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Introduction

The system of Euler equation with gravity















∂tρ + ∂xρu = 0

∂tρu + ∂x

(

ρu2 + p
)

= −ρ∂xΦ

∂tE + ∂x(E + p)u = −ρu∂xΦ

ρ : density

u : velocity

E = ρe + ρu2/2 : total energy, with e the internal energy

τ := 1/ρ: specific volume

p = p(τ, e) : pressure given by a general law

Φ(x) : given smooth gravitational potential
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Introduction

The system of Euler equation with gravity















∂tρ + ∂xρu = 0

∂tρu + ∂x

(

ρu2 + p
)

= −ρ∂xΦ

∂tE + ∂x(E + p)u = −ρu∂xΦ

We define
◮ the vector of conservative variables w = (ρ, ρu, E)T ,
◮ the flux function f (w) = (ρu, ρu2 + p, (E + p)u)T ,
◮ the source term s(w) = (0, −ρ, −ρu)T ,

to rewrite the system into the compact form

∂tw + ∂x f (w) = s(w)∂x Φ.

The set of physical admissible states is

Ω =
{

w ∈ R
3, ρ > 0, e > 0

}

.
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Introduction

Steady states
The steady states at rest are described by

{

u = 0

∂xp = −ρ∂xΦ

Polytropic steady states

{

u = 0

p = Kργ
⇔























u = 0

ρ =
(

γ−1
Kγ (C − Φ)

)
1

γ−1

p = K −
1

γ−1

(

γ−1
γ (C − Φ)

)
γ

γ−1

γ → 1:
Isothermal equilibrium















u = 0

ρ = e
C−Φ

K

p = Ke
C−Φ

K

γ → ∞:
Incompressible equilibrium















u = 0

ρ = constant

p + ρΦ = constant
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Introduction

Entropy

The pressure is assumed to satisfy the second law of thermodynamics
⇒ existence of a specific entropy s(τ, e) which satisfies

−Tds = de + pdτ, with T > 0 the temperature

To rule out the unphysical solutions, the system is endowed with the
following entropy inequalities:

∂tρF(s) + ∂xρF(s)u ≤ 0,

for all smooth function F such that w 7→ ρF(s) is strictly convex.
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Introduction

Objectives

Derive a numerical scheme which has the following properties:

Preservation of the set Ω

Accurate approximation of all the steady states at rest

Exact capture of the specific steady states (polytropic, isothermal,
incompressible)

Discrete entropy inequalities

General gravitational potential and general pressure law

Means

Finite volume method (approximate Riemann solver)

Relaxation method
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Relaxation model

The relaxation method without source term

Initial system:
∂tw + ∂x f (w) = 0. (1)

Relaxation system:

∂tW + ∂xF(W ) =
1

ε
R(W ), (2)

◮ (2) should formally gives back (1) when ε → 0.
◮ (2) should be “simpler” than (1) (e.g. only linearly degenerate

fields)

The relaxation scheme is based on a splitting strategy:

Time evolution: We evolve the initial data by the Godunov
scheme for the system ∂tW + ∂xF(W ) = 0 (i.e. ε = +∞).
⇒ We need the exact solution of the Riemann problem

Relaxation: We take into account the relaxation source term by
solving ∂tW = 1

ε R(W ) then taking the limit for ε → 0.
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Relaxation model

The Suliciu model([Suliciu ’98], [Bouchut ’04]...)



























∂tρ + ∂xρu = 0
∂tρu + ∂x(ρu2 + π) = −ρ∂xΦ
∂tE + ∂x(E + π)u = −ρu∂xΦ
∂tρπ + ∂x(ρπ + a2)u = ρ

ε (p(τ, e) − π)
∂tΦ = 0

Equilibrium

π = p(τ, e)

Eigenvalues: u − a
ρ , 0, u, u + a

ρ
Advantage:

All the fields are linearly degenerate

Difficulties:

The order of the eigenvalues is not fixed a priori

The Riemann invariants for the eigenvalue 0 are strongly nonlinear
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Relaxation model

Relaxation model with moving gravity


























∂tρ + ∂xρu = 0
∂tρu + ∂x(ρu2 + π) = −ρ∂xZ
∂tE + ∂x(E + π)u = −ρu∂xZ
∂tρπ + ∂x(ρπ + a2)u = ρ

ε (p(τ, e) − π)
∂tρZ + ∂xρZu = ρ

ε (Φ − Z )

Equilibrium

π = p(τ, e)

Z = Φ

Eigenvalues: u − a
ρ , u, u + a

ρ

All the fields are linearly degenerate

Fixed order of the eigenvalues: u − a
ρ < u < u + a

ρ

There is a missing Riemann invariant in order to determine a
unique Riemann solution
⇒ We need a closure relation
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Relaxation model

Relaxation model with moving gravity


























∂tρ + ∂xρu = 0
∂tρu + ∂x(ρu2 + π) = −ρ∂xZ
∂tE + ∂x(E + π)u = −ρu∂xZ
∂tρπ + ∂x(ρπ + a2)u = ρ

ε (p(τ, e) − π)
∂tρZ + ∂xρZu = ρ

ε (Φ − Z )

uL −

a
ρL u∗ uR + a

ρR

WL

W ∗

L W ∗

R

WR

To approximate the equation

∂xp = −ρ∂xΦ ⇐⇒
equilibrium
π=p(τ,e)

Z=Φ

∂xπ = −ρ∂xZ ,

we propose the following closure relation:

π∗
R − π∗

L

∆x
= −ρ(ρL, ρR)

ZR − ZL

∆x
,

where ρ is a suitable ρ–average (defined later)
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Relaxation model

Approximate Riemann solver

Equilibrium state:

W eq(w) = (ρ, ρu, E , ρp(τ, e), ρΦ)T

Theorem

With the closure equation, the Riemann problem admits a unique
solution WR

(

x
t
, WL, WR

)

.
Moreover,

weq

(

x

t
, wL, wR

)

:= W
(ρ,ρu,E)
R

(

x

t
, W eq(wL), W eq(wR)

)

defines an approximate Riemann solver (in the sense of Harten, Lax
and van Leer) for the Euler equations with gravity.
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Relaxation scheme and main properties

The relaxation scheme

wn
i : approximation of the solution on the cell (xi−1/2, xi+1/2) at time tn

xixi−1/2 xi+1/2

wn
iwn

i−1 wn
i+1

weq(x
t
, wn

i−1, w
n
i ) weq(x

t
, wn

i , w
n
i+1)

tn

tn +∆t CFL restriction

∆t

∆x
max
i∈Z

∣

∣

∣

∣

un
i ±

a

ρn
i

∣

∣

∣

∣

≤
1

2

The update at time tn+1 = tn + ∆t is defined by

wn+1
i =

1

∆x

∫ xi

xi−1/2

weq

(

x − xi−1/2

∆t
, wn

i−1, wn
i

)

dx

+
1

∆x

∫ xi+1/2

xi

weq

(

x − xi+1/2

∆t
, wn

i , wn
i+1

)

dx
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Relaxation scheme and main properties

Theorem (Robustness)

Assume the parameter a satisfies the following inequalities:

uL − a
ρL

< u∗ < uR + a
ρR

,

eL +
π⋆

L
2 − pL

2

2a2
> 0, eR +

π⋆
R

2 − pR
2

2a2
> 0

Then the relaxation scheme preserves the set of physical states Ω.

Theorem (Well-balancedness)

The relaxation scheme preserves exactly the initial data satisfying










u0
i = 0,

p0
i+1 − p0

i

∆x
= −ρ(ρ0

i , ρ0
i+1)

Φi+1 − Φi

∆x
.

Then wn+1
i = wn

i , ∀i ∈ Z, ∀n ∈ N.
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Relaxation scheme and main properties

Theorem (Exact preservation of the specific steady states)

For ρR 6= ρL, we define γ = ln pR−ln pL

ln ρR−ln ρL
.

Assume the average function ρ is defined by

ρ(ρL, ρR) =



















γ−1
γ

ργ
R

−ργ
L

ργ−1
R

−ργ−1
L

if ρL 6= ρR and γ 6= 1,

ρR−ρL

ln ρR−ln ρL
if ρL 6= ρR and γ = 1,

ρL if ρL = ρR.

Then the relaxation scheme preserves exactly the polytropic, the
isothermal and the incompressible equilibriums:
if the initial solution is given by















u0
i

=0,

ρ0
i
=

(

γ−1
Kγ

(C−Φi)
) 1

γ−1 ,

p0
i
=K

−

1
γ−1

(

γ−1
γ

(C−Φi)
)

γ
γ−1 ,

or















u0
i

=0,

ρ0
i
=e

C−Φi
K ,

p0
i
=Ke

C−Φi
K ,

or















u0
i

=0,

ρ0
i
=constant,

p0
i
+ρ0

i
Φi=constant,

then the approximate solution stays at rest: wn
i = w0

i , ∀n ∈ N.
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Relaxation scheme and main properties

Theorem

Assume the parameter a satisfy the following Whitham conditions:

a2 > p(τL,R, eL,R)∂ep(τL,R, eL,R) − ∂τ p(τL,R, eL,R),

a2 > p(τ∗
L,R, e∗

L,R)∂ep(τ∗
L,R, e∗

L,R) − ∂τ p(τ∗
L,R, e∗

L,R).

Then the relaxation scheme satisfies

ρn+1
i F(sn+1

i ) ≤ ρn
i F(sn

i ) −
∆t

∆x

(

{ρF(s)u}n
i+1/2 − {ρF(s)u}n

i−1/2

)

for all smooth function F such that w 7→ ρF(s) is strictly convex.
The entropy numerical flux is defined by

{ρF(s)u}n
i+1/2 = Fρ

i+1/2 ×







F(sn
i ) if Fρ

i+1/2 > 0,

F(sn
i+1) if Fρ

i+1/2 < 0,

with Fρ
i+1/2 the ρ–component of the numerical flux.
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Numerical results

Isothermal atmosphere

Computational domain: [0, 1] until time T = 0.25

Φ(x) = x2

Initial condition:















ρ0(x) = e−x2

u0(x) = 0

p0(x) = e−x2

L1 error:

N Density Velocity

100 1.15E-16 7.62E-17
200 1.77E-16 1.34E-16
400 3.01E-16 1.14E-16
800 4.37E-16 1.33E-16
1600 7.32E-16 1.91E-16
3200 1.18E-15 2.52E-16
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Numerical results

Small perturbation of an isothermal atmosphere

Computational domain: [0, 1] until time T = 0.25

Φ(x) = x

Initial condition:















ρ0(x) = e−x

u0(x) = 0

p0(x) = e−x + 0.01e100(x−0.5)2

Pressure perturbation: δp = p − p0
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Initial perturbation
Reference solution

Solution with 100 cells
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Numerical results

Non-hydrostatic steady state

Computational domain: [0, 1] with periodic boundary conditions
until time T = 1

Φ(x) = sin(2πx)

Initial condition:















ρ0(x) = 3 + 2 sin(2πx)

u0(x) = 0

p0(x) = 3 + 3 sin(2πx) − 1
2 cos(4πx)

We check easyly ∂xp0 + ρ0∂xΦ = 0

L1 error:

N Density Velocity

100 4.46E-05 – 2.03E-05 –
200 7.11E-06 2.65 5.29E-06 1.94
400 1.23E-06 2.53 1.34E-06 1.98
800 2.35E-07 2.39 3.37E-07 1.99
1600 5.02E-08 2.23 8.44E-08 2.00
3200 1.15E-08 2.13 2.11E-08 2.00
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Perspectives

Perspectives

Extension to second-order

◮ MUSCL technique written as a convex combination of first-order
scheme

◮ Difficulty to preserve the well-balanced property
◮ Possible solution: use a unusual set of variables for the

reconstruction

Extension to unstructured 2D
◮ Convex combination of 1D scheme by interface
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