- a) La somme de deux racines longues est une racine longue ou n'est pas une racine. Donc le commutateur $[L_{\gamma}, L_{\delta}]$ où γ et δ sont des racines longues non proportionnelles est inclus dans $\oplus_{\gamma \text{ longue}} L_{\gamma}$. D'autre part si γ et δ sont deux racines longues non colinéaires, $[L_{\gamma}, L_{-\gamma}]$ et $[L_{\delta}, L_{-\delta}]$ sont deux sous-espaces supplémentaires de H. Donc les L_{γ} avec γ longue engendrent la sous-algèbre de Lie $\oplus_{\gamma \text{ longue}} L_{\gamma} \oplus H$ qui est de dimension 8 et de rang 2. Les racines longues forment un sous-système de racines de type A_2 . Les relations de commutations montrent donc qu'un idéal contenant un L_{γ} les contient tous. Or un idéal doit être la somme directe de ses espaces de poids pour H. S'il contient un élément non nul de H il contient tous les L_{γ} puisque $[L_{\gamma}, H] = L_{\gamma}$; s'il contient un L_{γ} il les contient tous comme on l'a vu. Donc L_1 est simple.
- b) La propriété analogue pour les racines n'est pas vraie car la somme de deux racines courtes peut être une racine longue.
- c) L'action adjointe de L_1 contient en particulier l'action de H. Donc chaque facteur de la décomposition doit être une somme d'espaces de poids pour H. Comme L_1 est simple c'est un sous-module simple sur elle-même. Il reste à voir les L_{γ} avec γ racine courte. On vérifie que la somme d'une racine courte et d'une racine longue est une racine courte ou n'est pas une racine. On vérifie que par l'action des L_{γ} avec γ long on a une orbite formée de L_{α} , $L_{\alpha+\beta}$ et $L_{-2\alpha-\beta}$ et une orbite formée de $L_{-\alpha}$, $L_{-\alpha-\beta}$ et $L_{2\alpha+\beta}$. On a donc deux L_1 -sous-modules simples La décomposition cherchée est donc $L=L_1\oplus M_1\oplus M_2$ où $M_1=L_{\alpha}\oplus L_{\alpha+\beta}\oplus L_{-2\alpha-\beta}$ et $M_2=L_{-\alpha}\oplus L_{-\alpha-\beta}\oplus L_{2\alpha+\beta}$.

2

- a) On a $<\frac{\beta+2\alpha}{3}$, $\alpha>=-1/3+4/3=1$ et $<\frac{\beta+2\alpha}{3}$, $\beta>=-2/3+2/3=0$, et de même symétriquement pour ω_{β} . Ce sont donc bien les poids fondamentaux.
- b) v est de poids $\omega_{\alpha}(h_{\alpha}) = <\frac{\beta+2\alpha}{3}, \alpha > \operatorname{car} \alpha^{\vee} = \alpha$. Donc le poids est 1 et la dimension du sl_{α} -module engendré est 2. De même le sl_{β} -module engendré par v est de dimension 1. Le $sl_{\alpha+\beta}$ module engendré par v est de dimension 2 $\operatorname{car} <\omega_{\alpha}, \alpha+\beta>=1$.
- c) Comme v est de poids 0 pour sl_{β} on a $f_{\beta}.v=0$. Par PBW une base de $S(\alpha)$ est consituée des vecteurs non nuls de la forme $f_{\alpha+\beta}^m f_{\alpha}^n f_{\beta}^p v$. Ceci est nul sauf si p=0 et n=0 ou 1 d'après le début de cette question. Si n=0 il faut m=0 ou 1. D'autre part $e_{\alpha+\beta}f_{\alpha}v=f_{\alpha}e_{\beta+\alpha}v+[e_{\alpha+\beta},f_{\alpha}]v$. D'une part v est primitif et d'autre part le commutateur qui apparaît dans cette expression est dans L_{β} donc agit par 0 sur v. Donc $f_{\alpha}v$ est primitif pour $L_{\alpha+\beta}$, de poids $<\omega_{\alpha}-\alpha,\alpha+\beta>=0$. Donc si n=1 il faut m=0. On a donc une base de $S(\omega_{\alpha})$ constituée de $v,f_{\alpha}v,f_{\alpha+\beta}v$.

3.

a) Le quotient par le radical est semi-simple, donc L/ZL est semi-simple. L'action adjointe de L se factorise par L/ZL, donc comme L-module, L est complètement réductible. Comme ZL est un sous-module il existe un idéal supplémentaire.

1

- b) Comme ZL est le centre, le commutateur de deux éléments de L est égal au commutateur de leurs composantes dans M. Comme M est une algèbre semi-simple, car isomorphe à L/ZL, on a M=[M,M]. Donc [L,L]=M.
- c) Décomposons V en sous-espaces de poids pour ZL. Comme ZL commute à M, tout espace de poids pour ZL est stable par M, donc est complètement réductible comme M-module. Chaque composante simple est stable par ZL puisque c'est un espace de poids, donc est stable par L. Chaque composante est donc un L-module qui est simple puisque simple comme L_1 -module.