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The system of Euler equations with gravity

Op + Oypu =0
Oypu+ 0y (pu® + p) = —pdudp
OB + 0 (u(E + p)) = —pudsdp
@ p: density
u: velocity
E = pe + pu®/2: total energy, with e the internal energy
p = p(p, e): pressure given by a general law
¢(x): gravitational potential (example: ¢(z) = gz)

@ Hyperbolicity assumption:

= D + %861) >0
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The system of Euler equations with gravity

Op+ Ozpu =0

dipu + 0y (pu? + p) = —p0ydp

OE + Oz(u(E + p)) = —pudyp
@ We define

» the vector of conservative variables w = (p, pu, E)7,
» the flux function f(w) = (pu, pu® + p,u(E + p)) T,
» the source term s(w) = (0, —p, —pu)7,

to rewrite the system into the compact form
Orw + Ozf(w) = s(w)0z .
@ The set of physical admissible states is

Q:{w€R3, p>0, E—pu2/2>0}.
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The system of Euler equations with gravity

Op + Oypu =0
dipu + 0y (pu? + p) = —p0ydp
WE + 0y (u(E + p)) = —puds¢

Steady states

At the continuous level, the steady states at rest are governed by the
ODE

{u =0,

Ozp = —p0s.

We cannot obtain an explicit expression of all the steady states.
— We have to define the steady states at the discrete level.
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Discrete steady states and well-balanced scheme

@ Space discretization: cells [z;_; /9, T;41/2) With constant size
Az = Tit1/2 — Ti—1/2

@ w;": approximation of the solution of the system at time ¢" on the
cell [7;_1/2, Tit1/2)

1 Tit1/2
@ Discretization of the potential ¢:  ¢; = Az / o(z)dz
Ti—1/2

Definition (Discrete steady states)

An approximation (w");ez is a discrete steady state, if for all i € Z, we

have pipP
ui" =0, and p?+1 —pi = —ITM(@H - </>z‘)-

Definition (Well-balanced scheme)

A numerical scheme is well-balanced if for all discrete steady state
(w?)sez, the scheme satisfies w = w?, for all i € Z.

v
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The relaxation method without source term

@ Aim: derive a numerical scheme to approximate the solutions of
Oyw + Ozf (w) = 0.

@ We introduce a relaxation system
1
OW + 0, F(W) = ER(W)’

which should formally give back the original system when ¢ — 0.

Moreover the relaxation system should be “simpler” than the

original system (e.g. only linearly degenerate fields)

@ The relaxation scheme is based on a splitting strategy:

Time evolution: We evolve the initial data by the Godunov
scheme for the system O, W + 0, F(W) =0 (i.e. € = +00).

Relaxation: We take into account the relaxation source term by
solving 9; W = L R(W) then taking the limit for ¢ — 0.

T e
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The Suliciu model for the Euler equations with gravity

Op + Ozpu =0

Oipu + Op(pu? + ) = —p0yd

WE + Oy (uw(E + 7)) = —pudyg

Appr + Oy (u(pm + 7)) = 2(p(p, €) — )

The relaxation parameter v > 0 must satisfy the Whitham condition:

vE > p2cl,
Eigenvalues Riemann invariants
ui% ui%, T F vu, 1/26—%2, 10}
u (x2) u, T ¢
0 pU, 7T+%, 1/26—%2, <b+u72—%

Difficulties to compute the solution of the Riemann problem:
@ the order of the eigenvalues is not determined a priori
@ there are strong nonlinearities in the Riemann invariants for the
eigenvalue 0
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Relaxation model with moving gravity

Op+ Ozpu =0
Oipu + Ox(pu? + 1) = —pdya

O + 0y (u(E + 7)) = —pudza

Oup + 0u(u(pm + %)) = £(plp, ) — 7)
dra+ udya = 1(¢ — a)

Eigenvalues Riemann invariants
2
u:l:% u:l:%, T F vu, 1/26—%, a
u (x3) u

@ The order of the eigenvalues is fixed: u — % <u<u-+ %

@ There is a missing invariant for the eigenvalue u
= we need a closure equation
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The Riemann problem
@ 7 unknowns:
uyp, — /ILL Upr + PLR

* * * *
U PLry €L,R> TL,R
@ 6 equations given by the
Riemann invariants
2

v 2 ™
u:i:z, TFvu, ve— &

@ Closure equation:

TR — my =~ (ap — ay)

Solution of the Riemann problem

« _ ULt UR TR —TL PLTPRAR — 4L

2 2v 2 2v
7y =mp+v(ug — u¥) mp =7mr+v(u* — ug)
1 1 u* —u 1 1 up — u*
—=—+ 4 —=—+ YR — W
PrL  PL v Pr PR v

*2 2 * 2 2
eL— 6L+_2]/2 eR 6R+ 2]/2
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Reformulation into a fully determined model

Otp + Ogpu =0

Dspu+ Oy (pu? + ) = 51200
OE + 0, (u(E+m)) = —X+X+u8,;a
Oupre + 0a(ulpm + 1) = L(p(p. ¢) — )
Ora + udza = %(gzb —a)

KX+ (u—0), X" =1(p—X")
KXT + (u+0)0, XT =1(p— XT)

Eigenvalues Riemann invariants
uk ut?, mFvu 1/26—%2, a, X, XT
u (x3) u, 7T+X%X+a, X-, Xt
u—20 p, u, e m a XV
u—+ 9 o, u, e mw a, X

@ For ¢ small enough, the order of the eigenvalues is fixed:
u—t<u—d<u<u+tdé<uty

@ There is a full set of Riemann invariants
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The Riemann problem for the reformulated model

@ 7 unknowns:
u, p*L,Rv 67:,37 WZ,R

@ 7 equations given by
the Riemann invariants

2
v 2 us
u:l:;, TFru, vie—T5,
- xt
ﬂ-_,_%a

@ The equations coming from the Riemann invariants u+%, =Fvu and
2 e—% are the same as in the previous model.
o The last equation is 7% — 7} = — XEXL (g5 _ 4;). For an initial
e last equation is 7 — 7] = 5 (ag — ar). For an initia
data at the relaxation equilibrium (i.e. 7 = p(p,€), a = ¢,

X* = p), we recover the closure equation of the previous model.

The two models have the “same” solution of the Riemann problem for
an initial data at the relaxation equilibrium.
= both models lead to the same numerical scheme.
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The relaxation scheme

The relaxation scheme associated with both previous models writes
n+1 n At

w; =Wy — Ar (F(w wz—i—l) F(wy, wzn))
At bi — i Pit1 — i
+ ) — i+1 )
5 (T o) HE I s (al up) P,
where the numerical flux is defined by
(pruL, pru+pr, UL(EL‘H)L))T if ug—2>->0,
(pzu s ()i, wr(Er4my) )T if uL—pL<0<u*,
f(vawR): 2 T . L v
(p}‘%u*, PR )P +ry,  u*(E +7rR)) if u*<0<uR+§,

T
(Paum PRufﬁ-pm UR(ER+1)R)) if uR+pL<07
R
and the numerical source terms are defined by
+ + T
st (wp,wp)=—(sgn(u*)+1) (0, LLELR PLEPR ) T

- " + +er, +\ T
s~ (w,wr)=(sgn(u*)—1) (0, ZLTLRL, LLEPR ) T
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Properties of the relaxation scheme
Theorem (Well-balancedness)

The relazation scheme preserves the steady states at rest:

ul =0

VieZ { " =VieZ, wrtt = ul

PP (
2

P?’H —pp = Git1 — i)

Theorem (Robustness)

Assume the parameter v satisfies the following inequalities:

2 2
" —PR

«2 2
_ v * v L —Pr L M
Uur, = <u <U’R+PR’ er, + >0, ep+ 502 > 0.

212
Assume the following CFL condition is satisfied:
At 1
A lu Ev/eil < 5
Then the relazation scheme preserves the set of physical states:
VieZ pt>0and el >0 = YieZ, pP™ >0 and e > 0.
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Numerical test: perturbation of an hydrostatic atmosphere

@ Perfect gas law:
p=(y-1)(E—pu?/2)

@ Constant gravitational
field: ¢(z) = gz

@ Steady state ws(z):
hydrostatic atmosphere

ps(z) = (1 - ’YT_lgx)ﬁ

0
ps(z) = ps(x)?
@ Boundary condition:
u(0,t) = 0.1sin(67t)

@ Perturbation:
dw(z, t) = w(z, t) — ws(z)

01t 1st order
— MUSCL

— reference

0.05F
0
-0.05f
-0.1f
0 0.5 1 15 2

Final time perturbation in velocity du(z, T)
computed with 1.024 cells.

The reference solution is computed with
32.768 cells with the first-order relaxation
scheme.
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