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/ INTRODUCTION

e Hyperbolic system of conservation laws in 2D

OW + Op f(W) 4+ Oyg(W) =0 (1)

W R?2 xRt — Q c R unknown state vector
f,g:€ — R flux functions

e Example: the 2D Euler equations
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where p is the density, (u,v) the velocity, E the total energy and p
the pressure given by the perfect gas law

p=(—1)(E-5(u?+%)) 2

e () convex set of physical states. In the Euler case:

Q:{W€R4;p>0,(u,v)€R2,E—g( 2+v2) >o} (3)

e Objectif: derive a numerical scheme

— Second order accurate
— ()-preserving

— Unstructured meshes
— CFL restriction

DEVELOPEMENT OF DDFV METHODS FOR THE EULER EQUATIONS
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9. ROBUSTNESS

e We denote by A(Wp,Wp,n) the maximum absolute wave velocity
associated to the numerical flux function ¢(Wy, Wg,n).

e We assume that the numerical flux ¢ is first-order robust per direc-
tion, which means that for all W; € €}, ¢+ € Z, for all n € R2 if the
following first-order CFL condition is satisfied

At
Ay X {AW;, Wiy1,n)} <

)

, (6)

DO | —

then for all ¢+ € Z, the 1D updated state
Wi — KL (3(W;, Wis1,n) — ¢(Wi_1, Wi, n)) remains in Q.

e Theorem 1. Let us assume that all the states W,* and all the re-
constructed states W;; are in £2. We suppose that the reconstruction
satisfies the following conservation property
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Consider the CFL condition

4] 1
At max {‘Tiﬂ)\ (Wij, Wiingj) ¢ < = (8)
jev(i)

( 1
At max il (Wijs Wins i) ¢ < = (9)
0 |T7;j 6
jev(i)
kev(i,j)

Then the updated states W,Z?“H given by (5) are in €.
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/ 1. DDFV MESHES
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Fig. 1: The primal mesh and \
the dual mesh

Fig. 2: A primal or dual cell K;

Primal mesh: quadrilateral cells

Dual mesh: quadrilateral cells whose vertices are the mass centers of
the primal cells

Global notations
For a primal or dual cell K;, we define:

e v(2) the index set of the cells K'; which share a common edge with

K; (neighbourhood of Kj);

o for j € v(i), £;; the edge between K; and K and n;; the outward
unit normal to £;5;

® ();; the midpoint of the edge £;;;

e T;; the triangle formed by the edge £;; and the mass center of Kj;

o v(i,7) = {k1, ko} such that T;; and T}, are the triangles of K
sharing an edge with 7;;;

ofor k € v(i,7), £;;) the edge between Tj; and Ty and n;jp the
unit normal to £;;, from T5; to Ty

2. MUSCL SCHEME

We write a finite volume scheme on both the primal and dual meshes.

First-order scheme on the cell K

At
1
Wi =W — 5] > 1tile (W@n, Wi, nz’j) , (4)
" jev(i)
where ¢(W7p,, Wp,n) is a numerical 2D flux function assumed to sat-
1sfy:
e consistency: (W, W.n) = ( f(W) ) .,
e conservation: ¢(Wp, Wp,n) = —p(Wp,Wr,—n).
Second-order scheme on the cell K

At
Wit — K Z €16 (Wij, Wi mij) (5)
11 . .
jev(i)

where W;; and Wj; are second-order approximations of the solution
at the point (5, on each side of the edge £;;.

— How to compute W;; 7

4. RECONSTRUCTION PROCEDURE

Fig. 3: Geometry of the cell K

Fig. 4: Known states and
reconstructed states

Local notations on cell K:

B, mass center — Wy, known state
S, vertex — W, known state
(j, midpoint of the edge — WQ]., to be reconstructed in €2

Remark: The mass centers of the dual cells do not coincide with the
vertices of the primal mesh = Consistency error on distorded meshes.

4.1 Gradient reconstruction

We define a function W : K — RY piecewise linear on each triangle 7’
and such that W(B) = Wy and W(S;) =W, 1 <j <4

4.2 Projection

For 1 < k < d, we define
Evv) = [ W) = (Wl +v- (X = B[ ax, (10

where the subscript k& denotes the k-th component.
Let u € R< be the vector whose k-th component is the solution of

Exny,) = min Ey(v) (11)

We define WM(X) - K — R? the linear function whose k-th component
s (Woly + g - (X — B).

4.3 Limitation of the slope u

We restrict €2 to a close set {2¢. In the Euler case,

Qez{W€R4;pZe,(u,v) ERQ,E—g(u2+02) 26}. (12)

We define the optimal slope limiter by

§ = max {t € [0, 1), Wit(Q;) € e, V1 < j < 4} S (13)

Finally, the reconstructed states are given by Wy = WQM(Q]-).

Limitation procedure

= WQj e ()
Wy,, linear and B mass center of K = Condition (7)

= Robustness by Theorem 1.

NUMERICAL TESHES
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Meshes
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Fig. 5: Square mesh 10 x 10 (left) and quadrilateral mesh 10 x 10 (right)

Case 1 : four shocks

Fig. 6: Square mesh 200 x 200 (left) and quadrilateral mesh 200 x 200 (right)

Case 2 : four contact discontinuities

Fig. 7: Square mesh 200 x 200 (left) and quadrilateral mesh 200 x 200 (right)

PERSPECTIVES /

e [ixtension to polygonal meshes: ;:;E?i N §2§EE
e Allow non-conservative recon- ::;Q %\ \ \%\’;:
structions, i.e. which don’t sat- _,,M/\/\ /\/\
. , H/\/\ /\/\
isty (7); fa/\/\ \/\/\
e Optimization of the CFL condi- f:?k/k/\/ \%k;&
tions (8) and (9); f’:és/\%\/ X/\i::
e Better approximation of the |t \?§ / \ / \?Qr” "~
value at the vertices of the pri- :;:/\/ \/ NZN\ER
mal mesh, especially in the very T~ T T T

distorded meshes (see Fig. 8).
Fig. 8: Distorded mesh
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