A well-balanced relaxation scheme for the Euler equations with gravity

C. Berthon, <u>V. Desveaux</u>, B. Hurle, C. Klingenberg, M. Zenk

NumHyp 2013 conference, Aachen, September 26, 2013

<ロ> (四) (四) (三) (三) (三) (三)

The system of Euler equations with gravity

$$\begin{cases} \partial_t \rho + \partial_x \rho u = 0\\ \partial_t \rho u + \partial_x \left(\rho u^2 + p\right) = -\rho \partial_x \phi\\ \partial_t E + \partial_x (u(E+p)) = -\rho u \partial_x \phi \end{cases}$$

- ρ : density
 - u: velocity

 $E = \rho e + \rho u^2/2$: total energy, with *e* the internal energy $p = p(\rho, e)$: pressure given by a general law $\phi(x)$: gravitational potential (example: $\phi(x) = gx$)

• Hyperbolicity assumption:

$$c^2 := \partial_\rho p + \frac{p}{\rho^2} \partial_e p > 0$$

V. Desveaux

The system of Euler equations with gravity

$$\begin{cases} \partial_t \rho + \partial_x \rho u = 0\\ \partial_t \rho u + \partial_x \left(\rho u^2 + p\right) = -\rho \partial_x \phi\\ \partial_t E + \partial_x (u(E+p)) = -\rho u \partial_x \phi \end{cases}$$

- We define
 - the vector of conservative variables w = (ρ, ρu, E)^T,
 the flux function f(w) = (ρu, ρu² + p, u(E + p))^T,

 - the source term $s(w) = (0, -\rho, -\rho u)^T$,

to rewrite the system into the compact form

$$\partial_t w + \partial_x f(w) = s(w) \partial_x \phi.$$

• The set of physical admissible states is

$$\Omega = \left\{ w \in \mathbb{R}^3, \quad \rho > 0, \quad E - \rho u^2/2 > 0 \right\}.$$

The system of Euler equations with gravity

$$\begin{cases} \partial_t \rho + \partial_x \rho u = 0\\ \partial_t \rho u + \partial_x \left(\rho u^2 + p\right) = -\rho \partial_x \phi\\ \partial_t E + \partial_x (u(E+p)) = -\rho u \partial_x \phi \end{cases}$$

Steady states

At the continuous level, the steady states at rest are governed by the ODE

$$\begin{cases} u \equiv 0, \\ \partial_x p = -\rho \partial_x \phi. \end{cases}$$

We cannot obtain an explicit expression of all the steady states. \rightarrow We have to define the steady states at the discrete level.

2 / 12

Discrete steady states and well-balanced scheme

- Space discretization: cells $[x_{i-1/2}, x_{i+1/2})$ with constant size $\Delta x = x_{i+1/2} x_{i-1/2}$
- w_i^n : approximation of the solution of the system at time t^n on the cell $[x_{i-1/2}, x_{i+1/2})$
- Discretization of the potential ϕ : $\phi_i = \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} \phi(x) dx$

Definition (Discrete steady states)

An approximation $(w_i^n)_{i \in \mathbb{Z}}$ is a discrete steady state, if for all $i \in \mathbb{Z}$, we have $u_i^n = 0$, and $p_{i+1}^n - p_i^n = -\frac{\rho_i^n + \rho_{i+1}^n}{2}(\phi_{i+1} - \phi_i).$

Definition (Well-balanced scheme)

A numerical scheme is well-balanced if for all discrete steady state $(w_i^n)_{i \in \mathbb{Z}}$, the scheme satisfies $w_i^{n+1} = w_i^n$, for all $i \in \mathbb{Z}$.

The relaxation method without source term

• Aim: derive a numerical scheme to approximate the solutions of

$$\partial_t w + \partial_x f(w) = 0.$$

• We introduce a relaxation system

$$\partial_t W + \partial_x F(W) = \frac{1}{\varepsilon} R(W),$$

which should formally give back the original system when $\varepsilon \to 0$. Moreover the relaxation system should be "simpler" than the original system (e.g. only linearly degenerate fields)

 The relaxation scheme is based on a splitting strategy: Time evolution: We evolve the initial data by the Godunov scheme for the system ∂_t W + ∂_xF(W) = 0 (i.e. ε = +∞). Relaxation: We take into account the relaxation source term by solving ∂_t W = ¹/_εR(W) then taking the limit for ε → 0.

4 / 12

The Suliciu model for the Euler equations with gravity

$$\begin{cases} \partial_t \rho + \partial_x \rho u = 0\\ \partial_t \rho u + \partial_x (\rho u^2 + \pi) = -\rho \partial_x \phi\\ \partial_t E + \partial_x (u(E + \pi)) = -\rho u \partial_x \phi\\ \partial_t \rho \pi + \partial_x (u(\rho \pi + \nu^2)) = \frac{\rho}{\varepsilon} (p(\rho, e) - \pi) \end{cases}$$

The relaxation parameter $\nu > 0$ must satisfy the Whitham condition:

ν^2	~	_2	2	
ν	/	ρ	C	•

Eigenvalues	Riemann invariants	
$u \pm \frac{\nu}{\rho}$	$u\pmrac{ u}{ ho}, \pi\mp u u, u^2e-rac{\pi^2}{2}, \phi$	
$u (\times 2)$	u, π, ϕ	
0	$\rho u, \pi + \frac{\nu^2}{\rho}, \nu^2 e - \frac{\pi^2}{2}, \phi + \frac{u^2}{2} - \frac{\nu^2}{2\rho^2}$	

Difficulties to compute the solution of the Riemann problem:

- the order of the eigenvalues is not determined a priori
- there are strong nonlinearities in the Riemann invariants for the eigenvalue 0

Relaxation model with moving gravity

$$\begin{cases} \partial_t \rho + \partial_x \rho u = 0\\ \partial_t \rho u + \partial_x (\rho u^2 + \pi) = -\rho \partial_x a\\ \partial_t E + \partial_x (u(E + \pi)) = -\rho u \partial_x a\\ \partial_t \rho \pi + \partial_x (u(\rho \pi + \nu^2)) = \frac{\rho}{\varepsilon} (p(\rho, e) - \pi)\\ \partial_t a + u \partial_x a = \frac{1}{\varepsilon} (\phi - a) \end{cases}$$

Eigenvalues	Riemann invariants			
$u \pm \frac{\nu}{\rho}$	$u \pm \frac{\nu}{\rho}$,	$\pi \mp \nu u,$	$\nu^2 e - \frac{\pi^2}{2},$	a
$u (\times 3)$		u		

- The order of the eigenvalues is fixed: $u \frac{\nu}{\rho} < u < u + \frac{\nu}{\rho}$
- There is a missing invariant for the eigenvalue u
 ⇒ we need a closure equation

The Riemann problem

• 7 unknowns:

 $u^*, \ \rho^*_{L,R}, \ e^*_{L,R}, \ \pi^*_{L,R}$

• 6 equations given by the Riemann invariants τ^2

$$u \pm \frac{\nu}{\rho}, \ \pi \mp \nu u, \ \nu^2 e - \frac{\pi^2}{2}$$

• Closure equation: $\pi_R^* - \pi_L^* = -\frac{\rho_L + \rho_R}{2}(a_R - a_L)$

Solution of the Riemann problem

$$u^{*} = \frac{u_{L} + u_{R}}{2} - \frac{\pi_{R} - \pi_{L}}{2\nu} - \frac{\rho_{L} + \rho_{R}}{2} \frac{a_{R} - a_{L}}{2\nu}$$

$$\pi_{L}^{*} = \pi_{L} + \nu(u_{L} - u^{*}) \qquad \pi_{R}^{*} = \pi_{R} + \nu(u^{*} - u_{R})$$

$$\frac{1}{\rho_{L}^{*}} = \frac{1}{\rho_{L}} + \frac{u^{*} - u_{L}}{\nu} \qquad \frac{1}{\rho_{R}^{*}} = \frac{1}{\rho_{R}} + \frac{u_{R} - u^{*}}{\nu}$$

$$e_{L}^{*} = e_{L} + \frac{\pi_{L}^{*2} - \pi_{L}^{2}}{2\nu^{2}} \qquad e_{R}^{*} = e_{R} + \frac{\pi_{R}^{*2} - \pi_{R}^{2}}{2\nu^{2}}$$

Reformulation into a fully determined model

$$\begin{aligned} \partial_t \rho + \partial_x \rho u &= 0\\ \partial_t \rho u + \partial_x (\rho u^2 + \pi) &= -\frac{X^- + X^+}{2} \partial_x a\\ \partial_t E + \partial_x (u(E + \pi)) &= -\frac{X^- + X^+}{2} u \partial_x a\\ \partial_t \rho \pi + \partial_x (u(\rho \pi + \nu^2)) &= \frac{\rho}{\varepsilon} (p(\rho, e) - \pi)\\ \partial_t a + u \partial_x a &= \frac{1}{\varepsilon} (\phi - a)\\ \partial_t X^- + (u - \delta) \partial_x X^- &= \frac{1}{\varepsilon} (\rho - X^-)\\ \partial_t X^+ + (u + \delta) \partial_x X^+ &= \frac{1}{\varepsilon} (\rho - X^+) \end{aligned}$$

Eigenvalues	Riemann invariants		
$u \pm \frac{\nu}{\rho}$	$u \pm \frac{\nu}{\rho}, \pi \mp \nu u, \nu^2 e - \frac{\pi^2}{2}, a, X^-, X^+$		
u~(imes 3)	$u, \pi + \frac{X^- + X^+}{2}a, X^-, X^+$		
$u-\delta$	$ ho, u, e, \pi, a, X^+$		
$u + \delta$	$ ho, u, e, \pi, a, X^-$		

- For δ small enough, the order of the eigenvalues is fixed: $u - \frac{\nu}{\rho} < u - \delta < u < u + \delta < u + \frac{\nu}{\rho}$
- There is a full set of Riemann invariants

V. Desveaux

The Riemann problem for the reformulated model

- 7 unknowns:
 - $u^*, \ \rho^*_{L,R}, \ e^*_{L,R}, \ \pi^*_{L,R}$
- The equations coming from the Riemann invariants $u \pm \frac{\nu}{\rho}$, $\pi \mp \nu u$ and $\nu^2 e \frac{\pi^2}{2}$ are the same as in the previous model.
- The last equation is $\pi_R^* \pi_L^* = -\frac{X_R^- + X_L^+}{2}(a_R a_L)$. For an initial data at the relaxation equilibrium (i.e. $\pi = p(\rho, e), a = \phi, X^{\pm} = \rho$), we recover the closure equation of the previous model.

The two models have the "same" solution of the Riemann problem for an initial data at the relaxation equilibrium.

 \Rightarrow both models lead to the same numerical scheme.

The relaxation scheme

The relaxation scheme associated with both previous models writes

$$\begin{split} w_i^{n+1} &= w_i^n - \frac{\Delta t}{\Delta x} \left(F(w_i^n, w_{i+1}^n) - F(w_{i-1}^n, w_i^n) \right) \\ &+ \frac{\Delta t}{2} \left(s^+(w_{i-1}^n, w_i^n) \frac{\phi_i - \phi_{i-1}}{\Delta x} + s^-(w_i^n, w_{i+1}^n) \frac{\phi_{i+1} - \phi_i}{\Delta x} \right), \end{split}$$

where the numerical flux is defined by

$$f(w_L, w_R) = \begin{cases} \left(\rho_L u_L, & \rho_L u_L^2 + p_L, & u_L(E_L + p_L)\right)^T & \text{if } u_L - \frac{\nu}{\rho_L} > 0, \\ \left(\rho_L^* u^*, & \rho_L^* (u^*)^2 + \pi_L^*, & u^* (E_L^* + \pi_L^*)\right)^T & \text{if } u_L - \frac{\nu}{\rho_L} < 0 < u^*, \\ \left(\rho_R^* u^*, & \rho_R^* (u^*)^2 + \pi_R^*, & u^* (E_R^* + \pi_R^*)\right)^T & \text{if } u^* < 0 < u_R + \frac{\nu}{\rho_R}, \\ \left(\rho_R u_R, & \rho_R u_R^2 + p_R, & u_R(E_R + p_R)\right)^T & \text{if } u_R + \frac{\nu}{\rho_R} < 0, \end{cases}$$

and the numerical source terms are defined by

$$s^{+}(w_{L}, w_{R}) = -(\operatorname{sgn}(u^{*}) + 1) \left(0, \frac{\rho_{L} + \rho_{R}}{2}, \frac{\rho_{L} + \rho_{R}}{2} u^{*}\right)^{T},$$

$$s^{-}(w_{L}, w_{R}) = (\operatorname{sgn}(u^{*}) - 1) \left(0, \frac{\rho_{L} + \rho_{R}}{2}, \frac{\rho_{L} + \rho_{R}}{2} u^{*}\right)^{T}.$$

Properties of the relaxation scheme

Theorem (Well-balancedness)

The relaxation scheme preserves the steady states at rest:

$$\forall i \in \mathbb{Z}, \begin{cases} u_i^n = 0\\ p_{i+1}^n - p_i^n = -\frac{\rho_i^n + \rho_{i+1}^n}{2}(\phi_{i+1} - \phi_i) \end{cases} \Rightarrow \forall i \in \mathbb{Z}, \ w_i^{n+1} = w_i^n \end{cases}$$

Theorem (Robustness)

Assume the parameter ν satisfies the following inequalities:

$$u_L - \frac{\nu}{\rho_L} < u^* < u_R + \frac{\nu}{\rho_R}, \quad e_L + \frac{\pi_L^{*2} - p_L^2}{2\nu^2} > 0, \quad e_R + \frac{\pi_R^{*2} - p_R^2}{2\nu^2} > 0.$$

Assume the following CFL condition is satisfied:

$$\frac{\Delta t}{\Delta x} \max_{i \in \mathbb{Z}} |u_i^n \pm \nu / \rho_i^n| \le \frac{1}{2}$$

Then the relaxation scheme preserves the set of physical states:

 $\forall i \in \mathbb{Z}, \ \rho_i^n > 0 \ and \ e_i^n > 0 \quad \Rightarrow \quad \forall i \in \mathbb{Z}, \ \rho_i^{n+1} > 0 \ and \ e_i^n > 0.$

Numerical test: perturbation of an hydrostatic atmosphere

- Perfect gas law: $p = (\gamma - 1) \left(E - \rho u^2/2\right)$
- Constant gravitational field: $\phi(x) = gx$
- Steady state $w_s(x)$: hydrostatic atmosphere

$$\begin{cases} \rho_s(x) = \left(1 - \frac{\gamma - 1}{\gamma} gx\right)^{\frac{1}{\gamma - 1}} \\ u_s(x) = 0 \\ p_s(x) = \rho_s(x)^{\gamma} \end{cases}$$

- Boundary condition: $u(0, t) = 0.1 \sin(6\pi t)$
- Perturbation: $\delta w(x, t) = w(x, t) - w_s(x)$

Final time perturbation in velocity $\delta u(x, T)$ computed with 1.024 cells.

The reference solution is computed with 32.768 cells with the first-order relaxation scheme.

NumHyp 2013

12 / 12