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Introduction: From shallow-water to Ripa model

The shallow-water model

Orhu + 0, (hu? + gh?/2) = —ghOyz
h: water height
u: velocity
g: gravity constant

z(z): given smooth topography function

Set of physical admissible states:

Q:{w:(h,hu)TeRQ, h>o}.
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Introduction: From shallow-water to Ripa model

The shallow-water model

Orhu + 0, (hu? + gh?/2) = —ghOyz

Steady states

The steady states at rest are described by

u=0 u=70
=
{8z(h2/2) = —h0yz {h + 2z = cst.

There is only one steady state at rest (up to a constant): the lake at
rest.
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Introduction: From shallow-water to Ripa model

The shallow-water model

Orhu + 0, (hu? + gh?/2) = —ghOyz
Well-balanced scheme
o wl:

7: approximation of the solution on the cell K; = (z;_1/2, Ti11/2)
at time t"

n

@ z;: approximation of the topgraphy z(z) on the cell K;

@ A numerical scheme is well-balanced if

ViceZ, hW4+z=H = YicZVneN, w't=u

@ There exists numerous well-balanced schemes for the shallow-water
model: [Gosse '00], [Gallouét, Hérard & Seguin ’03], [Audusse et
al. ’04]...
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Introduction: From shallow-water to Ripa model

The Ripa model

Orhu + 0y (hu? + gh?0/2) = —gh0d,2
0thf + Ozhfu =0
@ 0: temperature

@ Set of physical admissible states:

Q:{w:(h,hu,he)TeR3, h>0, 9>0}.
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Introduction: From shallow-water to Ripa model

The Ripa model

Orhu + 0y (hu? + gh?0/2) = —gh0d, 2
Steady states
The steady states at rest are governed by the ODE

u=20
0:(h?0/2) = —h#0, 2.
We cannot obtain an explicit expression of all the steady states.

Particular steady states

u=0 u=20 u =0
0 = cst z = cst h = cst
h+ 2z =cst h20 = cst z+%1n0:cst
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Introduction: From shallow-water to Ripa model

The Ripa model

Orhu + 0y (hu? + gh?0/2) = —gh0d, 2

Objectives

@ Robust finite volume method: preservation of the set {2
@ Exact capture of the three particular steady states

@ Exact/Approximated preservation of all the steady states at rest

Vivien Desveaux Schémas well-balanced JJEF 2014 4 /21



Relaxation models

The relaxation framework

Initial system
we N CRY
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Relaxation models

The relaxation framework

Initial system Relaxation system
Oyw+ Opf(w) =0 KW + 0, F(w) = LR(W)
we QcR? WeOcCRN, N>d
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Relaxation models

The relaxation framework

Q
Initial system Relaxation system
Oyw+ Opf(w) =0 KW + 0, F(w) = LR(W)
we QcR? WeOcCRN, N>d

o Matrix @ € My n(R) s.t. QO =Q and QR(W) =0, YW eO
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Relaxation models

The relaxation framework

Q
Initial system Relaxation system
Oyw+ Opf(w) =0 KW + 0, F(w) = LR(W)
we N cR? WeOcCRN, N>d
&

o Matrix @ € My n(R) s.t. QO =Q and QR(W) =0, VW €O
@ For all w € Q, there exists a unique equilibrium &(w) such that
» Q8(w)=w
> R(E(w)) =0
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Relaxation models

The relaxation framework

Q
Initial system Relaxation system
Oyw + Ozf(w) =0 O W+ 0, F(w) = %R(W)
we N cR? WeOcCRN, N>d
&

o Matrix Q@ € My y(R) s.t. QO =Q and QR(W) =0, VW eO
@ For all w € Q, there exists a unique equilibrium &(w) such that
» Q8(w)=w
> R(€(w)) =0

@ Equilibrium manifold: M C O := {&(w), w € Q}
WeM & RW)=0 < &QW)=W
@ Compatibility of the flux functions: QF(£(w)) = f(w)
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Relaxation models

Relaxation scheme
Assume we know a piecewise constant approximation at time t" given
by w on the cell K.
The relaxation scheme is based on a splitting strategy:
@ Time evolution: We use the Godunov scheme for the system
W + 0, F(W) =0 (i.e. € =+00), with initial data given by

WA, (z) =E(w}), forze K;.

This gives us an update solution W;”H’_ on cell Kj.

— We need to know the exact solution of the Riemann problem.
© Relaxation: We take into account the relaxation source term by

solving O, W = %R( W), with Wz-nH’_ as initial data, then taking

the limit for e — 0.

Let W{’“H be the solution of this ODE, the updated state wfﬂ is

then given by w!™! = QW

Remark : multiplying the ODE by Q, we get 0; QW = 0, so the

update solution satisfies w/ ™ = QWZ-"H’_.
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Relaxation models

The Suliciu model ([Suliciu "98], [Bouchut 04]...)

Oth + Ozhu =0 —
Othu 4 Op(hu? 4+ 1) = —gh80,2 quilibrium
Othl + 0,hfu =10 )
= gh“0/2
Aph + O (u(hm + a2)) = 2(gh20/2 — ) ™= gh“6/
8752 =0
Eigenvalues Riemann invariants
uty ut g, TFau, 0, z
u (X2) u, T, z
0 hu, T+%, 0, g¢hz+ % -2,

Difficulties to compute the solution of the Riemann problem:
@ The order of the eigenvalues is not determined a priori.

@ There are strong nonlinearities in the Riemann invariants for the
eigenvalue 0.
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Relaxation models

Relaxation model with moving topography

Ohu + 0y (hu? + 1) = —gh#0, Z

O0th8 + 0 hfu =0

Othm + Oy (u(hm + a?)) = %(gh29/2 — )
OhZ + OshZu = 2(z - 7)

Equilibrium

7 = gh%6/2

Eigenvalues

Riemann invariants

a

uty, TFau, 0,

Z

u (x3)

()

@ The order of the eigenvalues is fixed: v — 3 <u<u+ 3

@ There is a missing invariant for the eigenvalue u

= we need a closure equation
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Relaxation models

The closure equation

ug — 5= ut up + 5

Figure: Structure of the Riemann problem

To mimic the ODE defining the steady states

02(gh?0/2) = —gh#d,z — Oy = —gh00,Z,

equilibrium
we propose the closure equation

* *
Tp — 7L
Az

Zr — 21,

= _gﬁ( WL7 WR)@( WL’ WR) Az ’

where h and 6 are suitable averages (defined later).
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Approximate Riemann solver
Equilibrium state:

W (w) = (h, hu, hf, gh# /2, hz) T

Theorem

With the closure equation, the Riemann problem admits a unique
solution Wr (%, W, Wg).
Moreover,

wr (%, wr, wR) = 7(zh’hu’h0) (%a W (wg), Weq(“%))

defines an approximate Riemann solver (in the sense of Harten, Lax
and van Leer) for the Ripa model.
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Relaxation models

Complete relaxation reformulation

Oshu + 0y (hu? + 1) = —gh(X—, XN)0(X~, X1)0,Z
Othl + 0,hfu =10

Otht + Oy (u(hm + a?)) = 2(gh0/2 — =)

OWhZ + 0yhZu = 2(2 — 2)

WX+ (u—08)0, X" =2(W—-X")

HXT+ (u+0)d, XT =L(W—XT)

Equilibrium
7 = gh%0/2 Z =z XE=w

@ For 6 > 0 small enough, the system is hyperbolic with eigenvalues

a a
u—%<u—5<u<u+5<u+ﬁ.

@ The system has a complete set of Riemann invariants.
@ Leads to the same approximate Riemann solver wg (%, wr,, wR).
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Relaxation models

Cargo-LeRoux formulation (z(z) = )
We introduce a potential ¢ = [* ghfdz. Then we have

0rq :/ g0(ho)d / g0z (hbu)dr = —ghbu = —udyq.

So ¢ is governed by
Othq + O0zhqu = 0.

Equivalent reformulation of the Ripa model:

Oth + 0zhu =0

Orhu + 0y (hu? + gh?0/2) + 0,9 =0
0¢h8 + 0:h0u =0

Othq + 9 hqu = 0.
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Relaxation models

Relaxation model with the Cargo-LeRoux formulation

@ Case z(z) = z [Chalons et al. "10]

Oh + Ozhu =0 —
Orhu + 9y (hu? +7) + 0,4 =0 quilibrium
0thf + O hfu =0 . = gi20/2

Othq 4+ O:hqu =0
Othm + Op(u(hm + a?)) = g(gh20/2 —7)
@ Extension for general topography
If we define the potential by ¢ = [* gh8d,zdz, it no longer satisfies
a transport equation. We enforce the natural relaxation model

O¢h + Ozhu =0 Equilibrium
O¢hu + 9y (hu? 4 7) + 0zq = 0 ™= gh%0/2
O¢th® + O hfu =0 i

Othq + O hqu = %(fz gh00,zdx — q) q= / gh00, zdx

O¢hm + Oy (u(hm + a?)) = g(gh20/2 — )
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Relaxation scheme and main properties

The relaxation scheme

w}: approximation of the solution on the cell (z;_1/2, Tj11/2) at time "
wr(F, wiy, wi) wr(F, W] wiy)

"+ At CFL restriction

At a 1
n
—max |u; £ —| < =
wly wl wh Az ez ' h*| — 2
i +. 1
tn Ti-1/2 x, Tit1/2

The update at time ¢t"t1 = " + At is defined by

1 Ti T — Ty

n+1 i—1/2 n n

w, " = — wR | ———=,wi,w, | dx
% Az 1)z At » Hi—1s %4

1 Tit1/2 T — x;
+_/ W(ﬂawyaw?—iJ) dx

At
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Relaxation scheme and main properties

Properties of the relaxation scheme (1)

Theorem (Exact preservation of the particular steady states)

Assume the average functions h and 0 are defined by

0p—0 .
— 1 - oy i 0L # Or,
Wy, Wr) = 5(he + hg),  8(Wy, Wg) = ¢ ORI~

2 0r, if 01, = OR.
Then the relaxation scheme preserves exactly the particular steady
states: if the initial data w? is given by

U?ZO’ uzQ:Oa u?:()a
09 =0, or < z; = 7, or ¢ h) =H,
W+ 2= H, (h9)? 69 = P, 7+ hn(69)/2 = P,

then w™ = wP, Vi€Z, VneN.
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Relaxation scheme and main properties

Properties of the relaxation scheme (2)
Theorem (Well-balancedness)

If the initial data is an approrimation of the ODE defining the steady
states as follows:

u =0,
(K, 200, j2— (h9)260/2 7 Al
1 o1 —h(wd, w,1)0(w? Wi ) ERTE

Then wl™ = w?, Vi€ Z, YneN.

Theorem (Robustness)

Assume the parameter a satisfies the following inequalities:

uL—hiL <u*<uR+%.
Then the relazation scheme preserves the set of physical states:

Vi€Z, h'>0and 07 >0 = VYi€Z b >0 and 7™ > 0.

V.
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Numerical results

Dam break over a non-flat bottom
[Chertock, Kurganov & Liu ’13]

o Initial condition:
(ht2,4,0)(z,0)=

(5,0,1), z<0
(1,0,5), >0

h+z
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Numerical results

Perturbation of a nonlinear steady state

0.1r
@ Topography:
0.08
z(z)=—2¢%
@ Steady state 0.06}
solution: f
(hs,us,05) (z)=(e",0,e%7) 0.04f

@ Initial perturbation:
dh(,0)=0.1x[_0.1,0 (2)
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Euler equations with gravity

The system of Euler equations with gravity

Op + Oypu =0
dipu+ 9 (pu® + p) = —pdsdp
OE + Oz(u(E + p)) = —pudyp
@ p: density
u: velocity

E = pe + pu®/2: total energy, with e the internal energy
p = p(p, e): pressure given by a general law
¢(z): gravitational potential (example: ¢(z) = gz)

@ Set of physical admissible states:

Q:{wz(p,pu,E)T€R3, p >0, e>0}.
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Euler equations with gravity

The system of Euler equations with gravity

Op + Oypu =0
dipu+ 9 (pu® + p) = —pdsdp
OE + Oz(u(E + p)) = —pudyp
Steady states
The steady states at rest are governed by the ODE

{u =0,
Ozp = —p0y.

We cannot obtain an explicit expression of all the steady states.

Particular steady state: hydrostatic atmosphere

u(z) =0
p(z) = ae=P@) a>0, >0
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Vivien Desveaux

Euler equations with gravity

Relaxation scheme for the Euler equations with gravity

Using a similar method than for Ripa, we get a relaxation scheme
which satisfies the following properties:

@ Preservation of the set )

pr>0,er >0 = pitl>0,eft >0

@ Exact preservation of the hydrostatic atmosphere

ud =0
pY = e P = wf“ = w;'

@ Exact preservation of approximations of all the steady states

u; =0
{pH—l —Di ¢z = wn—'—l = wn
+p pz+1/2

Schémas well-balanced
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Conclusion and perspectives

Conclusions
@ Robust well-balanced scheme for the Ripa model

@ Extension of the method to the Euler equations with gravity

Perspectives
@ Entropy property for the relaxation schemes
@ Extension to 2D (or 3D)

@ Development of high-order well-balanced schemes for systems with
source terms.

v

Thank you for your attention!
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