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Finite complex reflection groups 

V a vector space over C with dim(V) = r. 

A complex reflection s is a non-trivial linear map which fixes a 
complex hyperplane Hs pointwise: 

s:V ! V for which dim(Hs) = r-1 

Hs = ker(s-1) is the reflection hyperplane for the reflection s 

 

A (finite) complex reflection group W is a (finite) group 
generated by complex reflections. 

 

Write A for the collection of reflection hyperplanes of a fcrg W. 
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Braid groups of fcrg’s 

The pure braid group of a fcrg W is the fundamental group of its 
hyperplane complement:  

P(W) = ¦1(V-A,*) 

 

A fcrg W acts on its hyperplane complement.  

The braid group is the fundamental group of the corresponding 
quotient space: 

B(W) = ¦1(V-A/W,*)  

 

These groups are related by the short exact sequence 

1 ! P(W) ! B(W) ! W ! 1 

Finite Coxeter groups & Artin groups 

Reflection groups which may be represented as reflections of a real 
vector space have been extensively studied – they are Coxeter 
groups. 

The finite Coxeter groups have been classified into 4 infinite families 
(types Ar ,Br , Dr and the dihedral groups I2(e)) and 7 exceptional 
groups (E6, E7, E8, F4, G2, H3 and H4) 

A huge amount of information about these groups is encoded in 
their  Coxeter diagram, including: 

• a presentation of W via reflection generators 

• by throwing away  finite order of ref gens, a presentation of B(W) 

• a Garside structure arising from this presentation permitting 
effective calculation in the braid group. 
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Coxeter diagrams for finite real reflection groups 

Presentation for the Coxeter 
group with Coxeter diagram  
¡ = (I,E): 

Generators: si for all i 2 I 

Relations:   (1) s2 = 1 for all i 

(2) if an edge between nodes 
i and j is labelled m, there is 
a relation: 

 

(3)  if no edge between  i , j: 

 

 

hsisjim = hsjsiim

sisj = sjsi

Example:  
Reflection group of type An  = the symmetric group  

Generators:   S = {s1, s2, ... , sn} 

Relations:  si 
2 = 1    for all i=1, ... , n 

   si sj si = sj si sj   |i-j|=1  

   si  sj = sj si  |i-j| ¸ 2 

 

The presentation is  positive and homogeneous. 

The generator si corresponds to interchanging i and i+1. 

(N.B. An edge whose label is not explicitly shown is understood 
to be an edge with label 3.) 
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Example:  
Braid group of type An  = group of “geometric braids” 

Generators:   S = {s1, s2, ... , sn} 

Relations:  si 
2 = 1    for all i=1, ... , n 

   si sj si = sj si sj   |i-j|=1  

   si  sj = sj si  |i-j| ¸ 2 

 

The presentation is  positive and homogeneous. 

 

(N.B. An edge whose label is not explicitly shown is understood 
to be an edge with label 3.) 

Braid 
relations 

Artin groups: braid groups of real reflection gps 

Presentation for the Artin 
group with Coxeter diagram  
¡ = (I,E): 

Generators: si for all i 2 I 

Relations:    (1) s2 = 1 for all i 

(2) if an edge between nodes 
i and j is labelled m, there is 
a relation: 

 

(3)  if no edge between  i , j: 

 

 

hsisjim = hsjsiim

sisj = sjsi
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Garside structure & related notions 

Work of Garside [1969], Deligne [1972], Brieskorn & Saito [1972]:  

• Solutions to word and conjugacy problems in braid groups for 
finite real reflection groups using the Artin presentations 

• Normal  form based on special element ¢, which corresponds 
to the longest element in the reflection group. 

Generalisation of these properties in the notion of Garside 
structure (Dehornoy, Paris, Digne, Michel,...), in the noughties 

The particular case of a generated group Garside structure 
(Michel 1999) where the Garside structure is  determined 
according to a length function in a related group – in this case, 
the reflection group. 

 

The classification of finite complex reflection groups 

Shephard-Todd (1954) 

• 34 “exceptional” groups of ranks 2 to 8 

• ... And an infinite family G(de,e,r), the imprimitive reflection 
groups:  

 ¹de = deth roots of unity 

M = monomial matrices over over ¹de [ {0} 

 

 

This infinite family contains type A: G(1,1,r), type B: G(2, 1, r), 
type D (G(2,2,r) and type I(e): G(e,e,2).  

G(de; e; r) = f(xij) 2M j ¦xij 6=0x
d
ij = 1g
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Broue-Malle-Rouquier [1998] 

• An investigation of the geometry, algebra and combinatorics 
of the finite complex reflection groups, their Hecke algebras 
and braid groups 

• Proposed diagrams for the non-real reflection groups to be 
“like” Coxeter diagrams 

• These diagrams were a kind of generalization of Coxeter 
diagrams 

• In general the diagrams did encode presentations for the 
braid groups as well 

• The diagrams did not give rise to presentations which had the 
sort of Garside-like properties desired. 

Aim: To describe diagrams for B(e,e,r) and B(de,e,r) 
which work “like Coxeter diagrams” 

• Such that one can “read off” a presentation for B(W) (and W) 

– A positive, homogeneous presentation in particular 

– For which adding finite order to the generators of B(W) gives a 
presentation by reflections for W 

• For which: the braid group is the group of fractions of the 
positive monoid M of the presentation: B(W) = M M-1 

• M is a lattice with respect to division 

 Ã solutions to the word and conjugacy problems in B(W) 

• Diagram automorphisms ! auts of B(W) (and W) 

• (Suitable) subgraphs ! parabolic subgroups 

 

 

 

Garside 
structure 
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1. Type (e,e,r): [C-Picantin, 2004-2011]  

 

• Generators 

 Te := {ti j i 2 Z/e} 

 S := {sj j 3 · j · r} 

 

• Relations 
– Braid relations on S; 

– ti s3 ti = s3 ti s3  for all i 2 Z/e; 

– ti sj = sj ti     for all i 2 Z/e and 4 · j · r; 

– ti ti-1 =tj tj-1  for all i, j 2 Z/e. 

 

 

1. Type (e,e,r): [C-Picantin, 2004-2011]  

Theorem 1. [C-P, 2011] 

a)   h Te [ S j R i is a group presentation for B(e,e,r) 

b) The monoid M = monh Te [ S j R i embeds in B(e,e,r) and 
gives rise to a Garside structure 

c)  h Te [ S j R [ I i   is a presentation for G(e,e,r), where the set 
I consists of the relations a2 = 1 for all a 2 Te [ S; and all the 
generators are reflections: for eth root of unity ³e :  

 

 

 

ti =

0
BBBBB@

0 ³ie 0 ¢ ¢ ¢ 0

³ie 0 0 ¢ ¢ ¢ 0

0 0
...

... Ir¡2
0 0

1
CCCCCA

(1)

ti = (matrix)

ti =

0
BBBBBBBB@

0 ³¡ie

³ie 0
0

0 Ir¡2

1
CCCCCCCCA

and sj = permutation matrix of (j¡1 j);

where ³e is a primitive e-th root of unity.

ti =

0
BBBBBBBB@

0 ³¡ie

³ie 0
0

0 Ir¡2

1
CCCCCCCCA

and sj = permutation matrix of (j¡1 j);

where ³e is a primitive e-th root of unity.

sj corresponds to 
permuting the  
(j-1)th and jth  
basis vectors  
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1. Type (e,e,r): [C-Picantin, 2004-2011]  

Remarks 1. 

1. This is not the first Garside structure for B(e,e,r): cf the dual 
presentation for B(e,e,r) [Bessis-Corran 2006] 
 

2. Conjecturally a generated group, using the length function 
defined on the fcrg G(e,e,r) via the generating set Te [ S. 

ti =

0
BBBBB@

0 ³ie 0 ¢ ¢ ¢ 0

³ie 0 0 ¢ ¢ ¢ 0

0 0
...

... Ir¡2
0 0

1
CCCCCA

(1)

ti = (matrix)

ti =

0
BBBBBBBB@

0 ³¡ie

³ie 0
0

0 Ir¡2

1
CCCCCCCCA

and sj = permutation matrix of (j¡1 j);

where ³e is a primitive e-th root of unity.

ti =

0
BBBBBBBB@

0 ³¡ie

³ie 0
0

0 Ir¡2

1
CCCCCCCCA

and sj = permutation matrix of (j¡1 j);

where ³e is a primitive e-th root of unity.

2. Type (1, 1 ,r) : affine type Ar-1 

• Shi (2002): B(1, 1 ,r)  

• Generators 

 T1 := {ti j i 2 Z} 

 S := {sj j 3 · j · r} 

 

• Relations 

– Braid relations on S; 

– ti s3 ti = s3 ti s3  for all i 2 Z; 

– ti sj = sj ti     for all i 2 Z and 4 · j · r; 

– ti ti-1 =tj tj-1  for all i, j 2 Z. 
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2. Type (1, 1 ,r) : affine type Ar-1 

Theorem 2. [C] 

a)   h T1 [ S j R i is a group presentation for B(1,1,r)  

b) The monoid M = monh T1 [ S j R i embeds in B(1,1,r) and 
gives rise to a (quasi-)Garside structure 

c)  h T1 [ S j R [ I i   is a presentation for W(          ) where the 
set I consists of the relations a2 = 1 for all a 2 T1 [ S; and all 
the generators are reflections: for x an indeterminate: 

 

 

 

ti =

0
BBBBB@

0 ³ie 0 ¢ ¢ ¢ 0

³ie 0 0 ¢ ¢ ¢ 0

0 0
...

... Ir¡2
0 0

1
CCCCCA

(1)

ti = (matrix)

ti =

0
BBBBBBBB@

0 ³¡ie

³ie 0
0

0 Ir¡2

1
CCCCCCCCA

and sj = permutation matrix of (j¡1 j);

where ³e is a primitive e-th root of unity.

ti =

0
BBBBBBBB@

0 ³¡ie

³ie 0
0

0 Ir¡2

1
CCCCCCCCA

and sj = permutation matrix of (j¡1 j);

where ³e is a primitive e-th root of unity.

sj corresponds to 
permuting the  
(j-1)th and jth  
basis vectors  

 

2. Type (1, 1 ,r) : affine type Ar-1 

What is the isomorphism? 

Define    Â: (1, 1, r) ! 

by:  Â(sj) = aj-1  for all j, 3 · j · r 

and  Â(ti) =  i(a1)  for all i 2 Z 

 

...where  = Ã ± ½ 2 Aut(          )  

with ½(ai) = ai-1  = “rotation” diagram automorphism, and 

      Ã(g) = pgp-1 = inner automorphism by p = a1 a2  ar-1 

In particular:  

 (ai) = ai   for 2 · i · r-1 

 (a1) = a0
h  for some h  

ti =

0
BBBBB@

0 ³ie 0 ¢ ¢ ¢ 0

³ie 0 0 ¢ ¢ ¢ 0

0 0
...

... Ir¡2
0 0

1
CCCCCA

(1)

ti = (matrix)

ti =

0
BBBBBBBB@

0 ³¡ie

³ie 0
0

0 Ir¡2

1
CCCCCCCCA

and sj = permutation matrix of (j¡1 j);

where ³e is a primitive e-th root of unity.

ti =

0
BBBBBBBB@

0 ³¡ie

³ie 0
0

0 Ir¡2

1
CCCCCCCCA

and sj = permutation matrix of (j¡1 j);

where ³e is a primitive e-th root of unity.
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2. Type (1, 1 ,r) : affine type Ar-1 

Remarks 2. 

1. The isomorphism is originally due to Shi (2002) 

2. Digne (2003) described a quasi-Garside structure for B(          )   
which can be considered as a“dual” Garside structure. 

  

ti =

0
BBBBB@

0 ³ie 0 ¢ ¢ ¢ 0

³ie 0 0 ¢ ¢ ¢ 0

0 0
...

... Ir¡2
0 0

1
CCCCCA

(1)

ti = (matrix)

ti =

0
BBBBBBBB@

0 ³¡ie

³ie 0
0

0 Ir¡2

1
CCCCCCCCA

and sj = permutation matrix of (j¡1 j);

where ³e is a primitive e-th root of unity.

ti =

0
BBBBBBBB@

0 ³¡ie

³ie 0
0

0 Ir¡2

1
CCCCCCCCA

and sj = permutation matrix of (j¡1 j);

where ³e is a primitive e-th root of unity.

3. Type (±e,e,r)  (±>1) 

If d, d’ > 1, B(de,e,r)  B(d’e,e,r).  Write B(±e,e,r) for ± “any integer > 1”. 

• Generators: {z} 

 T1 := {ti j i 2 Z} 

 S := {sj j 3 · j · r} 

• Relations 
– Braid relations on S; 

– ti s3 ti = s3 ti s3  for all i 2 Z; 

– ti sj = sj ti     for all i 2 Z and 4 · j · r; 

– ti ti-1 =tj tj-1  for all i, j 2 Z; 

– z sj = sj z   for all j with 3 · j · r; 

– z ti = ti-e z  for all i 2 Z. 

 

 

“Applying the handle” 
turns the disk by e nodes 
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3. Type (±e,e,r)  (±>1) 

 

Theorem 3.1. B(±e,e,r)  Z ne B(           ) 

 

Here:    Z = h z i 

and the action is given by: 

 z ti z
-1 = ti-e 

 z sj z
-1 = sj 

 

“Applying the handle” 
turns the disk by e nodes 

3. Type (±e,e,r)  (±>1) 

Theorem 3.2.  

a)   h {z} [ T1 [ S j R i is a group presentation for B(±e,e,r)  

b) The monoid M = monh {z} [ T1 [ S j R i embeds in B(±e,e,r) and 
gives rise to a (quasi-)Garside structure 

c)  h {z} [ T1 [ S j R [ I [ Jd i   is a presentation for G(de,e,r) where: 

– I consists of the relations a2 = 1 for all a 2 T1 [ S; and  

– Jd is the relation: zd = 1, 

and for which all the generators are reflections: the images of ti 
and sj are as before, and z ! Diag(³d,1, ..., 1) 

 

 

“Applying the handle” 
turns the disk by e nodes 
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3. Type (±e,e,r)  (±>1) 

Remarks 3. 

1. The semidirect product decomposition: 

 G(de,e,r)  Z /d  ne G(de,de,r)  

 is well-known and direct from the definition of G(de,e,r). 

2. [Ram, Ramagge (2003)] describe the analogous 
decomposition for the corresponding Hecke algebras. 

3. Using Digne’s dual (quasi-)Garside structure for              gives 
rise to an alternative dual structure of type (±e,e,r)  (±>1). 

4. This is not a generated group construction. 

4. Fake type F(de,e,r)  Z ne B(de,de,r) 

If zd =1, the relation z ti = ti-e z forces:  

ti = ti-de   

This corresponds to a kind of “folding” of the 1-disk onto a disk 
with only de nodes – which corresponds to type (de,de,r). 

 

 

tde-2 

tde-1 
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4. Fake type F(de,e,r)  Z ne B(de,de,r) 

This leads to a finite presentation for a group we denote 
F(de,e,r) and call the fake braid group of type (de,e,r). 

• Generators: {z} 

 Tde := {ti j i 2 Z/de} 

 S := {sj j 3 · j · r} 

• Relations 
– Braid relations on S; 

– ti s3 ti = s3 ti s3  for all i 2 Z/de; 

– ti sj = sj ti     for all i 2 Z/de and 4 · j · r; 

– ti ti-1 =tj tj-1  for all i, j 2 Z/de; 

– z sj = sj z   for all j with 3 · j · r; 

– z ti = ti-e z  for all i 2 Z/de. 

 

 

4. Fake type F(de,e,r)  Z ne B(de,de,r) 

Remarks 4. 

1. Conjecturally this is a generated group construction using the 
length function defined on the fcrg G(de,e,r) via the generating set 
Tde [ S:  When d=2 it coincides with Picantin’s Spintop monoid 
[Amiens,  2011], a generated group construction from G(2e,e,2). 

2. This is a finite Garside structure (not quasi-), which is specific to the 
choice of d; but only for a quotient of the (true) braid group 
B(±e,e,r). We expect in general for there to be no finite Garside 
structure for the true braid groups. 

3. The fake braid group is intermediate between the braid group 
B(±e,e,r) and its reflection group: the natural surjection onto 
G(de,e,r) factors through F(de,e,r). 
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5. Maps  

A. The diagram automorphism “rotate the disk” 

 

  ":  ti ! ti+1 

   sj ! sj 

 

This is an automorphism of type (#,*,r)  

 (including              and (e,e,r) ) 

  
             

5B. Maps between B(±e,e,r) : interpretation as braids 

 

Consider e1, e2, ... 2 N>1 for which eq divides eq+1 for each q. 

We have:  eq+1 Z       eq Z  by z  zeq+1/eq.  

Hence: 

 

The group B(±,1,r) is isomorphic to the braid group of type Br 

which can be visualized as the group of (geometric) braids on a 
cylinder.   

In this way, elements of B(±e,e,r) may be visualized as geometric 
braids on a cylinder with winding number 0 mod e.  

 

,!

B
³
~Ar¡1

´
,! ¢ ¢ ¢ ,! B (±ei+1; ei+1; r) ,! B (±ei; ei; r) ,! ¢ ¢ ¢ ,! B(±; 1; r)



6/5/2012 

15 

5C. Maps between B(e,e,r): Wrapping up the disk 

 

C. Between B(e,e,r): Wrapping up the disk 

 

Consider e1, e2, ... 2 N>1 for which eq divides eq+1 for each q. 

We have:  Z/eq+1  ³  Z/eq     by  ti  ti mod e_q. 

Hence: 

 

 

 

B( ~Ar+1³ ¢ ¢ ¢³B(eq+1; eq+1; r)³ B(eq; eq; r)³ ¢ ¢ ¢³ B(1;1; r)

5D.  F(de,e,r): pushout 

 

Consider e1, e2, ... 2 N>1 for which eq divides eq+1 for each q. 

For p<q the diagram below commutes, and the fake braid group 
F(eq, ep, r) is the universal object with this property. 
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5E. Suitable subgraphs and parabolics  

 

Suitable sub-graphs: 

1. Truncate the tail: for 4 · r1 < r2 : 

B(#,*,r1) embeds in B(#,*,r2). 

2. The disk on e nodes alone is the dual structure for the 
dihedral  group I2(e): 

I2(e) embeds in B(e,e,r). 

3. The subgraphs consisting of exactly one node on the disk give 
e structures, all isomorphic to the classical type Ar-1 : 

Ar-1 embeds in B(e,e,r). 

5F. Graph foldings and group embeddings 

 

A diagram folding of diagram ¡1 onto the diagram ¡2 gives rise 
to a group embedding B(¡2)      B(¡1). 

The canonical example: the folding of the diagram of type A2r-1 
onto the diagram of type Br gives rise to the group embedding:  

B(B
r
)        B(A

2r-1
) 

In the case of B(*, *,r): the folding of the disk onto the first node 
of the type B_{r-1} diagram gives rise to the group embedding: 

    B(Br-1)      B(e,e,r) 

by:  a1    ¿ = t
i
 t

i-1            

 

 

 

,!

,!

,!


