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Introduction

@ Hyperbolic system of conservation laws

dyw + Opf (w) =0
w(z,0) = wo()

w:RT x R — Q : unknown state vector
f:Q— R?%: continuous flux function
wy € L (R; Q) : initial condition
o O C R? convex set of physical states
@ Objective: study the stability of high-order space-time schemes
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Euler equations

Op + Oypu =0
Oipu + Oz(pu® +p) =0
O E + 0, (E+p)u=0

@ p: density
@ wu: velocity
@ F: total energy
@ p: pressure given by the perfect gas law
2
p=(-1) (E—%>, v € (1,3

Set of physical states:

Q:{weR3,p>0,p>0}

Vivien Desveaux High-order entropic scheme 3 /41



Weak solutions and entropy solutions

e A function w € L{ (R x R*;Q) is a weak solution if
Vo € CL(R x RT;R?), we have

/ / (- By + f(w) - Dup) dbda + / w(z,0) - ¢(z,0)dz = 0.
R JRt+ R

@ A convex function S € C%(Q;R) is an entropy for the system if
there exists an entropy flux g € C?(Q;R) such that
Vf(w)VS(w) = Vg(w), Yw € Q.

@ A weak solution w is an entropy solution if for any entropy pair
(S, g) of the system, and V¢ € C}(R x RT;R), ¢ > 0, w satisfies

/ / )06 + g(w)Dsd) didz + / S(w(z,0))é(x,0)dz > 0.
R+ R

@ (S, g) being an entropy pair of the system, an entropy numerical
flux is a continuous function G : (2)%* — R which is consistent
with ¢, i.e. G(w, - ,w) = g(w).
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@ Motivations

© Euler equations: from one to all discrete entropy inequalities

© The E-MOOD scheme
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Space and time discretizations

@ Space discretization: cells [;_; /9, T; 41 /2] With constant size
Az = Lit1/2 — Li—1/2
@ Time discretization: t" = nAt

@ Rectangular cells in the (z, t)-plane:
R = [;_12, Tit1/2) X [t", ¢t

@ The sequence (Az, At) of discretization steps is devoted to
converge to (0,0), the ratio ﬁ—; being kept constant.
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A general high-order space-time scheme

Initial condition

1 Tit1/2
w) = —/ wo(z)dz
Az Ti—1/2

Runge-Kutta time discretization

n,(6) _ i) n,(j) _
w; —_Z J( i+1/2 - F; 1/2) t=1,-,m
wf”(o) =w?, W= wf’(m)
Assumptions: cg; > 0, ]m 01 Cmj =1

Space discretization

) n,(j) (4)
FZH]/2—F( W ,wf+j)
Assumptions: F continuous and consistent (F(w,--- ,w) = f(w))
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A general high-order space-time scheme

Initial condition

1 Tit1/2
w) = —/ wo(z)dz
Az Ti—1/2

Runge-Kutta time discretization

n, (£ n n,
wi() _—Z J( z+(1]/2 F; (1]/)2) (=1,
w?’“) =, =

We introduce the piecewise constant functions

w(z, t) = wl

7

for (z,t) € R},

wO(z, 1) = w', for (z,1) € RY.
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Lax-Wendroff Theorem

Theorem

(i) Assume the following hypotheses:

[ There exists a compact K C Q such that w™>® € K,
Ve = S m;

m w? converges in L}, (R x RT;Q) to a function w.

Then w is a weak solution.

(ii) Assume the additional hypothesis:

m For all entropy pair (S, g), there exists an entropy numerical fluz
G, such that we have the discrete entropy inequality (DEI)

n,(4) n,j
S(w n+1) Gz+1/2 G'—1/2
+ E m,a—gcZ <0,
with G;(f}z—G( w,;” 5+1’ - Z_;(S]))

Then w is an entropic solution.
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High-order time schemes

Reformulation of the Runge-Kutta discretization (Shu-Osher)

/-1
wy’e = Z <ag7j’w /BZ,]A ( z+(1/)2 - Fln (1J/)2)>

§=0
with ay; > 0, ZJ Oag] =1
Assumption: B ; > 0.
Theorem

Assume the first-order time scheme w"+1 w ﬁ; ( 3_1/2 — FZ.”_l/2>

satisfies the DEI alC A) Swi) | i+1/2AZ 172 <0, then the
Runge-Kutta scheme satisfies the DEI

S(wn-‘rl) _ S(w") m—1 GT"’(J') Gnv(J)

b b i+1/2 i— 1/2
At jZ:O Cm.g Az
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High-order space schemes

@ No DEI like
Sty — S(up) m=d o GRY), - G,

<
At + ]z(:) mJ Ax =0

was ever proven as soon as the scheme is at least second-order in
space.
@ Example: second-order MUSCL scheme
» We consider L : R x R — R? a slope limiter and we define the

limited slope ,u?’(j) =L wl?lv(j) —w” (1 W 7(7) Zly(j)>.

» The MUSCL flux is defined by

n, (4 1 n,(j
Fz+(1/)2 F ( O + 2M1 )j’ 1+(1J) - §:ui+(lj)> ’

where F is a first-order numerical flux.
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DEI satisfied by the MUSCL scheme
The known DEI satisfied by the MUSCL scheme all write

n m— () _ n,(5) m—1 n,(5) n,(4)
S(wpth) = S(wp) ! Gin+1/2 Gi i) P — S (w")
AT +2_ my A <D amg

=0 v

where P!V = p (w;“(j), pm9 A, 5).

@ Examples of operator P:

Pi(w, p, Az, S) = Stw = 1/2) ; Sw+ 1/2) (Berthon)

1 Az/2 T
Py(w, p, Az, S) = A_x/A o S (w + A—$u> dz  (Bouchut)

@ The operator P satisfies: 3C > 0 such that

0 < P(w, p, Az, §) = S(w) < C|[V2S(w)|l||]|?
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Convergence of D?: theoretical study

@ We define the piecewise constant function

DA(z,t) = Z Qmj : A7 , for (z,t) € R}

@ Let i be the weak-star limit of the sequence D?. Let 3 be the
entropy dissipation measure defined as the weak-star limit of the
sequence

for (z,t) € R}.

@ 1 is absolutely continuous with respect to 5.

Conjecture (Hou-le Floch)

The entropy dissipation measure [ is concentrated on the curves of
discontinuity of w.
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Numerical study: test cases

1-rarefaction shock—shock
T T T T T T T T T 6 T T T T T T T T T
5 -
4 + -
3k i
2+ -
1 1 1 1 1 1 1 1 1 L 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1 0 01 02 0.3 04 05 0.6 0.7 0.8 0.9 1
Figure: Exact solution in density Figure: Exact solution in density

o L' error for the convergence: E® =3 [pN — pes(x;, T)‘

e Convergence of D?: A = Joayxp0, ] D”(z, t)dxdt
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1-rarefaction: convergence of first-order time schemes
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Figure: Convergence of second-order space / first-order time schemes
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I-rarefaction: what superbee does (1)

T T
superbee
exact

1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure: Solution given by the superbee limiter with 1000 cells
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I-rarefaction: what superbee does (2)

T T
superbee
exact

1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure: Solution given by the superbee limiter with 2000 cells
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1-rarefaction: convergence of I* for first-order time
schemes
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Figure: Convergence of I2 for second-order space / first-order time schemes
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1-rarefaction: convergence

of second-order

time schemes
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Figure: Convergence of second-order space-time schemes
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1-rarefaction: convergence of I® for second-order time
schemes
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Figure: Convergence of I® for second-order space-time schemes
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Shock-Shock: convergence of first-order time schemes
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Figure: Convergence of second-order space / first-order time schemes
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Shock-Shock: convergence of second-order time schemes
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Figure: Convergence of second-order space-time schemes
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Shock-Shock: convergence of I* for second-order time
schemes
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Figure: Convergence of I® for second-order space-time scheme
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Conclusion

@ Numerical results confirm the Hou-le Floch conjecture: when the
scheme converges, the weak-star limit y of D® seems to be
concentrated on the curves of discontinuity of w.

@ This does not imply that the limit is not entropic, but only that
the usual DEI are not the suitable tool to prove a Lax-Wendroff
theorem.

@ We have to focus on the stronger DEI

m— n?() n,j
S(W?H) — S(wp) ! Gi+1]/2 - Gi—Jl/2

. <0
At + ;) Cm.j Az -7

@ Most of the limiters, when combined with a first-order scheme,
seem to be unstable to small perturbations, though with a very
low explosion rate.
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© Euler equations: from one to all discrete entropy inequalities
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The family of entropies for the Euler equations

The Euler system possesses a family of entropy pairs (5, g) written
S =—ph(s), g=—puh(s),

where s = In (p%) is the specific entropy and h is a smooth function
satisfying

B'(s) >0, H(s)—~h"(s)>0

Lemma (reformulation)

The entropy pairs of the Fuler system write

S(r) = p(r), g(r) = pup(r),

1/
where r = £2— - and 1 is a smooth decreasing convex function.
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We consider the scheme w"’+1 wit — ﬁ—; ( iv1/2 — Fica /2> where

3
wf = (p7, piu faEzn) and Fz‘—l—l/z = (Ff+1/27FZ+1/27F+1/2)

Theorem

Assume the scheme is Q-preserving. Assume the DEI

At
1 1
—pi T < —prf — N (_Ff+1/27’z'1b+1/2 + Ff_l/zrz‘n—lﬂ)

n
with 17" i F+1/2 <0
+1/2 = r if F? >0
condition (Larrouturou)

. Assume the additional CFL like
ir1/2 =~

t .
~ (maX(O, Ff+1/2) — min(0, Ff_1/2)> < p}.

Then the scheme satisfies all the discrete entropy inequalities.

Example : the HLLC/Suliciu relaxation scheme
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Proof of the Theorem (1)

The numerical flux can be written

Ff+1/27“i+1/2 = Ff+1/2% o f+1/2) 7"&127_7%”
The DEI then writes
it > n+17’in—1 + n+1r@ + n+1 TiH
; i i
where we have set
a= QATt (Rt |FL 1/2))
b:p?’—QATt (Fz+1/2+ Fz+1/2’ i— 1/2Jr F 1/2‘)
€= 2AAt:E ( sz+1/2‘ Ff+1/2) '
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Proof of the Theorem (2)

@ » Wehavea+b+c=pl— 4t (Ff+1/2 —Fif’_l/Q) = prtt,
» a>0,¢c>0
» b > 0 thanks to the CFL like condition
= r"“ is greater than a convex combination of r7 |, rj* and 77

@ We consider an entropy pair which can writes
(S, 9) = (py(r), purp(r)) with ¢ a smooth decreasing convex
function thanks to the Lemma.

@ 1) is decreasing;:

1 a b
¥ (r"nJr ) <Y (WTF—I + P i+ pn+1 z+1>
KA

)

@ Jensen inequality (1 is convex):

n G b ¢
() € S () e ) e (n2)

)

Vivien Desveaux High-order entropic scheme 28 / 41



Proof of the Theorem (3)

@ We replace a, b and ¢ by their value to obtain

PEREY) < pRolr?) — o (F2y () + 0(r5)

By gl @(rT) — () — FL () + 6(r1)
HIFL @) = () -
() it F+1/2 <0
@ We define ¢7;+1/2 = { Wiy F+1/2 S0 -
@ We have shown the DEI (for the entropy pair (py(r), puip(r)))

At<

P?Hl/f( n+1) < piv(ri') — +1/21/’z+1/2 5—1/21/’1'—1/2) :

Vivien Desveaux High-order entropic scheme 29 / 41



© The E-MOOD scheme
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First-order scheme

We consider a first-order scheme

At

wf T = wf — 2= (F (wf wfyy) = F (wfy,wf)).

For a time step restricted according to the CFL condition

At 1
~ max |\ (uf, i) < 5,

the first-order scheme is assumed to satisfy:
i) wPeQ, VicZ = w'lecQ VicZ
(ii) Vi € Z, the following DEI is satisfied:

n+1,.n+1 n,.n 1 n o,mn n
=P S T T A (—F (i’ wia) i1y

HFP (g, w?) i)

Example: HLLC scheme

Vivien Desveaux High-order entropic scheme

31 /41



High-order reconstruction

@ A reconstruction function is a continuous function R : Q2+ — Q
such that R(w,--- ,w) = w, for all w € Q.

@ A high-order reconstruction function is usually a reconstruction
function based on high degree polynomial reconstruction.

@ Here, we consider two reconstruction functions R_ and Ry. The
associated MUSCL scheme is then given by

At

) A:E ( (WZ -HWH—I —) F (Wi_17+, Wy,"_)) s

with Wzi —'Ri( Wi gy " ,’U),?’_H)
o Example: second-order MUSCL scheme:

1
n n n _ n n n n n
R+ (wi—lu w; 7wi+1) =w; £ §L (wz — Wy, Wih — Wy ) )

where L is a slope limiter.
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The E-MOOD algorithm

@ Evaluation of the reconstructed states. The reconstructed
states are given by W + = Ry (wi_,, -+, w]l,)
@ Computation of the candidate solution w;. We compute a

candidate solution w; using the MUSCL scheme

. At
wi = Wi = 5 (F Wi, Wigr,-) = F Wio1,4, Wi ).

@ DEI test. If w] does not satisfy the DEI test

. % At
—piri < —piTi — Az (_Ff+1/27“?+1/2 + Fz'p—l/2TzTL—l/2) ;
with Ff+1/2 = FP (W; +,Wiy1,—), then we set W; + = w]

© Stopping criterion.
» If the DEI test is satisfied on all the cells, the candidate solution is
valid and we set w™ !

p— *
i = W

» else the solution is recomputed from step 2
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Stability and robustness of the E-MOOD scheme

Theorem

Assume the time step At is chosen in order to satisfy the two following
CFL like conditions:

At
T (IAF (i, wir,=)] 5 [AF (wi—y wig)]) <

=~ =

At . n
Ay (max(O, Ff+1/2) — min(0, Ff_1/2)> < pi.
Then the E-MOOD method provides an updated solution w?“ after a

finite number of iterations. It is physically admissible, and it satisfies
all the entropy inequalities.
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1-rarefaction: first-order time schemes
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Figure: Convergence of first-order time schemes: E-MOOD vs MUSCL
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1-rarefaction: second-order time schemes
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Figure: Convergence of second-order time schemes: E-MOOD vs MUSCL

Vivien Desveaux High-order entropic scheme 36 / 41



Shock-Shock: first-order time schemes
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Figure: Convergence of first-order time schemes: E-MOOD vs MUSCL
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Shock-Shock: second-order time schemes
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Figure: Convergence of second-order time schemes: E-MOOD vs MUSCL

igh-order entropic scheme 38 / 41



Smooth problem

ifx<0.2o0rz>0.8
(z—0.5)2 .
u(z) =1, po(z) =1
@ Periodic boundary conditions

@ po(z) =

2

1.8

1.6

1.4

1.2

1

1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure: Initial and final solution in density for the smooth problem
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Smooth problem: convergence

L' error

le-01

le-02

le-03

le-04

le-05

1le-06

le-07

1le-08

le-09

le-10

le-11

le-12

i ~_

le4-02 le4-03 le+-04

Nb cells

Figure: Convergence: E-MOOD vs MUSCL
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Thank you for your attention!!
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