- 1. Soit k un corps commutatif.
 - a) Montrer qu'il existe à isomorphisme près exactement une algèbre de Lie L résoluble non commutative de dimension 2 sur k et que cette algèbre a une base (y,z) telle que [y,z]=z. Que peut-on dire d'une algèbre de Lie nilpotente de dimension 2?
 - b) Dans l'algèbre de Lie $sl_2(k)$, on considère la sous-algèbre T des matrices triangulaires supérieures de trace nulle. À quelle condition sur k a-t-on $T \simeq L$?
 - c) Soit L_1 une algèbre de Lie résoluble de dimension 3 telle que l'algèbre dérivée $[L_1, L_1]$ soit égale à L. On fixe un élément $x \in L_1$ qui n'est pas dans L et une base (y, z) de L comme dans la question a). Montrer en utilisant l'identité de Jacobi que [x, y] et [x, z] sont multiples scalaires de z. En déduire une contradiction et conclure que l'algèbre dérivée d'une algèbre résoluble de dimension 3 est toujours commutative.
- 2. Soit L une algèbre de Lie de dimension finie sur un corps K algébriquement clos et soit σ un automorphisme de L. Pour $\lambda \in K$ on note L_{λ} l'ensemble des éléments de L annulés par une puissance de $\sigma \lambda \operatorname{Id}$.
 - a) Montrer que pour tous λ et μ dans K et tous x et y dans L on a $(\sigma \lambda \mu \operatorname{Id})[x,y] = [(\sigma \lambda \operatorname{Id})(x), \sigma(y)] + [\lambda x, (\sigma \mu \operatorname{Id})(y)].$ En déduire que $[L_{\lambda}, L_{\mu}] \subset L_{\lambda \mu}$.
 - b) Montrer que si $\lambda \in K$ n'est pas une racine de l'unité et si $x \in L_{\lambda}$ alors ad x est nilpotent. En déduire que si aucune valeur propre de σ n'est une racine de l'unité alors L est nilpotente.
- 3. Soit L une algèbre de Lie semi-simple complexe de dimension finie. Soit H une sous-algèbre de Cartan et W le groupe de Weyl.
 - a) Montrer que pour tout $w \in W$ il existe un automorphisme θ de L tel que $\theta(h) = w(h)$ pour tout $h \in H$.
 - b) On fixe w et θ comme dans la question précédente. Soit λ un poids dominant et $S(\lambda)$ un L-module simple de poids λ . On fait agir L sur le même espace vectoriel $S(\lambda)$ par $x \star v = \theta(x)v$. Montrer qu'on définit ainsi un L-module simple S'. Quels sont les poids de H dans S'?
 - c) Montrer que les L-modules S' et $S(\lambda)$ sont isomorphes (utiliser que l'ensemble des poids d'un module simple de dimension finie est invariant par W). En déduire que pour tout $w \in W$ et tout poids μ on a dim $S(\lambda)_{\mu} = \dim S(\lambda)_{w(\mu)}$.