ) (回) (E) (E) (E) (O)

Motivation

- Study of finitely presented algebras defined by homogeneous relations
- Study of (semi)group algebras
- Construction of algebras, monoids, with "nice" arithmetical structure
- Examples showing up in other areas, e.g. Yang-Baxter equation

In this talk: report on joint work with F. Cedo, J. Okninski and A. del Rio

・ロト ・ 日 ・ モート ・ モー・ うへぐ

References

- F. Cedo, E. Jespers, A. del Ri, Involutive Yang-Baxter Groups, TAMS 362 (2010), 2541-2558.
- F. Cedo, E. Jespers, J. Okninski, Retractability of set theoretic solutions of the Yang-Baxter equation, Advances Math. 224 (2010), 2472-2484.
- F. Cedo, E. Jespers, J. Okninski, Braces and the Yang-Baxter Equation, submitted.
- P. Etingof, T. Schedler and A. Solviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J. 100 (1999), 169–209.
- T. Gateva-Ivanova and P. Cameron, Multipermutation solutions of the Yang-Baxter equation, Comm. Math. Phys. 45 (2012), 583–621.
- T. Gateva-Ivanova and M. Van den Bergh, Semigroups of I-type, J. Algebra 206 (1998), 97-112.

- E. Jespers and J. Okninski, Noetherian semigroup algebras, Springer, Dordrecht, 2007.
- W. Rump, A decomposition theorem for square-free unitary solutions of the Yang-Baxter equation, Adv. Math. 193 (2005), 40–55.

・ロト ・ 日 ・ モート ・ モー・ うへぐ

• W. Rump, Braces, Radical rings, and the quantum Yang-Baxter equation, J. Algebra 307 (2007), 153–170.

Set-theoretic solutions

Set-theoretic solutions

V a finite dimensional vector space, with basis X $R: V \otimes V \rightarrow V \otimes V$, a bijective linear map $R_{ij}: V \otimes V \otimes V \rightarrow V \otimes V \otimes V$, R acting on (i, j)-component

PROBLEM

Find all solutions R of the quantum Yang-Baxter equation

$$R_{12} R_{13} R_{23} = R_{23} R_{13} R_{12}.$$

PROBLEM: Drinfeld 1992

Find all solutions induced by a linear extension of

$$\mathcal{R}: X \times X \to X \times X.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\tau: X \times X \to X \times X : (x, y) \mapsto (y, x)$$

 \mathcal{R} is a set theoretic solution $\Leftrightarrow r = \tau \circ \mathcal{R}$ is a solution of the braided equation $r_{12} r_{23} r_{12} = r_{23} r_{12} r_{23}$

We write $r: X \times X \to X \times X : (x, y) \mapsto = (\sigma_x(y), \gamma_y(x))$. Such (X, r) (or r) is called a set-theoretic solution of the Yang-Baxter equation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

r is involutive if $r^2 = id$.

A map r is left (right) non-degenerate if each γ_y (respectively σ_x) is bijective.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

If X is finite then left=right non-degenerate for involutive set-theoretic solutions.

Group Interpretation

Theorem

 $|X| = n < \infty$ and $r : X \times X \to X$.

If r is a non-degenerate involutive set-theoretic solution then for every $f \in Sym_n$ there exists a bijection

$$v : \operatorname{FaM}_n = \langle u_1, \ldots, u_n \rangle \to S$$

where

$$S = \langle x_1, \ldots, x_n \mid x_i x_j = x_k x_l \text{ if } r(x_i, x_j) = (x_k, x_l) \rangle,$$

such that v(1) = 1, $v(u_i) = x_{f(i)}$ and

$$\{v(u_1a),\ldots,v(u_na)\}=\{x_1v(a),\ldots,x_nv(a)\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

for all $a \in FaM_n$. And conversely.

Such an S is called a monoid of *I*-type. It has a group of fractions G(X, r) called a group of *I*-type (or structural group).

$$G(X,r) = \langle x_1,\ldots,x_n \mid x_i x_j = x_k x_l \text{ if } r(x_i,x_j) = (x_k,x_l) \rangle.$$

Theorem A monoid (resp. group) S is of I-type if and only if $S \cong \{(a, \sigma_a) \mid a \in \operatorname{FaM}_n\} \subset \operatorname{FaM}_n \rtimes \operatorname{Sym}_n$ (resp. \subseteq Fa_n \rtimes Sym_n) with σ : Fa_n \rightarrow Sym_n. $G(X,r) = S\{z^m \mid m \in \mathbb{Z}\}, \text{ with } z = (u, \sigma_u)^{|\sigma_u|}, \text{ where }$ $u = u_1 \cdots u_n$.

 $K = \{(a, 1) \mid a \in Fa_n, \sigma_a = 1\}$ is a free abelian subgroup that is normal and of finite index.

 $G(X, r)/K \cong \{\sigma_a \mid a \in \operatorname{Fa}_n\} = \langle \sigma_{u_i} \mid 1 \le i \le n \rangle.$ notation: $\mathcal{G}(X, r)$, called involutive Yang-Baxter group(IYB).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへぐ

Properties of groups of I-type

A group $\mathcal{G}(X, r)$ of *I*-type has the following properties:

- abelian-by-finite
- torsion-free
- solvable (if nilpotent then torsion-free)

The group algebra K[G(X, r)] has nice arithmetical properties:

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

- a domain
- noetherian, P.I., maximal order

Proposition

Let X be a finite set and $r: X \times X \to X \times X : (x, y) \mapsto (\sigma_x(y), \gamma_y(x)).$

Then, (X, r) is a right non-degenerate involutive set-theoretic solution of the Yang-Baxter equation if and only if

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

1.
$$r^2 = id_{X^2}$$
,
2. $\sigma_x \in \operatorname{Sym}_X$, for all $x \in X$,
3. $\sigma_x \circ \sigma_{\sigma_x^{-1}(y)} = \sigma_y \circ \sigma_{\sigma_y^{-1}(x)}$, for all $x, y \in X$.

Strategy 1 to determine set-theoretic solutions and Problems

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 - のへぐ

Problem 1: Characterize groups of *I*-type.

Problem 1a: Classify involutive Yang-Baxter groups.

Problem 1b: Describe all groups of *I*-type that have a fixed associated IYB group.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 - のへぐ

Theorem

- If G is IYB then its Hall subgroups are IYB.
- The class of IYB groups is closed under direct products.
- $A \rtimes H$ is IYB if A is finite abelian and H is IYB.
- If G is IYB and H is an IYB subgroup of Sym_n then the wreath product of G and H is IYB.
- Any finite solvable group is isomorphic to a subgroup of an IYB.
- the Sylow subgroups of Sym_n are IYB.
- Any finite nilpotent group is isomorphic to a subgroup of an IYB group.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

• Every finite nilpotent group of class 2 is IYB.

(ロ) (四) (主) (主) (主) つくで

Problem 2: Are finite solvable groups IYB?

Decomposability and Multipermutation Solutions: strategy 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Decomposability and Multipermutation Solutions

Theorem If G(X, r) is a group of I-type then

$$G(X,r)=G_{(1)}\cdots G_{(m)}$$

with

$$G_{(i)} = \{(a, \sigma_a) \mid a \in \langle u_j \mid u_j \in C_i\}$$

where

$$C_i = \{\sigma_a(u_i) \mid a \in \mathrm{Fa}_n\}$$

and

$$G_{(i)}G_{(j)} = G_{(j)}G_{(i)}.$$

・ロト ・ 日 ・ モート ・ モー・ うへぐ

Rump: If G is square free then m > 1, i.e. G(X, r) is decomposable.

Multipermutation Solutions

Let (X, r) be a non-degenerate involutive set-theoretic solution of the Yang-Baxter equation.

 \sim equivalence relation on X defined by

$$x \sim y \Leftrightarrow \sigma_x = \sigma_y.$$

Induced solution

$$\operatorname{Ret}(X,r) = (X/\sim, \tilde{r})$$

with

$$\tilde{r}([x],[y]) = ([\sigma_x(y)],[\gamma_y(x)]),$$

where [x] denotes the \sim -class of $x \in X$. Smallest *m* nonnegative integer so that $|\operatorname{Ret}^m(X, r)| = 1$ is called a multipermutation solution of level *m*; if it exists (solution is retractable). If X is finite and multipermutation solution then G(X, r) is a poly-(infinite cyclic).

Exist examples of groups of *I*-type that are are poly-(infinite cyclic) and thus not a multipermutation solution.

$$G = \langle x_1, x_2, x_3, x_4 \mid x_1 x_2 = x_3 x_3, x_2 x_1 = x_4 x_4,$$
$$x_1 x_3 = x_2 x_4, x_1 x_4 = x_4 x_2, x_2 x_3 = x_3 x_1, x_3 x_2 = x_4 x_1 \rangle$$
is of *I*-type with $\mathcal{G}(X, r) = D_8$.

Contains $\langle x, y | x^{-1}y^2x = y^{-2}, y^{-1}x^2y = x^{-2} \rangle$ and it is not poly-infinite cyclic (not u.p. group).

・ロト ・ 日 ・ モート ・ モー・ うへぐ

Problems

Problem 3 (Gateva-Ivanova):

Every set-theoretic non-degenerate involutive square-free solution (X, r) of the Yang-Baxter equation of cardinality $n \ge 2$ is a multipermutation solution of level m < n.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Problem 4 (Gateva-Ivanova and Cameron):

Let (X, r) be a finite multipermutation square-free solution of the Yang-Baxter equation with |X| > 1 and multipermuation level m.

1. Can we find a lower bound for the solvable length of the group of *I*-type associated to (X, r) in terms of *m*?

2. Are there multipermutation square-free solutions (X, r) of arbitrarily high multipermutation level with an abelian *IYB* group $\mathcal{G}(X, r)$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

Let (X, r) be a finite non-degenerate involutive set-theoretic solution of the Yang-Baxter equation. If its associated IYB group $\mathcal{G}(X, r)$ is abelian, then (X, r) is a multipermutation solution.

Corollary

Let (X, r) be a finite non-degenerate involutive set-theoretic square-free solution of the Yang-Baxter equation. If its associated IYB group $\mathcal{G}(X, r)$ is abelian, then (X, r) is a strong multipermutation solution, i.e. there exist $\sigma_x = \sigma_y$ for some x and y in the same $\mathcal{G}(X, r)$ -orbit.

Theorem

Let n be a positive integer. Then there exists a finite multipermutation square-free solution of the Yang-Baxter equation of multipermutation level n such that its associated IYB group is an elementary abelian 2-group. (Rump: non-square free examples)

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Braces and the Yang-Baxter equation: strategy 3

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Definition

A right brace is a set G with two operations + and \cdot such that (G, +) is an abelian group, (G, \cdot) is a group and

$$(a+b)c+c=ac+bc,$$

for all $a, b \in G$. Such a G is a two-sided brace if it is also a left brace, i.e.

$$a(b+c)+a=ab+ac,$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

for all $a, b, c \in G$.

Proposition

If $(G, +, \cdot)$ is a two-sided brace then (G, +, *) is a radical ring (with a * b = ab - a - b). Conversely, if $(R, +, \cdot)$ is a radical ring then $(R, +, \circ)$ is a two-sided brace (with $a \circ b = ab + a + b$).

Note that the multiplicative identity 1 of (G, \cdot) is the same as the additive identity 0 of (G, +).

For $a \in G$ let $\lambda_a, \rho_a \in \operatorname{Sym}_G$, such that

$$\rho_a(b) = ba - a \text{ and } \lambda_a(b) = ab - a.$$

If G is a left brace then λ_a is an automorphism of (G, +), and $\lambda_{ab} = \lambda_a \lambda_b$.

Lemma

Let G be a left brace. The following properties hold.

The set-theoretic solution of the Yang-Baxter equation (G, r) is called the solution of the Yang-Baxter equation associated to the left brace G.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Proposition

A group G is the multiplicative group of a left brace if and only if there exists a group homomorphism $\mu : G \longrightarrow \text{Sym}_G$ such that $x\mu(x)^{-1}(y) = y\mu(y)^{-1}(x)$ for all $x, y \in G$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Corollary

A finite group G is an IYB group if and only if it is the multiplicative group of a finite left brace.

Theorem Let (A, +) be an abelian group. Let

$$\mathcal{B}(A) = \{(A, +, \cdot) \mid (A, +, \cdot) \text{ is a left brace}\}$$

and

$$S(A) = \{G \mid G \text{ is a subgroup of } A \rtimes \operatorname{Aut}(A)$$

of the form $G = \{(a, \phi(a)) \mid a \in A\}\}.$

The map $f : \mathcal{B}(A) \to \mathcal{S}(A)$ defined by

$$f(A,+,\cdot) = \{(a,\lambda_a) \mid a \in A\}$$

・ロン ・四 と ・ ヨ と ・ ヨ と

= 990

is bijective.

Proposition

A group G is of I-type if and only if it is isomorphic to the multiplicative group of a left brace B such that the additive group of B is a free abelian group with a finite basis X such that $\lambda_x(y) \in X$ for all $x, y \in X$.

イロト 不得 トイヨト イヨト ニヨー

Braces, groups rings and the Yang-Baxter equation: strategy 4

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Proposition

(Sysak) Let G be a group. Then G is the multiplicative group of a left brace if and only if there exists a left ideal L of $\mathbb{Z}[G]$ such that

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

(i) the augmentation ideal $\omega(\mathbb{Z}[G]) = G - 1 + L$ and (ii) $G \cap (1 + L) = \{1\}.$

Proposition

Let G be a group. Then G is the multiplicative group of a two-sided brace if and only if there exists an ideal L of $\mathbb{Z}[G]$ such that

(i) the augmentation ideal
$$\omega(\mathbb{Z}[G]) = G - 1 + L$$
 and
(ii) $G \cap (1 + L) = \{1\}.$

Has implications for the integral isomorphism problem. It follows

$$U(\mathbb{Z}G) = (\pm G)H$$
 and $\pm G \cap H = \{1\}$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 のへで

with $H = (1 + L) \cap U(\mathbb{Z}G)$.

If L is a two-sided ideal, then H is a normal subgroup and this is a normal complement in $U(\mathbb{Z}G)$ of $\pm G$.

If G is a finite nilpotent group, then a positive answer to existence of a normal complement gives a positive answer for the integral group ring isomorphism problem, i.e. if $\mathbb{Z}G \cong \mathbb{Z}G_1$ then $G \cong G_1$.

Positive answer for G of class two. In general it is an open problem (although ISO has a positive answer for nilpotent groups).

The counter example of Hertweck to ISO maybe indicates that a positive answer to complements is maybe not true in general.

Construction of Braces

- Abelian groups
- Nilpotent groups of class 2 (Ault and Watters): they are the adjoint group of a radical ring
- Nilpotent groups of class 2 are the adjoint group of a radical ring of nilpotency class 3 in case
 - G/Z(G) is the weak direct product of cyclic groups
 - G/Z(G) is a torsion group
 - Every element of G' has a unique square root.
- Hales and Passi: previous not always true, but true if G/Z(G) is uniquely 2-divisible, or if G/N is torsion-free and a weak direct product of rank one groups for some normal subgroup N such that G' ⊆ N ⊆ Z(G). also true for H = {g²z | g ∈ G, z ∈ Z(G)} and associated solution of the Yang-Baxter equation to the brace H is square free.

- Exist nilpotent class 2 groups which admit a structure of a left brace that is not a right brace
- open problem: does any finite nilpotent group admit a structure of a left brace? (i.e. are they IYB groups?) They do not necessarily admit a two-sided brace as not all such groups are adjoint groups of radical rings.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで