Contribution à l'approximation numérique des systèmes hyperboliques

Vivien Desveaux

sous la direction de Christophe Berthon et Yves Coudière

Laboratoire de mathématiques Jean Leray - Université de Nantes

26 novembre 2013

- 1 Second-order schemes based on dual mesh gradient reconstruction
- 2 A high-order entropy preserving scheme with a *posteriori* limitation
- 3 Well-balanced schemes for systems with nonlinear source terms

Second-order schemes based on dual mesh gradient reconstruction

- MUSCL scheme and CFL condition
- The DMGR scheme
- Numerical results
- 2 A high-order entropy preserving scheme with *a posteriori* limitation
 - Motivations
 - From one to all discrete entropy inequalities
 - The e-MOOD scheme for the Euler equations
- 3 Well-balanced schemes for systems with nonlinear source terms
 - The Ripa model
 - Relaxation models
 - The relaxation scheme
 - Numerical results

Introduction

• Hyperbolic system of conservation laws in 2D

$$\partial_t w + \partial_x f(w) + \partial_y g(w) = 0$$

 $w: \mathbb{R}^+ \times \mathbb{R}^2 \to \Omega \subset \mathbb{R}^d$: unknown state vector $f, g: \Omega \to \mathbb{R}^d$: flux functions

- Ω convex set of physical states
- Objective: derive a numerical scheme
 - second order accurate
 - Ω -preserving
 - works on unstructured meshes
 - ▶ with an optimized CFL condition

Mesh notations

Geometry of the cell K_i

- polygonal cells K_i (perimeter \mathcal{P}_i , area $|K_i|$)
- γ(i): index set of the cells neighbouring K_i
- e_{ij} : common edge between K_i and K_j (length $|e_{ij}|$)
- ν_{ij} : unit outward normal to e_{ij}

First-order scheme

$$w_i^{n+1} = w_i^n - \frac{\Delta t}{|K_i|} \sum_{j \in \gamma(i)} |e_{ij}| \varphi\left(w_i^n, w_j^n, \nu_{ij}\right)$$

• 2D numerical flux: φ Godunov-type in each direction ν [Harten, Lax & van Leer '83]:

$$\varphi(w_L, w_R, \nu) = h_{\nu}(w_L) + \frac{\delta}{2\Delta t} w_L - \frac{1}{\Delta t} \int_{-\frac{\delta}{2}}^{0} \widetilde{w}_{\nu}\left(\frac{x}{\Delta t}, w_L, w_R\right) dx$$

with respect to the CFL condition $\frac{\Delta t}{\delta} \max |\lambda^{\pm}(w_L, w_R, \nu)| \leq \frac{1}{2}$

- $h_{\nu}(w) = \nu_x f(w) + \nu_y g(w)$: flux in the ν -direction, with $\nu = (\nu_x, \nu_y)^T$
- \widetilde{w}_{ν} approximate Riemann solver valued in Ω
- Consistency: $\varphi(w, w, \nu) = h_{\nu}(w)$
- Conservation: $\varphi(w_L, w_R, \nu) = -\varphi(w_R, w_L, -\nu)$

Theorem (Robustness of the first-order scheme)

Assume the following CFL condition is satisfied:

$$\Delta t \frac{\mathcal{P}_i}{|K_i|} \max_{j \in \gamma(i)} \left| \lambda^{\pm}(w_i^n, w_j^n, \nu_{ij}) \right| \le 1, \quad \forall i \in \mathbb{Z}.$$

Then the first-order scheme preserves Ω :

$$\forall i \in \mathbb{Z}, \quad w_i^n \in \Omega \quad \Rightarrow \quad \forall i \in \mathbb{Z}, \quad w_i^{n+1} \in \Omega.$$

Remark: in [Perthame & Shu '96], they obtain the CFL restriction

$$\Delta t \frac{\mathcal{P}_i}{|K_i|} \max_{j \in \gamma(i)} \left| \lambda^{\pm}(w_i^n, w_j^n \nu_{ij}) \right| \le \frac{1}{2}, \quad \forall i \in \mathbb{Z}.$$

However this can easily be improved in the Godunov-type framework.

MUSCL scheme ([van Leer '79], [Perthame & Shu '96]...)

First-order scheme on the cell K_i

$$w_i^{n+1} = w_i^n - \frac{\Delta t}{|K_i|} \sum_{j \in \gamma(i)} |e_{ij}| \varphi\left(w_i^n, w_j^n, \nu_{ij}\right)$$

Second-order MUSCL scheme on the cell K_i

$$w_i^{n+1} = w_i^n - \frac{\Delta t}{|K_i|} \sum_{j \in \gamma(i)} |e_{ij}| \varphi\left(w_{ij}, w_{ji}, \nu_{ij}\right)$$

 w_{ij} and w_{ji} are second-order approximations at the interface between K_i and K_j \rightarrow How to compute w_{ij} ?

Subcells decomposition

Subcells decomposition of the cell K_i

- T_{ij} : triangle formed by the mass center G_i and the edge e_{ij} (perimeter \mathcal{P}_{ij} , area $|T_{ij}|$)
- γ(i, j): index set of the two subcells neighbouring T_{ij} in K_i
- e_{jk}^i : common edge between T_{ij} and T_{ik} (length $|e_{jk}^i|$)
- ν^i_{jk} : unit outward normal to e^i_{jk}

Theorem (Robustness of the MUSCL scheme)

Assume the following hypotheses:

(i) The reconstruction preserves Ω :

 $\forall i \in \mathbb{Z}, \quad w_i^n \in \Omega \quad \Rightarrow \quad \forall i \in \mathbb{Z}, \quad \forall j \in \gamma(i), \quad w_{ij} \in \Omega.$

(ii) The reconstruction satisfies the conservation property

$$\sum_{j \in \gamma(i)} \frac{|T_{ij}|}{|K_i|} w_{ij} = w_i^n.$$

(iii) The following CFL condition is satisfied for all $i \in \mathbb{Z}$:

$$\Delta t \max_{j \in \gamma(i)} \frac{\mathcal{P}_{ij}}{|T_{ij}|} \max_{k \in \gamma(i,j)} \left| \lambda^{\pm}(w_{ij}, w_{ji}, \nu_{ij}), \lambda^{\pm}(w_{ij}, w_{ik}, \nu_{jk}^{i}) \right| \le 1$$

Then the MUSCL scheme preserves Ω :

$$\forall i \in \mathbb{Z}, \quad w_i^n \in \Omega \quad \Rightarrow \quad \forall i \in \mathbb{Z}, \quad w_i^{n+1} \in \Omega.$$

The DMGR scheme

- Vertex of the primal mesh (unknown state)
- Center of a primal cell = Vertex of the dual mesh (known state)

Figure: Primal mesh (blue) and dual mesh (red)

We write a MUSCL scheme on both primal and dual meshes
 ⇒ At time tⁿ, we know a state at the center of each primal and dual cell

The DMGR scheme

- Vertex of the primal mesh (unknown state)
- Center of a primal cell = Vertex of the dual mesh (known state)
- × Center of a dual cell (known state)

Figure: Primal mesh (blue) and dual mesh (red)

Assume we have a reconstruction procedure on a generic cell K:

 $\begin{cases} \text{state at the center} \\ \text{states at the vertices} \end{cases} \mapsto \quad \text{linear reconstruction } \widetilde{w} \end{cases}$

This procedure will be detailed after.

The DMGR scheme

- Vertex of the primal mesh (unknown state)
- Center of a primal cell = Vertex of the dual mesh (known state)
- × Center of a dual cell (known state)

Figure: Primal mesh (blue) and dual mesh (red)

- ② We can apply the reconstruction procedure on the dual cells ⇒ We get a linear function \tilde{w}_i^d on each dual cell
- O get the state at the primal vertex S^p_i, we take w̃^d_i(S^p_i)
 ⇒ We can apply the reconstruction procedure on the primal cells to get a linear function w̃^p_i

Geometry of the cell K

Known states and reconstructed states

The states $\widehat{w}_{j-1/2}$ have to satisfy:

•
$$\widehat{w}_{j-1/2} \in \Omega$$

• $\sum_{j} \frac{|T_{j-1/2}|}{|K|} \widehat{w}_{j-1/2} = w_0$

If we take $\widehat{w}_{j-1/2} = \widetilde{w}(Q_{j-1/2})$ with \widetilde{w} a linear function on K, we have

$$\sum_{j} \frac{|T_{j-1/2}|}{|K|} \widehat{w}_{j-1/2} = w_0 \quad \Leftrightarrow \quad \widetilde{w}(G) = w_0$$

Geometry of the cell K

Known states and reconstructed states

• Gradient reconstruction

We define a continuous function $\overline{w}: K \to \mathbb{R}^d$ piecewise linear on each triangle $T_{j-1/2}$ and such that $\overline{w}(S_j) = w_j$ and $\overline{w}(G) = w_0$.

Geometry of the cell K

Known states and reconstructed states

Projection

For a slope $\alpha \in M_{d,2}(\mathbb{R})$, we define $\widetilde{w}_{\alpha}(X) = w_0 + \alpha \cdot (X - G)$, the linear function whose gradient is α . Let μ be the slope resulting from the L^2 -projection of \overline{w} :

$$\int_{K} \left\| \overline{w}(X) - \widetilde{w}_{\mu}(X) \right\|^{2} dX = \min_{\alpha \in M_{d,2}(\mathbb{R})} \int_{K} \left\| \overline{w}(X) - \widetilde{w}_{\alpha}(X) \right\|^{2} dX.$$

Geometry of the cell K

Known states and reconstructed states

Itimitation of the slope μ

We define the optimal slope limiter by:

$$\alpha_{j-1/2} = \sup\left\{\theta \in [0,1], \, \widetilde{w}_{s\mu}(Q_{j-1/2}) \in \Omega, \forall s \in [0,\theta]\right\},$$
$$\beta = \min_{j} \alpha_{j-1/2} - \epsilon,$$

where $\epsilon > 0$ is a small parameter s.t. $\widetilde{w}_{\beta\mu}(Q_{j-1/2}) \in \Omega$, $\forall j$.

Geometry of the cell K

Known states and reconstructed states

• Finally, the reconstructed states are given by $\widehat{w}_{j-1/2} = \widetilde{w}_{\beta\mu}(Q_{j-1/2}).$ Limitation procedure $\Rightarrow \widehat{w}_{j-1/2} \in \Omega$ $\widetilde{w}(G) = w_0 \qquad \Rightarrow \sum_j \frac{|T_{j-1/2}|}{|K|} \widehat{w}_{j-1/2} = w_0$

 \Rightarrow The DMGR scheme preserves Ω

Numerical results: 2D Euler equations

$$\partial_t \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ E \end{pmatrix} + \partial_x \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ u(E+p) \end{pmatrix} + \partial_y \begin{pmatrix} \rho v \\ \rho uv \\ \rho v^2 + p \\ v(E+p) \end{pmatrix} = 0$$

- ρ : density
- (u, v): velocity
- E: total energy
- p: pressure given by the ideal gas law

$$p = (\gamma - 1) \left(E - \frac{\rho}{2} \left(u^2 + v^2 \right) \right), \text{ with } \gamma \in (1, 3]$$

• Set of physical states

$$\Omega = \left\{ (\rho, \rho u, \rho v, E) \in \mathbb{R}^4; \quad \rho > 0, \quad E - \frac{\rho}{2} \left(u^2 + v^2 \right) > 0 \right\}$$

2D Riemann problems

Figure: Four shocks 2D Riemann problem on a Cartesian mesh with 1.5×10^6 DOF

Figure: Four contact discontinuities 2D Riemann problem on a Cartesian mesh with 1.5×10^6 DOF

Double Mach reflection on a ramp

Figure: Double Mach reflection on a ramp on an unstructured mesh with $3\times 10^6~{\rm DOF}$

Mach 3 wind tunnel with a step

Figure: Mach 3 tunnel with a step on an unstructured mesh with $1.5\times10^6~{\rm DOF}$

Second-order schemes based on dual mesh gradient reconstruction

- MUSCL scheme and CFL condition
- The DMGR scheme
- Numerical results
- 2 A high-order entropy preserving scheme with a *posteriori* limitation
 - Motivations
 - From one to all discrete entropy inequalities
 - The e-MOOD scheme for the Euler equations
- 3) Well-balanced schemes for systems with nonlinear source terms
 - The Ripa model
 - Relaxation models
 - The relaxation scheme
 - Numerical results

17 / 45

Introduction

• Hyperbolic system of conservation laws in 1D

 $\partial_t w + \partial_x f(w) = 0$

 $w: \mathbb{R}^+ \times \mathbb{R} \to \Omega \subset \mathbb{R}^d$: unknown state vector $f: \Omega \to \mathbb{R}^d$: flux function

- Ω convex set of physical states
- Entropy inequalities:

$$\partial_t \eta(w) + \partial_x \mathcal{G}(w) \le 0,$$

where $w \mapsto \eta(w)$ is convex and $\nabla_w f \nabla_w \eta = \nabla_w \mathcal{G}$

• Objectives:

- Study the entropy stability of high-order schemes
- Derive a high-order numerical scheme for the Euler equations which is entropy preserving in the sense of Lax-Wendroff

Scheme notations

- Space discretization: cells $K_i = [x_{i-1/2}, x_{i+1/2}]$ with constant size $\Delta x = x_{i+1/2} x_{i-1/2}$
- w_i^n : approximate solution at time t^n on the cell K_i
- Update at time $t^{n+1} = t^n + \Delta t$ given by

$$w_i^{n+1} = w_i^n - \frac{\Delta t}{\Delta x} \left(F_{i+1/2}^n - F_{i-1/2}^n \right)$$

where $F_{i+1/2}^n = F(w_{i-s+1}^n, \cdots, w_{i+s}^n)$ and F is a consistant numerical flux $(F(w, \cdots, w) = f(w))$

• We introduce the piecewise constant function

$$w^{\Delta}(x,t) = w_i^n$$
, for $(x,t) \in K_i \times [t^n, t^{n+1})$

• The sequence $(\Delta x, \Delta t)$ is devoted to converge to (0, 0), the ratio $\frac{\Delta t}{\Delta x}$ being kept constant.

Lax-Wendroff Theorem

Theorem

- (i) Assume the following hypotheses:
 - There exists a compact $K \subset \Omega$ such that $w^{\Delta} \in K$;
 - w^{Δ} converges in $L^{1}_{loc}(\mathbb{R} \times \mathbb{R}^{+}; \Omega)$ to a function w.

Then w is a weak solution.

- (ii) Assume the additional hypothesis:
 - For all entropy pair (η, \mathcal{G}) , there exists an entropy numerical flux G, consistant with \mathcal{G} (G(w, ..., w) = $\mathcal{G}(w)$), such that we have the discrete entropy inequality

$$\frac{\eta(w_i^{n+1}) - \eta(w_i^n)}{\Delta t} + \frac{G_{i+1/2}^n - G_{i-1/2}^n}{\Delta x} \le 0,$$

with $G_{i+1/2}^n = G(w_{i-s+1}^n, \cdots, w_{i+s}^n).$ Then w is an entropic solution.

Example: the MUSCL scheme

- Limited slope $\mu_i^n = L(w_i^n w_{i-1}^n, w_{i+1}^n w_i^n)$, with L a limiter
- The MUSCL flux is defined by

$$F_{i+1/2}^n = F\left(w_i^n + \mu_i^n/2, w_{i+1}^n - \mu_{i+1}^n/2\right)$$

• The known discrete entropy inequalities satisfied by the MUSCL scheme all write

$$\frac{\eta(w_i^{n+1}) - \eta(w_i^n)}{\Delta t} + \frac{G_{i+1/2}^n - G_{i-1/2}^n}{\Delta x} \le \frac{P_i^n - \eta(w_i^n)}{\Delta t}$$

where $P_i^n = P(w_i^n, \mu_i^n, \Delta x, \eta).$

• Examples of operator *P*:

$$P_1(w,\mu,\Delta x,\eta) = \frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} \eta \left(w + \frac{x}{\Delta x}\mu\right) dx \quad [\text{Bouchut et al. '96}]$$
$$P_2(w,\mu,\Delta x,\eta) = \frac{\eta(w-\mu/2) + \eta(w+\mu/2)}{2} \quad [\text{Berthon '05}]$$

Convergence study

• The discrete entropy inequality

$$\frac{\eta(w_i^{n+1}) - \eta(w_i^n)}{\Delta t} + \frac{G_{i+1/2}^n - G_{i-1/2}^n}{\Delta x} \le \frac{P_i^n - \eta(w_i^n)}{\Delta t}$$

converges weakly to

$$\partial_t \eta(w) + \partial_x \mathcal{G}(w) \le \delta,$$

where δ is a positive measure.

Conjecture (Hou-LeFloch '94)

- $\delta = 0$ in the areas where w is smooth
- $\delta > 0$ on the curves of discontinuity of w

Numerical study: test cases (Euler equations)

Entropy error (total mass of the right-hand side):

$$I^{\Delta} = \Delta x \sum_{i,n} \left(P_i^n - \eta(w_i^n) \right)$$

Numerical results obtained with a second-order time scheme

1-rarefaction

Double shock

Conclusion of motivations

- Numerical results confirm the Hou-le Floch conjecture: when the scheme converges, the measure δ seems to be concentrated on the curves of discontinuity of w.
- This does not imply that the limit is not entropic, but the usual discrete entropy inequalities are not relevant to apply the Lax-Wendroff theorem.
- We have to enforce the stronger discrete entropy inequalities

$$\frac{\eta(w_i^{n+1}) - \eta(w_i^n)}{\Delta t} + \frac{G_{i+1/2}^n - G_{i-1/2}^n}{\Delta x} \le 0.$$

• We suggest to extend the *a posteriori* methods (MOOD) introduced in [Clain, Diot & Loubère '11].

The family of entropies for the Euler equations

Lemma

The entropy pairs (η, \mathcal{G}) of the Euler system write

$$\eta = \rho \psi(r), \quad \mathcal{G} = \rho \psi(r) u,$$

where $r = -\frac{p^{1/\gamma}}{\rho}$ and ψ is a smooth increasing convex function.

We consider the scheme

$$w_i^{n+1} = w_i^n - \frac{\Delta t}{\Delta x} \left(F_{i+1/2} - F_{i-1/2} \right),$$

where $w_i^n = (\rho_i^n, \rho_i^n u_i^n, E_i^n)^T$ and $F_{i+1/2} = (F_{i+1/2}^{\rho}, F_{i+1/2}^{\rho u}, F_{i+1/2}^E)^T$.

We introduce
$$r_{i+1/2}^n = \begin{cases} r_{i+1}^n & \text{if } F_{i+1/2}^{\rho} < 0\\ r_i^n & \text{if } F_{i+1/2}^{\rho} > 0 \end{cases}$$

Theorem

Assume the scheme preserves Ω . Assume the scheme satisfies the specific discrete entropy inequality

$$\rho_i^{n+1} r_i^{n+1} \le \rho_i^n r_i^n - \frac{\Delta t}{\Delta x} \left(F_{i+1/2}^{\rho} r_{i+1/2}^n - F_{i-1/2}^{\rho} r_{i-1/2}^n \right).$$

Assume the additional CFL like condition

$$\frac{\Delta t}{\Delta x} \left(\max\left(0, F_{i+1/2}^{\rho}\right) - \min\left(0, F_{i-1/2}^{\rho}\right) \right) \le \rho_i^n.$$

Then the scheme is entropy preserving: for all smooth increasing convex function ψ , we have

$$\rho_i^{n+1}\psi(r_i^{n+1}) \le \rho_i^n\psi(r_i^n) - \frac{\Delta t}{\Delta x} \left(F_{i+1/2}^{\rho}\psi(r_{i+1/2}^n) - F_{i-1/2}^{\rho}\psi(r_{i-1/2}^n) \right).$$

First-order scheme

We consider a first-order scheme

$$w_i^{n+1} = w_i^n - \frac{\Delta t}{\Delta x} \left(F\left(w_i^n, w_{i+1}^n\right) - F\left(w_{i-1}^n, w_i^n\right) \right).$$

For a time step restricted according to the CFL condition

$$\frac{\Delta t}{\Delta x} \max_{i \in \mathbb{Z}} \left| \lambda^{\pm} \left(w_i^n, w_{i+1}^n \right) \right| \le \frac{1}{2},$$

the first-order scheme is assumed to satisfy:

• Robustness: $\forall i \in \mathbb{Z}, \quad w_i^n \in \Omega \quad \Rightarrow \quad \forall i \in \mathbb{Z}, \quad w_i^{n+1} \in \Omega$

• Stability:

$$\begin{split} \rho_i^{n+1} r_i^{n+1} &\leq \rho_i^n r_i^n - \frac{\Delta t}{\Delta x} \left(F^{\rho} \left(w_i^n, w_{i+1}^n \right) r_{i+1/2}^n \right. \\ & \left. - F^{\rho} \left(w_{i-1}^n, w_i^n \right) r_{i-1/2}^n \right). \end{split}$$

Example: the HLLC/Suliciu relaxation scheme

- We consider high-order reconstructed states $w_i^{n,\pm}$ on the cell K_i at the interfaces $x_{i\pm 1/2}$.
- These reconstructed states can be obtained by any reconstruction procedure (MUSCL, ENO/WENO, PPM, DMGR...).
- Assumptions:
 - The reconstruction is Ω -preserving: $w_i^{n,\pm} \in \Omega$;
 - The reconstruction is conservative:

$$w_i^n = \frac{1}{2} \left(w_i^{n,-} + w_i^{n,+} \right).$$

The e-MOOD algorithm

- Reconstruction step: For all $i \in \mathbb{Z}$, we evaluate high-order reconstructed states $w_i^{n,\pm}$ located at the interfaces $x_{i\pm 1/2}$.
- **2** Evolution step: The solution is evolved as follows:

$$w_i^{n+1,\star} = w_i^n - \frac{\Delta t}{\Delta x} \left(F\left(w_i^{n,+}, w_{i+1}^{n,-}\right) - F\left(w_{i-1}^{n,+}, w_i^{n,-}\right) \right).$$

A posteriori limitation step: We have the following alternative:
▶ if for all i ∈ Z, we have

$$\rho^{n+1,\star} r_i^{n+1,\star} \le \rho_i^n r(w_i^n) - \frac{\Delta t}{\Delta x} \left(F^{\rho} \left(w_i^{n,+}, w_{i+1}^{n,-} \right) r_{i+1/2}^n - F^{\rho} \left(w_{i-1}^{n,+}, w_i^{n,-} \right) r_{i-1/2}^n \right), \quad (1)$$

then the solution is valid and the updated solution at time $t^n + \Delta t$ is defined by $w_i^{n+1} = w_i^{n+1,\star}$;

• otherwise, for all $i \in \mathbb{Z}$ such that (1) is not satisfied, we set $w_i^{n,\pm} = w_i^n$ and we go back to step 2.

Theorem

Assume the time step Δt is chosen in order to satisfy the two following CFL like conditions:

$$\begin{aligned} \frac{\Delta t}{\Delta x} \max_{i \in \mathbb{Z}} \left(\left| \lambda^{\pm} \left(w_i^{n,+}, w_{i+1}^{n,-} \right) \right|, \left| \lambda^{\pm} \left(w_i^{n,-}, w_i^{n,+} \right) \right| \right) &\leq \frac{1}{4}, \\ \frac{\Delta t}{\Delta x} \left(\max \left(0, F_{i+1/2}^{\rho} \right) - \min \left(0, F_{i-1/2}^{\rho} \right) \right) &\leq \rho_i^n. \end{aligned}$$

Then the updated states w_i^{n+1} , given by the e-MOOD scheme, belong to Ω . Moreover, for all smooth increasing convex function ψ , the e-MOOD scheme satisfies

$$\begin{aligned} \frac{1}{\Delta t} \left(\rho_i^{n+1} \psi(r_i^{n+1}) - \rho_i^n \psi(r_i^n) \right) + \frac{1}{\Delta x} \left(F^{\rho} \left(w_i^{n,+}, w_{i+1}^{n,-} \right) \psi(r_{i+1/2}^n) \\ - F^{\rho} \left(w_{i-1}^{n,+}, w_i^{n,-} \right) \psi(r_{i-1/2}^n) \right) &\leq 0. \end{aligned}$$

The e-MOOD scheme is thus entropy preserving.

Numerical results obtained with a second-order time scheme

 L^1 error:

Double shock

1-rarefaction

Second-order schemes based on dual mesh gradient reconstruction

- MUSCL scheme and CFL condition
- The DMGR scheme
- Numerical results
- 2 A high-order entropy preserving scheme with *a posteriori* limitation
 - Motivations
 - From one to all discrete entropy inequalities
 - The e-MOOD scheme for the Euler equations

3 Well-balanced schemes for systems with nonlinear source terms

- The Ripa model
- Relaxation models
- The relaxation scheme
- Numerical results

The Ripa model

$$\begin{cases} \partial_t h + \partial_x hu = 0\\ \partial_t hu + \partial_x \left(hu^2 + gh^2\theta/2\right) = -gh\theta\partial_x Z\\ \partial_t h\theta + \partial_x h\theta u = 0 \end{cases}$$

- h: water height
- *u*: velocity
- θ : temperature
- g: gravity constant
- Z(x): smooth topography function

The Ripa model

$$\begin{cases} \partial_t h + \partial_x hu = 0\\ \partial_t hu + \partial_x \left(hu^2 + gh^2\theta/2\right) = -gh\theta\partial_x Z\\ \partial_t h\theta + \partial_x h\theta u = 0 \end{cases}$$

- We define
 - the vector of conservative variables $w = (h, hu, h\theta)^T$,
 - the flux function $f(w) = (hu, hu^2 + gh^2\theta/2, h\theta u)^T$,
 - the source term $s(w) = (0, -gh\theta, 0)^T$,

to rewrite the system into the compact form

$$\partial_t w + \partial_x f(w) = s(w) \partial_x Z.$$

• The set of physical admissible states is

$$\Omega = \left\{ w \in \mathbb{R}^3, \quad h > 0, \quad \theta > 0 \right\}.$$

The Ripa model

$$\begin{cases} \partial_t h + \partial_x hu = 0\\ \partial_t hu + \partial_x \left(hu^2 + gh^2\theta/2\right) = -gh\theta\partial_x Z\\ \partial_t h\theta + \partial_x h\theta u = 0 \end{cases}$$

Steady states

The steady states at rest are governed by the ODE

$$\begin{cases} u \equiv 0, \\ \partial_x (h^2 \theta/2) = -h \theta \partial_x Z. \end{cases}$$

We cannot obtain an explicit expression of all the steady states.

Lake at rest type solutions

$$\begin{cases} u = 0, \\ \theta = \operatorname{cst}, \\ h + Z = \operatorname{cst}, \end{cases} \quad \begin{cases} u = 0, \\ z = \operatorname{cst}, \\ h^2 \theta = \operatorname{cst}, \end{cases} \quad \begin{cases} u = 0, \\ h = \operatorname{cst}, \\ z + \frac{h}{2} \ln \theta = \operatorname{cst}. \end{cases}$$

The relaxation method without source term

• Initial system:

$$\partial_t w + \partial_x f(w) = 0. \tag{1}$$

Relaxation system: 0

$$\partial_t W + \partial_x F(W) = \frac{1}{\varepsilon} R(W),$$
 (2)

- (2) should formally gives back (1) when $\varepsilon \to 0$.
- ▶ (2) should be "simpler" than (1) (e.g. only linearly degenerate fields)

• The relaxation scheme is based on a splitting strategy: Time evolution: We evolve the initial data by the Godunov scheme for the system $\partial_t W + \partial_x F(W) = 0$ (i.e. $\varepsilon = +\infty$). Relaxation: We take into account the relaxation source term by solving $\partial_t W = \frac{1}{\varepsilon} R(W)$ then taking the limit for $\varepsilon \to 0$.

The Suliciu model ([Suliciu '98], [Bouchut '04]...)

$$\begin{cases} \partial_t h + \partial_x hu = 0\\ \partial_t hu + \partial_x (hu^2 + \pi) = -gh\theta \partial_x Z\\ \partial_t h\theta + \partial_x h\theta u = 0\\ \partial_t h\pi + \partial_x (u(h\pi + \nu^2)) = \frac{h}{\varepsilon} (gh^2\theta/2 - \pi)\\ \partial_t Z = 0 \end{cases}$$

Eigenvalues	Riemann invariants
$u \pm \frac{\nu}{h}$	$u\pm rac{ u}{h}, \pi\mp u u, heta, Z$
$u (\times 2)$	u, π, Z
0	$hu, \pi + \frac{\nu^2}{h}, \theta, g\theta Z + \frac{u^2}{2} - \frac{\nu^2}{2h^2}$

Difficulties to compute the solution of the Riemann problem:

- The order of the eigenvalues is not determined a priori.
- There are strong nonlinearities in the Riemann invariants for the eigenvalue 0.

Relaxation model with moving topography

$$\begin{cases} \partial_t h + \partial_x hu = 0\\ \partial_t hu + \partial_x (hu^2 + \pi) = -gh\theta \partial_x a\\ \partial_t h\theta + \partial_x h\theta u = 0\\ \partial_t h\pi + \partial_x (u(h\pi + \nu^2)) = \frac{h}{\varepsilon} (gh^2\theta/2 - \pi)\\ \partial_t a + u\partial_x a = \frac{1}{\varepsilon} (Z - a) \end{cases}$$

Eigenvalues	Riemann invariants			
$u \pm \frac{\nu}{h}$	$u \pm \frac{\nu}{h}$,	$\pi \mp \nu u,$	heta,	a
$u (\times 3)$		u		

- The order of the eigenvalues is fixed: $u \frac{\nu}{h} < u < u + \frac{\nu}{h}$
- There is a missing invariant for the eigenvalue u \Rightarrow we need a closure equation

- 5 unknowns: $u^*, h_{L,R}^*, \pi_{L,R}^*$
- 4 equations given by the Riemann invariants $u \pm \frac{\nu}{h}, \ \pi \mp \nu u$

Closure equation: $\pi_R^* - \pi_L^* = -gh(w_L, w_R)\overline{\theta}(w_L, w_R)(a_R - a_L)$ • $\bar{h}(w_L, w_R)$: h-average s.t. $\bar{h}(w, w) = h$ and $\bar{h}(w_L, w_R) = h(w_R, w_L)$ • $\bar{\theta}(w_L, w_R)$: θ -average s.t. $\bar{\theta}(w, w) = \theta$ and $\bar{\theta}(w_L, w_R) = \bar{\theta}(w_R, w_L)$ Solution of the Riemann problem

$$u^* = \frac{u_L + u_R}{2} - \frac{\pi_R - \pi_L}{2\nu} - \frac{g}{2\nu} \bar{h}(w_L, w_R) \bar{\theta}(w_L, w_R)(a_R - a_L)$$

$$\pi_L^* = \pi_L + \nu(u_L - u^*) \qquad \pi_R^* = \pi_R + \nu(u^* - u_R)$$

$$\frac{1}{h_L^*} = \frac{1}{h_L} + \frac{u^* - u_L}{\nu} \qquad \frac{1}{h_R^*} = \frac{1}{h_R} + \frac{u_R - u^*}{\nu}$$

Reformulation into a fully determined model

$$\begin{cases} \partial_t h + \partial_x hu = 0\\ \partial_t hu + \partial_x (hu^2 + \pi) = -g\bar{h}(X^-, X^+)\bar{\theta}(X^-, X^+)\partial_x a\\ \partial_t h\theta + \partial_x h\theta u = 0\\ \partial_t h\pi + \partial_x (u(h\pi + \nu^2)) = \frac{h}{\varepsilon}(gh^2\theta/2 - \pi)\\ \partial_t a + u\partial_x a = \frac{1}{\varepsilon}(Z - a)\\ \partial_t X^- + (u - \delta)\partial_x X^- = \frac{1}{\varepsilon}(W - X^-)\\ \partial_t X^+ + (u + \delta)\partial_x X^+ = \frac{1}{\varepsilon}(W - X^+) \end{cases}$$

Eigenvalues	Riemann invariants
$u \pm \frac{\nu}{h}$	$u \pm \frac{\nu}{h}, \pi \mp \nu u, \theta, a, X^-, X^+$
u~(imes 3)	$u, \pi + g\bar{h}(X^-, X^+)\bar{\theta}(X^-, X^+)a, X^-, X^+$
$u-\delta$	$h, u, heta, \pi, a, X^+$
$u + \delta$	$h, u, heta, \pi, a, X^-$

Both models lead to the same numerical scheme.

The relaxation scheme

The relaxation scheme associated with both previous models writes

$$w_i^{n+1} = w_i^n - \frac{\Delta t}{\Delta x} \left(f(w_i^n, w_{i+1}^n) - f(w_{i-1}^n, w_i^n) \right) \\ + \frac{\Delta t}{2} \left(s^+(w_{i-1}^n, w_i^n) \frac{Z_i - Z_{i-1}}{\Delta x} + s^-(w_i^n, w_{i+1}^n) \frac{Z_{i+1} - Z_i}{\Delta x} \right),$$

where the numerical flux is defined by

$$f(w_L, w_R) = \begin{cases} \begin{pmatrix} h_L u_L, & h_L u_L^2 + g h_L^2 \theta_L/2, & h_L \theta_L u_L \end{pmatrix}^T & \text{if } u_L - \frac{\nu}{h_L} > 0, \\ \begin{pmatrix} h_L^* u^*, & h_L^* (u^*)^2 + \pi_L^*, & h_L^* \theta_L u^* \end{pmatrix}^T & \text{if } u_L - \frac{\nu}{h_L} < 0 < u^*, \\ \begin{pmatrix} h_R^* u^*, & h_R^* (u^*)^2 + \pi_R^*, & h_R^* \theta_R u^* \end{pmatrix}^T & \text{if } u^* < 0 < u_R + \frac{\nu}{h_R}, \\ \begin{pmatrix} h_R u_R, & h_R u_R^2 + g h_R^2 \theta_R/2, & h_R \theta_R u_R \end{pmatrix}^T & \text{if } u_R + \frac{\nu}{h_R} < 0, \end{cases}$$

and the numerical source terms are defined by

$$s^{+}(w_{L},w_{R}) = \left(0, -(\operatorname{sgn}(u^{*})+1)g\bar{h}(w_{L},w_{R})\bar{\theta}(w_{L},w_{R}), 0\right)^{T},$$

$$s^{-}(w_{L},w_{R}) = \left(0, -(1-\operatorname{sgn}(u^{*}))g\bar{h}(w_{L},w_{R})\bar{\theta}(w_{L},w_{R}), 0\right)^{T}.$$

Properties of the relaxation scheme (1)

Theorem (Exact preservation of lake at rest solutions)

Assume the average functions h and θ are defined by

$$\bar{h}(w_L, w_R) = \frac{1}{2}(h_L + h_R), \quad \bar{\theta}(w_L, w_R) = \begin{cases} \frac{\theta_R - \theta_L}{\ln(\theta_R) - \ln(\theta_L)} & \text{if } \theta_L \neq \theta_R, \\ \theta_L & \text{if } \theta_L = \theta_R. \end{cases}$$

Then the relaxation scheme preserves exactly the three lake at rest solutions: if the initial data w_i^0 is given by

$$\begin{cases} u_i^0 = 0, \\ \theta_i^0 = \theta, \\ h_i^0 + z_i = H, \end{cases} \quad or \begin{cases} u_i^0 = 0, \\ z_i = Z, \\ (h_i^0)^2 \theta_i^0 = P, \end{cases} \quad or \begin{cases} u_i^0 = 0, \\ h_i^0 = H, \\ z_i + h_i^0 \ln(\theta_i^0)/2 = P, \end{cases}$$

where $\theta > 0$, H > 0 and P > 0 are constants, then the approximate solution w_i^n stays at rest:

$$w_i^n = w_i^0, \quad \forall i \in \mathbb{Z}, \quad \forall n \in \mathbb{N}.$$

Properties of the relaxation scheme (2)

Theorem (Well-balancedness)

Assume the initial data w_i^0 satisfies for all $i \in \mathbb{Z}$:

$$\begin{cases} u_i^0 = 0, \\ (h_{i+1}^0)^2 \theta_{i+1}^0 / 2 - (h_i^0)^2 \theta_i^0 / 2 = -\bar{h}(w_i^0, w_{i+1}^0) \bar{\theta}(w_i^0, w_{i+1}^0) (Z_{i+1} - Z_i). \end{cases}$$

Then the approximate solution stays at rest: $w_i^{i*} = w_i^{i*}, \forall i \in \mathbb{Z}, \forall n \in \mathbb{N}$.

Theorem (Robustness)

Assume the parameter ν satisfies the following inequalities:

$$\begin{split} u_L - \frac{\nu}{h_L} < u^* < u_R + \frac{\nu}{h_R}. \\ Assume the following CFL condition is satisfied: \\ & \frac{\Delta t}{\Delta x} \max_{i \in \mathbb{Z}} |u_i^n \pm \nu/h_i^n| \leq \frac{1}{2} \\ Then the relaxation scheme preserves the set of physical states: \\ & \forall i \in \mathbb{Z}, h_i^n > 0 \text{ and } \theta_i^n > 0 \implies \forall i \in \mathbb{Z}, h_i^{n+1} > 0 \text{ and } \theta_i^{n+1} > 0. \end{split}$$

Dam break over a non-flat bottom [Chertock, Kurganov & Liu '13]

Numerical results

Perturbation of a nonlinear steady state

Perspectives

- Extension of the DMGR scheme to higher-order.
- Combination of the DMGR and e-MOOD methods to get high-order entropic schemes in 2D.
- Extension of the e-MOOD scheme to other systems.
- Development of high-order well-balanced schemes for systems with source terms.
- Does the relaxation schemes for Ripa and Euler with gravity satisfy discrete entropy inequalities ?