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SUMMARY

This paper describes a numerical discretization of the compressible Euler equations with a gravitational
potential. A pertinent feature of the solutions to these inhomogeneous equations is the special case of sta-
tionary solutions with zero velocity, described by a nonlinear partial differential equation, whose solutions
are called hydrostatic equilibria. We present a well-balanced method, meaning that besides discretizing the
complete equations, the method is also able to maintain all hydrostatic equilibria. The method is a finite vol-
ume method, whose Riemann solver is approximated by a so-called relaxation Riemann solution that takes
all hydrostatic equilibria into account. Relaxation ensures robustness, accuracy, and stability of our method,
because it satisfies discrete entropy inequalities. We will present numerical examples, illustrating that our
method works as promised. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper concerns the derivation of numerical schemes to approximate the solutions of the Euler
equations endowed with a gravity source term. The system under consideration writes as follows:

@t�C @x�u D 0; (1a)

@t�uC @x.�u
2 C p/ D ��@xˆ; (1b)

@tE C @x.E C p/u D ��u@xˆ; (1c)

where �.x; t/ > 0 denotes the density, u.x; t/ 2 R the velocity, and E.x; t/ > 0 the total energy
that can be written as

E D �e C
1

2
�u2;

where e > 0 is the internal energy and the function ˆ W R ! R stands for a given continuous
gravitational potential. Concerning the pressure, it is given by a general pressure law p.�; e/ W
RC �RC ! RC where we have introduce � D 1=� as the specific volume.

We assume that the pressure function obeys the second law of thermodynamics. As a conse-
quence, there exists a specific entropy �.�; e/ W RC � RC ! RC, which satisfies, for some
temperature T .�; e/ > 0, the following relation:
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� Td� D de C pd�: (2)

It results to the following equalities:

@��.�; e/ D �
p.�; e/

T .�; e/
< 0 and @e�.�; e/ D �

1

T .�; e/
< 0: (3)

In this work, we impose the application .�; e/ 7! �.�; e/ to be strictly convex.
To shorten the notations, the system (1) can be rewritten in the following condensed form:

@tw C @xf .w/ D s.w/; (4)

where we have set

w D

0
@ �

�u

E

1
A ; f .w/ D

0
@ �u

�u2 C p
.E C p/u

1
A ; s.w/ D

0
@ 0

��@xˆ
��u@xˆ

1
A : (5)

The system (4) is associated with the following phase space:

� D
®
w 2 R3I � > 0; e > 0

¯
: (6)

In addition, we impose a positive acoustic impedance as follows:

�.p@ep � @�p/ > 0;

in order to enforce the system (1) to be hyperbolic. As a consequence, the solutions may become
discontinuous within finite time. In order to avoid some unphysical solutions, the system is equipped
with additional conservation laws satisfied by the smooth solutions. These additional conservation
laws, stated in the following result, yield to the expected entropy inequalities.

Lemma 1
The smooth solutions of (1) satisfy the additional conservation laws

@t�F.�/C @x�F.�/u D 0; (7)

for all smooth function F .
Moreover, assuming that

F 0.�/ > 0 and
1

cp
F 0.�/C F 00.�/ > 0; (8)

where cp is the specific heat at constant pressure, defined by

cp D �T

�
@�

@T

�
p

;

then the application w 7! �F.�/ is strictly convex. As a consequence, the pair .�F.�/; �F.�/u/
defines a Lax entropy pair for system (1). Hence, the weak solutions of (1) satisfy in addition

@t�F.�/C @x�F.�/u 6 0: (9)

Proof
First, let us consider smooth solutions of (1). From the continuity equation (1a), we obtain

@t� C u@x� � �@xu D 0; (10)

and from both momentum equation (1b) and energy equation (1c), we obtain

@te C u@xe C p�@xu D 0: (11)

Next, multiplying (10) by � p
T

and (11) by � 1
T

and using the relations (3), we obtain
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@��@t� C u@��@x� � �@��@xu D 0; (12)

@e�@te C u@e�@xe C �@��@xu D 0: (13)

The sum of (12) and (13) easily gives

@t�C u@x� D 0:

The result is then achieved by multiplying this relation by �F 0.�/ and combining with the continuity
equation (1a).

The establishment of the Lax entropy pair comes from a straightforward study of the Hessian
matrix associated to the function w 7! �F.�/ (for instance, see [1–4] and references therein). �

Let us emphasize that the additional conservation laws (7) are satisfied by the smooth solutions of
the system (1) with source term. Indeed, the gravity source term does not participate to the entropy
laws associated with (1).

Nevertheless, the source term drastically modifies the steady states. In the present work, we focus
our attention on the steady states at rest, that is, with u � 0. These steady solutions of particular
interest are characterized as follows: ²

u D 0;
@xp D ��@xˆ:

(14)

This PDE system can be easily solved as soon as the pressure law only depends on the density. For
instance, the reader is referred to works devoted to the well-known shallow-water system [5–8] and
some related model [9–12] (see also [13] for isentropic steady states associated with (1)). Unfor-
tunately, because the pressure function p depends on both � and e, we cannot exhibit algebraic
relations satisfied by the solutions of (14), except under restrictive assumptions.

However, among the whole set of solutions of (14), a particular family is of prime importance,
especially for astrophysics applications. It is known as the polytropic equilibrium, defined by

u.x/ D 0; p.x/ D K�.x/� ; (15)

for K > 0 and � 2 .0;C1�. Let us underline that, here, � represents the polytropic coeffi-
cient, which is in general different from the adiabatic coefficient � coming from an ideal gas law.
Equation (14), together with the additional condition (15), can be solved explicitly, although the
formulation differs according to the value of �:

� For � D 1, we obtain the isothermal equilibrium, which is defined by8̂̂
ˆ̂<
ˆ̂̂̂:

u.x/ D 0;

�.x/ D exp

�
C �ˆ.x/

K

�
;

p.x/ D K exp

�
C �ˆ.x/

K

�
;

(16)

for a given constant C 2 R.
� Finally, for � 2 .0; 1/ [ .1;C1/, we obtain the following expression:8̂̂

ˆ̂̂<
ˆ̂̂̂̂:

u.x/ D 0;

�.x/ D

�
� � 1

�K
.C �ˆ.x//

� 1
��1

;

p.x/ D K
1

1��

�
� � 1

�
.C �ˆ.x//

� �
��1

;

(17)

for a given constant C 2 R.
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� The case of an incompressible equilibrium with a constant density8<
:
u.x/ D 0;
�.x/ D constant;
p.x/C �.x/ˆ.x/ D constant:

(18)

Some authors also consider the specific case of the isentropic equilibrium. We underline that in
the case of an ideal gas law, with adiabatic coefficient � , the isentropic equilibrium coincides with
the polytropic equilibrium (15), with a polytropic coefficient � D � .

The objective of this paper is to derive a finite volume method to approximate the weak solutions
of (1), which is able to capture exactly the polytropic equilibria (16)–(18). In addition, we also
require that the numerical scheme approximates accurately all the solutions of (14). Moreover, the
derived scheme must be entropy preserving.

During the last two decades, numerous techniques were proposed in the literature to derive well-
balanced schemes. Most of them concerned the shallow-water equations or related models. For a
non-exhaustive list, the reader is referred, for instance, to the works in [5–19] and references therein.

However, adopting the Euler equations with gravity, the derivation of well-balanced schemes
turns out to be more delicate because the steady states are not explicitly known and just given by
the PDE system (14). Nevertheless, we can mention the pioneering work by Cargo and LeRoux
[20]. By introducing cleverly an evolution equation for the hydrostatic potential, they are able to
reformulate the system in a much simpler way. From this equivalent reformulation, they derive a
simple and relevant well-balanced scheme. Unfortunately, this reformulation technique only works
for a constant gravity field, namelyˆ.x/ D gx with g > 0 as a given constant. Moreover, it is quite
difficult to extend this scheme to two or three dimensions.

The Cargo–LeRoux technique was recently revisited in the work by Chalons et al. [16]. These
authors proposed a suitable well-balanced relaxation scheme, and they establish that the resulting
numerical method is entropy preserving.

Another technique, based on a local hydrostatic reconstruction, was also developed by Käppeli
and Mishra [13, 21]. Although this method extends very easily to second-order and to two-space
and three-space dimensions, it only preserves the isentropic steady states. In our work, we would
like to preserve exactly a much wider family of steady states.

Following the ideas introduced in the companion paper [22] devoted to the Ripa model, we
propose to design a Godunov-type scheme. To address such an issue, the key point stays in the
derivation of an approximate Riemann solver that contains the source term in order to preserve the
steady states defined by (14) ([13, 14, 23]).

To obtain such a required approximate Riemann solver consistent with the gravity source term, we
consider a Suliciu-type relaxation strategy. The resulting numerical scheme turns out to be positive
preserving, entropy satisfying, and well-balanced and captures exactly the polytropic, isothermal,
and incompressible equilibria.

The paper is organized as follows. The next section is devoted to the derivation of the relax-
ation model ([6, 16, 24–33]) in order to obtain the required approximate Riemann solver. Here, we
extend the Suliciu-type model introduced in [22] where a transport property is enforced to be sat-
isfied by the source term. Such a model is governed by a system, which is more linear than the
usual Suliciu model [6, 25, 27]. The main advantage of this new relaxation model stays for an easy
algebra. However, the Riemann problem for this relaxation system is under-determined, and a clo-
sure relation is missing. Actually, this failure turns out to be beneficial, because the missing relation
can be relevantly defined to enforce the well-balanced property in a sense to be prescribed. As a
consequence, we obtain an approximate Riemann solver that contains the source term. The end of
the section is devoted to prove the properties of robustness and well balancedness satisfied by the
approximate solver.

Section 3 is devoted to prove technical results to establish that the derived approximate Riemann
solver is consistent with the entropy inequalities (7) in the sense of Harten et al. [34].

In Section 4, we present the Godunov-type scheme associated with the derived approximate
solver. In addition, we prove the main properties satisfied by the obtained scheme. As expected, we
establish that the scheme preserves the set of admissible states. Moreover, we show that the scheme
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108 V. DESVEAUX ET AL.

is entropy preserving. Concerning the well-balanced property, we prove that the scheme is able to
capture exactly the polytropic (17), isothermal (16), and incompressible (18) equilibria, as well as a
suitable approximation of the solutions of (14)

Finally, Section 5 is devoted to illustrate the good behavior of the scheme, and several numerical
experiments are performed.

2. THE RELAXATION MODEL

In order to design a Godunov-type scheme, the present section is devoted to derive an approximate
Riemann solver. To address such an issue, we here adopt a Suliciu-type relaxation strategy [6, 27].
More precisely, we approximate the weak solutions of the initial system (1) by the weak solutions
of a first-order system endowed with a relaxation source term, namely the relaxation model. In a
limit of a relaxation parameter, the relaxation model must restore, in a sense to be prescribed, the
initial system.

In the previous work [22], a relaxation model was developed in the framework of the shallow-
water model with horizontal temperature gradients, also known as the Ripa model. Its particularity
is that the associated Riemann problem is under-determined, and there is one relation missing. Actu-
ally, this turns out to be beneficial, because the missing relation can be relevantly defined to enforce
the well-balanced property.

Here, we follow the same strategy for the Euler equation with gravity, and the obtained relaxation
model and the Riemann solution turn out to be in close relationship with the models derived in [22].
However, the similarities stop as soon as one looks at the properties satisfied by the approximate
Riemann solver. Indeed, the required properties of robustness, stability, and well balancedness are
quite different between the Ripa model and the Euler equations with gravity. As a consequence,
we will skip the details in the presentation of the relaxation model and the computation of the
Riemann solution, referring the reader to Desveaux et al. [22], whereas the properties satisfied by
the approximate Riemann solver will be carefully examined.

According to the Suliciu relaxation approach ([6, 27, 35, 36]), we suggest to approximate the
pressure p by a new variable 	 governed by the following evolution law:

@t	 C u@x	 C
a2

�
@xu D

1

"
.p.�; e/ � 	/ :

The relaxation parameter a > 0 will be fixed later in order to satisfy some robustness and
stability conditions.

Now, we decide to approximate the gravity by a new variableZ governed by a transport relaxation
equation as follows:

@tZ C u@xZ D
1

"
.ˆ �Z/ :

This leads to the following relaxation model:8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

@t�C @x�u D 0;

@t�uC @x.�u
2 C 	/ D ��@xZ;

@tE C @x.E C 	/u D ��u@xZ;

@t�	 C @x.�	 C a
2/u D

�

"
.p.�; e/ � 	/;

@t�Z C @x�Zu D
�

"
.ˆ �Z/:

(19)

Let us notice that when the parameter " goes to zero, formally, the new unknowns 	 and Z respec-
tively converge to p and ˆ. As a consequence, we recover the system (1) from the first three
equations of the previous system (19).
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In order to simplify the notations, we introduce

W D .�; �u;E; �	; �Z/T ;

to designate the state vectors in the phase space

O D
®
W 2 R5; � > 0; e > 0

¯
:

From each state w 2 �, defined by (5) and a given gravity function ˆ, we define an equilibrium
state for the relaxation model as follows:

W eq.w/ D .�; �u;E; �p.�; e/; �ˆ/T : (20)

The following statement gives the algebra of the homogeneous system extracted from (19), which
we denote with unambiguous notations by (19)"D1 .

Lemma 2
Let a > 0 be given. The homogeneous system extracted from (19) is hyperbolic for allW 2 O. The
eigenvalues of the system are œ˙ D u˙ a

�
and œu D u, the last one being of multiplicity three. All

the fields are linearly degenerate. The characteristic fields associated with the eigenvalues œ˙ admit
the following Riemann invariants:

I˙1 D u˙
a

�
; I˙2 D 	 � au; I˙3 D e �

	2

2a2
; I˙4 D Z; (21)

while the characteristic field associated with the eigenvalue œu admits a unique (independent)
Riemann invariant:

Iu1 D u: (22)

We skip the proof of this result, and the reader is referred to Desveaux et al. [22] (see also
[1, 16, 27]).

We observe that there is a missing Riemann invariant for the field associated with the eigenvalue
œu, because one could expect two independent Riemann invariants. This has a direct implication
when we want to compute the solution of the Riemann problem associated to (19)"D1 . Indeed, let
us consider an initial data made of two constant states separated by a discontinuity located at x D 0:

W0.x/ D

²
WL if x < 0;
WR if x > 0:

(23)

According to Lemma 2, if a solution exists, it is made of four constant states separated by three
contact discontinuities as follows:

WR

�x
t
IWL; WR

�
D

8̂̂<
ˆ̂:
WL if x=t < œ�;
W ?
L if œ� < x=t < œu;

W ?
R if œu < x=t < œC;

WR if œC < x=t:

(24)

There are 10 unknowns in this Riemann problem, five for bothW ?
L andW ?

R . However, the continuity
of the Riemann invariants (21) and (22) only provides nine relations. Thus, there is a missing relation
in order to determine a unique Riemann solution. We are going to take advantage of this failure to
enforce the well-balanced property.

Using the relaxation variables, Equation (14), which defines the steady states at rest, writes

@x	 D ��@xZ:

We chose as the closure equation the following discretization of this relation:

	?R � 	
?
L D ��.WL; WR/.Z

?
R �Z

?
L/; (25)
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where the function � W O � O ! RC denotes a �-average function that will be defined later. For
now, we assume that this function satisfies the following consistency property:

�L D �R D � ) �.WL; WR/ D �: (26)

Moreover, it is assumed to be symmetric:

�.WR; WL/ D �.WL; WR/:

Equipped with the additional law (25), we solve the Riemann problem associated with
(19)"D1 –(23).

Lemma 3
The Riemann problem of the system (19)"D1 to (23) completed by the relation (25) admits a unique
solution, which is given by (24) where the intermediate states W ?

L and W ?
R are defined by

Z?L D ZL; Z?R D ZR; (27a)

u? D u?L D u
?
R

D
1

2
.uL C uR/ �

1

2a
.	R � 	L/ �

1

2a
�.WL; WR/.ZR �ZL/;

(27b)

	?L D 	L C a.uL � u
?/; 	?R D 	R C a.u

? � uR/; (27c)
1

�?L
D

1

�L
C
1

a
.u? � uL/;

1

�?R
D

1

�R
C
1

a
.uR � u

?/; (27d)

e?L D eL C
1

2a2

�
	?L

2
� 	L

2
�
; e?R D eR C

1

2a2

�
	?R

2
� 	R

2
�
: (27e)

Once again, we skip the proof of this standard result ([1, 16, 22, 27]).
Using this Riemann solution for the relaxation system (19), we can define an approximate

Riemann solver for the initial system (1) as follows:

weq
�x
t
IwL; wR

�
D W

.�;�u;E/
R

�x
t
IW eq.wL/;W

eq.wR/
�
; (28)

where the exponent .�; �u;E/ denotes the projection on the first three components and W eq.w/ is
defined by (20).

Let us underline that the closure relation (25) is clearly nonstandard. However, a similar technique
has been adopted in the framework of a shallow-water-type model [22].

We now study the approximate Riemann solver weq . First, we establish that weq preserves the
set �.

Lemma 4
Let be given wL and wR in� defined by (6). If the relaxation parameter a is large enough to ensure
the following inequalities:

uL �
a

�L
< u? < uR C

a

�R
; (29)

eL C
	?L

2 � 	L
2

2a2
> 0; eR C

	?R
2 � 	R

2

2a2
> 0; (30)

where u? and 	?L;R are respectively defined by (27b) and (27c), then weq.x=t IwL; wR/ belongs
to �.

Proof
First, the continuity of the Riemann invariants I˙1 writes

uL �
a

�L
D u? �

a

�?L
and uR C

a

�R
D u? C

a

�?R
;
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so that (29) leads to ��?L < 0 < �
?
R. The positiveness of the density is thus established. In the same

way, thanks to the continuity of the Riemann invariants I˙3 , we have

eL �
	2L
2a2
D e?L �

	?L
2

2a2
and eR �

	2R
2a2
D e?R �

	?R
2

2a2
;

so that (30) implies e?L > 0 and e?R > 0. Hence, the intermediate internal energies are positive, and
the proof is completed. �

The next lemma concerns the well-balanced property of the approximate Riemann solver weq .

Lemma 5
Let wL and wR be given in � such that

uL D uR D 0; (31)

pR � pL C �.WL; WR/.ˆR �ˆL/ D 0: (32)

Then we obtain weq at rest:

weq.x=t IwL; wR/ D

²
wL if x=t < 0;
wR if x=t > 0:

(33)

Proof
According to (27) and because uL D uR D 0, it suffices to prove that u? D 0 to ensure (33) is
satisfied. The speed u? writes

u? D �
pR � pL

2a
�
1

2a
�.�L; �R/.ˆR �ˆL/;

which vanishes thanks to (31)–(32). �

In general, starting from a continuous steady state, its piecewise constant projection does not
necessarily satisfy (32). As a consequence, Lemma 5 states that a well-chosen approximation of any
continuous steady state is preserved, so it is only an approximate result. Now, we will see that weq

is able to preserve exactly the polytropic steady states (16)–(18).

Lemma 6
The approximate Riemann solver weq satisfies the following properties:

(i) Let wL and wR be two states in � that satisfy8̂̂̂
ˆ̂<
ˆ̂̂̂̂
:

uL D uR D 0;

�L;R D exp

�
C �ˆL;R

K

�
;

pL;R D K exp

�
C �ˆL;R

K

�
;

(34)

with K > 0 and C 2 R. Assume the �-average � is defined by

�.WL; WR/ D

´ �R � �L

ln.�R/ � ln.�L/
if �L ¤ �R;

�L if �L D �R:
(35)

Then we obtain weq at rest given by (33).

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2016; 81:104–127
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(ii) Let wL and wR be two states in � that satisfy

8̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
:̂

uL D uR D 0;

�L;R D

�
� � 1

�K
.C �ˆL;R/

� 1
��1

;

pL;R D K
1

1��

�
� � 1

�
.C �ˆL;R/

� �
��1

;

(36)

with � 2 .0; 1/ [ .1;C1/, K > 0, and C 2 R. Assume the �-average � is defined by

�.WL; WR/ D

8̂<
:̂
� � 1

�

��R � �
�
L

���1R � ���1L

if �L ¤ �R;

�L if �L D �R:
(37)

Then we obtain weq at rest given by (33).
(iii) Let wL and wR be two states in � that satisfy8<

:
uL D uR D 0;
�L D �R;
pL C �LˆL D pR C �RˆR:

(38)

Then we obtain weq at rest given by (33) independently from the definition of �.

Proof
As in Lemma 5, we just need to prove that u? D 0. Because in all cases we have uL D uR D 0, the
intermediate speed u? writes

u? D �
1

2a
.pR � pL C �.WL; WR/.ˆR �ˆL// :

In case (6), the hypothesis (34) implies

ˆR �ˆL D K.ln.�L/ � ln.�R//:

In addition, we have

pR � pL D K.�R � �L/;

because the pressure and the density are connected by relation (15). Combining the last two relations
together with the definition (35) of �.WL; WR/, we obtain u? D 0.

In case (6), the hypothesis (36) leads to

ˆR �ˆL D K
�

� � 1

�
���1L � ���1R

�
;

and

pR � pL D K
�
��R � �

�
L

�
:

We conclude from the two last equations and from the definition (37) that u? D 0. The proof is
thus achieved.

Finally, case (6) is immediate thanks to the consistency property (26) satisfied by �. �

The last property we study concerns the entropy consistency of weq . However, it is much more
complex to establish than the other properties, and it is the object of the next section.
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3. CONSISTENCY WITH THE ENTROPY INEQUALITIES

This section is dedicated to prove that the approximate Riemann solver weq , given by (28), is con-
sistent with the entropy inequalities (7) in the sense of Harten et al. [34]. Indeed, such an entropy
consistency turns out to be the main ingredient establishing the required discrete entropy inequalities
satisfied by the numerical scheme associated to the approximate Riemann solver weq .

We first state the main result of this section, where weq , given by (28), is shown to be entropy
consistent in the sense of Harten et al. To address such an issue, an additional property must be
imposed to be satisfied by the pressure function.

First, we introduce a set defined by

A D
²
.I; J / 2 R2I 9� > 0; 9e > 0 such that

I D p .�; e/C a2�; (39)

J D e �
p .�; e/2

2a2
; (40)

a2 > p .�; e/ @ep .�; e/ � @�p .�; e/

³
: (41)

We underline that the inequality (41), known as the sub-characteristic Whitham condition [37],
imposes that the sound speed a� of the system (19)"D1 has to be greater than the sound speed
c D �

p
p@ep � @�p of the original model (1).

Next, for all pair .I; J / in A, we introduce the function fI;J W RC ! R defined as follows:

fI;J .�/ D �p

�
�; J C

.I � a2�/2

2a2

�
C a2�2 � I�: (42)

We impose the following additional assumption to be satisfied by the pressure law:

Assumption 7
We assume the pressure law is such that the function � 7! fI;J .�/, defined by (42), is strictly convex
for all pair .I; J / fixed in A.

For instance, such a restriction is satisfied for a perfect gas law, given by

p.�; e/ D .� � 1/
e

�
;

so that the function fI;J writes

fI;J .�/ D
� C 1

2
a2�2 � �I� C .� � 1/J C

� � 1

2a2
I 2:

We immediately see that fI;J is a second-order polynomial with a positive highest degree
coefficient, and thus, it is strictly convex.

Equipped with Assumption 7, we now give our main result.

Theorem 8
Let wL and wR be two states of �. We consider a smooth function F such that the hypotheses
(8) are satisfied. Let a > 0 be a parameter such that the following sub-characteristic Whitham
conditions hold:

a2 > p .�L; eL/ @ep .�L; eL/ � @�p .�L; eL/ ; (43a)

a2 > p
�
��L; e

�
L

�
@ep

�
��L; e

�
L

�
� @�p

�
�L�; e

�
L

�
; (43b)

a2 > p
�
��R; e

�
R

�
@ep

�
��R; e

�
R

�
� @�p

�
��R; e

�
R

�
; (43c)

a2 > p .�R; eR/ @ep .�R; eR/ � @�p .�R; eR/ : (43d)
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Fix 
t > 0 and 
x > 0 two constants such that the following (CFL) restriction is satisfied:


t


x
max

²ˇ̌̌
ˇuL � a

�L

ˇ̌̌
ˇ ;
ˇ̌̌
ˇuR C a

�R

ˇ̌̌
ˇ
³
6 1
2
: (44)

Moreover, we assume that the pressure law satisfies Assumption 7.
Then the approximate Riemann solver weq , defined by (28), satisfies the inequalities

1


x

Z �x=2

0

.�F.�//
�
weq

� x

t
IwL; wR

��
dx

6 �RF.�R/
2

�

t


x
.�RF.�R/uR � ¹�F.�/uºL;R/ ;

(45)

1


x

Z 0

��x=2

.�F.�//
�
weq

� x

t
IwL; wR

��
dx

6 �LF.�L/
2

�

t


x
.¹�F.�/uºL;R � �LF.�L/uL/ ;

(46)

where we have set

¹�F.�/uºL;R D

8̂̂̂
<
ˆ̂̂:

�LF.�L/uL if 0 < uL � a
�L
;

�?LF.�L/u? if uL � a
�L
< 0 < u?;

�?RF.�R/u? if u? < 0 < uR C a
�R
;

�RF.�R/uR if uR C a
�R
< 0:

(47)

Let us notice that the usual Harten et al. entropy consistency [34] reads

1


x

Z �x=2

��x=2

.�F.�//
�
weq

� x

t
IwL; wR

��
dx

6 1
2
.�LF.�L/C �RF.�R// �


t


x
.�RF.�R/uR � �LF.�L/uL/ :

Of course, this last inequality directly comes from the sum of (45) and (46). In fact, the formulations
(45) and (46) will be more convenient to derive the expected discrete entropy inequalities.

In order to establish Theorem 8, we now give four successive technical lemmas devoted to
establish and analyze a suitable relaxation entropy function (see [27, 38] for similar arguments).

First, we set

I.W / WD I.	; �/ D 	 C a2�; (48)

J.W / WD J.	; e/ D e �
	2

2a2
: (49)

In fact, these quantities are strong Riemann invariants of the first-order homogeneous system
(19)"D1 in the following sense:

Lemma 9
The weak solutions of the relaxation model (19)"D1 satisfy

@t�‰.I; J /C @x�‰.I; J /u D 0; (50)

for all smooth function ‰ W R2 ! R.

Proof
First, let us consider a smooth solution W of the system (19)"D1 . An easy computation gives the
following evolution law satisfied by the internal energy e D E=� � u2=2:

@te C 	�@xuC u@xe D 0:
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From the density equation, we deduce the evolution equation for the specific volume given by

@t� C u@x� � �@xu D 0:

Finally, from the evolution equation of 	 , we obtain

@t
	2

2
C a2	�@xuC u@x

	2

2
D 0:

From the three previous identities, we immediately obtain

@tI C u@xI D 0 and @tJ C u@xJ D 0:

As a consequence, for all smooth function‰ W R2 ! R, the following transport equation is satisfied:

@t‰.I; J /C u@x‰.I; J / D 0;

to directly deduce the conservation Equation (50).
To conclude the proof, we just have to mention that the system (19)"D1 is only made of linearly

degenerate fields. Then the relation (50) is also satisfied by the weak solutions of (19)"D1 . �

The following result connects Assumption 7 with the uniqueness of the couple .�; e/ that appears
in the definition of A.

Lemma 10
For all .I; J / 2 A, there exists a unique couple .�; e/ 2 .0;C1/2 satisfying (39)–(41). This couple
will be denoted by .�.I; J /; e.I; J //.
Moreover, for all � > 0 and e > 0, which satisfy the Whitham condition (41), the couple
.I.p.�; e/; �/; J.p.�; e/; e// belongs to A, and we have

�.I.p.�; e/; �/; J.p.�; e/; e// D �; (51)

e.I.p.�; e/; �/; J.p.�; e/; e// D e: (52)

Proof
Let .I; J / be a couple in A. The existence of a couple .�; e/ 2 .0;C1/2 satisfying (39)–(41) comes
directly from the definition of A. To prove the uniqueness, let .�; e/ be such a couple. Combining
relations (39) and (40), we obtain

I D p

�
�; J C

.I � a2�/2

2a2

�
C a2�: (53)

In other terms, it means that � is a root of function fI;J . Moreover, the derivative of fI;J at point
� writes

d

d�
fI;J .�/ D 2a

2� � I C p

�
�; J C

.I � a2�/2

2a2

�

�

�
@�p

�
�; J C

.I � a2�/2

2a2

�
� .I � a2�/@ep

�
�; J C

.I � a2�/2

2a2

��
�:

Next, by substituting I , given by (53), in the previous relation, we obtain

d

d�
fI;J .�/ D

�
a2 C @�p

�
�; J C

.I � a2�/2

2a2

�

� p

�
�; J C

.I � a2�/2

2a2

�
@ep

�
�; J C

.I � a2�/2

2a2

��
�;

By evaluating this derivative at point � , we obtain

d

d�
fI;J .�/ D �.a

2 C @�p.�; e/ � p.�; e/@ep.�; e//;
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which is positive according to (41). We have thus proven that � is a root of fI;J where the derivative
is positive. Because fI;J is strictly convex from Assumption 7, � is unique. The quantity e is then
uniquely defined by

e D J C
.I � a2�/2

2a2
:

Finally, for � > 0 and e > 0 satisfying (41), the definitions (48) and (49) of I and J imply
that the pair .I.p.�; e/; �/; J.p.�; e/; e// belongs to A, and (51) and (52) come directly from the
uniqueness of .�; e/. The proof is thus achieved. �

Now, we introduce the set

E D
®
W 2 OI .I.W /; J.W // 2 A; a2 > p .�; e/ @ep .�; e/ � @�p .�; e/

¯
: (54)

Let us notice that, according to Lemma 10, both quantities �.I.W /; J.W // and e.I.W /; J.W // are
well-defined as soon asW belongs to the set E . As a consequence, for all stateW 2 E , we can define

�.W / D �.�.I.W /; J.W //; e.I.W /; J.W ///; (55)

where � is the specific entropy defined according to (2). From Lemma 10, we can immediately
remark that the functions � and � coincide as soon as relaxation equilibrium states are assumed,
namely I WD I.p.�; e/; �/ and J WD J.p.�; e/; e/. Indeed, under the sub-characteristic Whitham
condition (41) imposed by definition of E , from (51) and (52), we obtain

�
�
Wj�Dp.�;e/

�
D � and e

�
Wj�Dp.�;e/

�
D e:

As a consequence, we have

�
�
Wj�Dp.�;e/

�
D � .�; e/ :

For the sake of simplicity in the forthcoming developments, we shorten the notations as follows:

� D �.I.W /; J.W //; e D e.I.W /; J.W //; p D p.�; e/:

We now prove that the function � reaches its minimum when the relaxation equilibrium holds.

Lemma 11
For all W 2 E , we have

�.W / > � .�; e/ : (56)

Proof
To establish this result, we first evaluate the successive derivative of the function 	 7! �.W /. To
access such an issue, we detail the following sequence of derivation.

First, we derive relation

I D p.�.I; J /; e.I; J //C a2�.I; J /;

with respect to 	 to obtain

@�I D @��@�p C @�e@ep C a
2@��:

But from (48), we have @�I D 1, and thus, we deduce

@�e D
1

@ep

�
1 � .@�p C a

2/@��
�
: (57)

Next, we derive relation

J D e.I; J / �
p.�.I; J /; e.I; J //2

2a2
;
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with respect to 	 to obtain

�
	

a2
D

�
1 �

p@ep

a2

�
@�e �

p

a2
@�p@��:

Plugging (57) into this relation gives

@�� D
.p � 	/@ep � a

2

a2 .p@ep � @�p � a2/
: (58)

We now consider the function � defined by (55). Deriving � with respect to 	 , we obtain

@�� D @��@�� C @e�@�e;

where we substitute @�e by the expression (57) to obtain

@�� D

�
@�� �

@e�

@ep
.@�p C a

2/

�
@�� C

@e�

@ep
:

Next, we plug the definition of @�� , given by (58), into this relation to obtain, after a straightforward
calculation,

@�� D
.p � 	/.@��@ep � @�p@e� � a

2@e�/C a
2.p@e� � @��/

a2.p@ep � @�p � a2/
:

Because by definition of the specific entropy, given by (3), we have

@�� D p@e�; (59)

we immediately deduce the first-order derivative of � with respect to 	 as follows:

@�� D
p � 	

a2
@e�: (60)

Finally, deriving again this expression with respect to 	 , we obtain

@��� D
@e�

a2
.@e�@�p C .p � 	/@�e�/ @�� C

1

a2
.@e�@ep C .p � 	/@ee�/ @�e �

@e�

a2
:

Once again, we substitute the expressions (57) of @�e and (58) of @�� to obtain

@��� D
1

a4.p@ep � @�p � a2/

�
.p � 	/2

�
@ep@�e� � @ee�@�p � a

2@ee�
�

Ca2.p � 	/ .p@ee� � @�e� � @ep@e�/C a
4@e�

�
:

(61)

Let us notice that deriving (59) with respect to e gives

@�e� D p@ee�C @ep@e�;

to write (61) as follows:

@��� D
.p � 	/2

a4
@ee�C

@e�

a4.p@ep � @�p � a2/

�
.p � 	/@ep � a

2
�2
: (62)

Because .�; e/ 7! �.�; e/ is a strictly convex function, we have @ee� > 0. On the other hand, from
the inequalities (3), we obtain @e� < 0. Finally, under the sub-characteristic Whitham condition
(41), we deduce that @��� > 0. As a consequence, the function 	 7! � is convex. Therefore, the
proof will be concluded as soon as we establish @��j�Dp.�;e/ D 0.

Let us notice that we have

pj�Dp.�;e/ D p

�
�

�
p.�; e/C a2�; e �

p.�; e/2

2a2

�
; e

�
p.�; e/C a2�; e �

p.�; e/2

2a2

��
;

D p.�; e/:

After (60), we see that @�� vanishes at the point 	 D p.�; e/. So, we have
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�.W / > �
�
W�Dp.�;e/

�
:

Because the state Wj�Dp.�;e/ coincides to the relaxation equilibrium, necessarily we have
�
�
Wj�Dp.�;e/

�
D � .�; e/, which concludes the proof. �

Next, we prove that the solution of the Riemann problem (23) satisfies a property of
decreasing entropy.

Lemma 12
Let WL and WR be two states in O at the relaxation equilibrium: 	L D p.�L; eL/ and
	R D p.�R; eR/. Assume that the sub-characteristic Whitham conditions (43) are satisfied.
Let WR, defined by (24) and (27), be the solution of the Riemann problem (23)–(25). Then
� .WR .x=t IWL; WR// is defined for all .x; t/ in R �RC and satisfies

�
�
WR

�x
t
IWL; WR

��
> �

�
.�R; eR/

�x
t
IWL; WR

�
j�Dp.�;e/

�
: (63)

Proof
Because the function WR is made of four constant states WL, W ?

L , W ?
R , and WR, according to (24),

the proof will be achieved as soon as the following inequalities will be established:

�.WL;R/ > � .�L;R; eL;R/ and �.W ?
L;R/ > �

�
�?L;Rj�Dp?

L;R

; e?L;Rj�Dp?
L;R

�
:

After Lemma 11, such inequalities are satisfied whenever the involved states WL;R and W ?
L;R stay

in E .
WithWL andWR given at the relaxation equilibrium and the Whitham conditions (43a) and (43d),

the states WL and WR immediately belong to the set E . Next, we turn establishing that W ?
L belongs

to E . According to (54), we have to prove that .I.W ?
L /; J.W

?
L // is in A.

According to Lemma 9, I and J are strong Riemann invariants, so we have

I.W ?
L / D I.WL/ and J.W ?

L / D J.WL/:

Next, because 	L D p.�L; eL/, we obtain the following relations:

I.W ?
L / D p.�L; eL/C a

2�L and J.W ?
L / D eL �

p.�L; eL/
2

2a2
:

Finally, the Whitham condition (43a) enforces .I.W ?
L /; J.W

?
L // to belong to A. To conclude, the

condition (43b) then ensures that W ?
L belongs to E . A similar reasoning leads to W ?

R 2 E . Arguing
from Lemma 11, the proof is completed. �

Equipped with the previous entropy minimum principle, given Lemma 12, we are able to establish
Theorem 8.

Proof
First, let us consider the weak solutions of the relaxation model (19), with an initial condition
given by

W.x; 0/ D

²
W eq.wL/ if x < 0;
W eq.wR/ if x > 0:

The function W 7! �.W /, defined by (55), only depends on I and J , so Lemma 9 ensures that
the weak solutions of (19) satisfy the additional following conservation law:

@t�F.�/C @x�F.�/u D 0:

We integrate this equation over Œ0;
x=2/ � Œ0;
t/ to obtain

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2016; 81:104–127
DOI: 10.1002/fld



WELL-BALANCED SCHEME FOR THE EULER EQUATIONS WITH GRAVITY 119

Z �x=2

0

.�F.�//
�
WR

� x

t
IW eq.wL/;W

eq.wR/
��
dx

D

Z �x=2

0

.�F.�//.W.x; 0//dx �
t.�F.�/u/
�
WR

�

x

2
t
IW eq.wL/;W

eq.wR/

��
C
t.�F.�/u/ .WR .0IW

eq.wL/;W
eq.wR/// :

(64)

Because the state W eq.wR/ is at the relaxation equilibrium, the following sequence of equalities
holds for x 2 Œ0;
x=2/:

.�F.�//.W.x; 0// D .�F.�//.W eq.wR// D .�F.�//.W eq.wR// D �RF.�R/: (65)

On the other hand, the CFL restriction (44) implies for all x 2 Œ0;
x=2/,

WR

�

x

2
t
IW eq.wL/;W

eq.wR/

�
D W eq.wR/:

As a consequence, the first flux term in (64) writes

.�F.�/u/
�
WR

�

x

2
t
IW eq.wL/;W

eq.wR/

��
D �RF.�R/uR: (66)

Now, because � only depends on I and J and these two variables are continuous through the
waves of speed uL � a=�L and uR C a=�R, we have

� .WR .0IW
eq.wL/;W

eq.wR/// D

²
�.W eq.wL// D �.wL/ if u? > 0;
�.W eq.wR// D �.wR/ if u? < 0:

We immediately deduce that the second flux term in (64) writes

.�F.�/u/ .WR .0IW
eq.wL/;W

eq.wR/// D ¹�F.�/uºL;R; (67)

where ¹�F.�/uºL;R is defined by (47).
We plug (65)–(67) into (64), to obtain

1


x

Z �x=2

0

.�F.�//
�
WR

� x

t
IW eq.wL/;W

eq.wR/
��
dx

D
�RF.�R/

2
�

t


x
.�RF.�R/uR � ¹�F.�/uºL;R/ :

(68)

Finally, Lemma 12 ensures that

�
�
WR

� x

t
IW eq.wL/;W

eq.wR/
��
> �

�
.�eq; eeq/

� x

t
IwL; wR

��
:

Moreover, from (8), the function F is increasing, and thus, we obtain

F.�/
�
WR

� x

t
IW eq.wL/;W

eq.wR/
��
> F.�/

�
weq

� x

t
IwL; wR

��
;

to obtain the expected inequality (45).
The inequality (46) is proven in a very similar way by adopting an integration over .�
x=2; 0��

Œ0;
t/. �

4. THE RELAXATION SCHEME

Equipped with the approximate Riemann solver weq.x=t IwL; wR/, defined by (28), we now derive
a finite volume scheme to discretize the Euler equation with gravity (1). First, we introduce some
usual mesh notations. Concerning the space discretization, we adopt a uniform mesh with cells .xi�

x=2; xi C 
x=2/ where 
x > 0 denotes the constant size of the mesh. The time discretization
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is given by tnC1 D tn C 
t where 
t > 0 is the time step restricted according the following
CFL-like condition:


t


x
max
i2Z

 ˇ̌̌
ˇuni � aiC1=2�ni

ˇ̌̌
ˇ ;
ˇ̌̌
ˇuniC1 C aiC1=2

�niC1

ˇ̌̌
ˇ
!
6 1
2
; (69)

where aiC1=2 will be detailed later on.
From an approximation of the solution at time tn, given by

wn.x; tn/ D wni ; x 2 .xi�1=2; xiC1=2/;

we define the updated state at time tnC1 as follows:

wnC1i D
1


x

Z xiC1=2

xi�1=2

wn.x; tn C
t/dx: (70)

Here, the function wn.x; tn C t / is nothing but the sequence of the approximate Riemann solver
(28) stated at each interface xiC1=2:

wn.x; tn C t / D weq
�x � xiC1=2

t
Iwni ; w

n
iC1

�
; x 2 .xi ; xiC1/ t 2 .0;
t/: (71)

In fact, for all t in .0;
t/, the successive approximate Riemann solvers, involved to define
wn.x; tn C t /, do not interact as long as the parameter aiC1=2, introduced in (69), coincides with
a local (defined interface per interface) relaxation parameter. As a consequence, aiC1=2 is asked
to satisfy at each interface both �-preserving conditions (29)–(30) and sub-characteristic Whitham
conditions (43).

After a straightforward computation (for instance, [34, 39–41]), the updated state wnC1i reads in
the following more convenient form:

wnC1i D wni �

t


x

�
fiC1=2 � fi�1=2

�
C

t

2

�
Si�1=2 C SiC1=2

�
; (72)

with an approximated source term defined by

SiC1=2 D

�
0;��

�
�ni ; �

n
iC1

� ˆiC1 �ˆi

x

;��.�ni ; �
n
iC1/u

?
iC1=2

ˆiC1 �ˆi


x

�T
: (73)

The detailed form of the numerical flux function fiC1=2 WD f�.wni ; ˆi ; w
n
iC1; ˆiC1/ is given by

f�.wL; ˆL; wR; ˆR/ D8̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂
ˆ̂̂:

�
�LuL; �Lu

2
L C pL C sLR; .EL C pL/uL C u

?sLR
�T

if uL �
a

�L
> 0;

�
�?Lu

?; �?L.u
?/2 C 	?L C sLR; .E

?
L C 	

?
L/u

? C u?sLR
�T

if uL �
a

�L
< 0 < u?;�

�?Ru
?; �?R.u

?/2 C 	?R � sLR; .E
?
R C 	

?
R/u

? � u?sLR
�T

if u? < 0 < uR C
a

�R
;�

�RuR; �Ru
2
R C pR � sLR; .ER C pR/uR � u

?sLR
�T

if uR C
a

�R
< 0;

(74)

where we have introduced

sLR D �
1

2
�.�L; �R/.ˆR �ˆL/; (75)

and the intermediate states are given by (27).
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To conclude this presentation of the relaxation scheme (72)–(75), we now give its main properties.
Indeed, in the following result, we summarize the robustness, the stability, and the well balancedness
of the derived numerical method.

Theorem 13
For all i in Z, assume that the local relaxation parameter aiC1=2 satisfies, at each interface xiC1=2,
the order conditions (29)–(30) and the sub-characteristic Whitham condition (43). Assume the
pressure law satisfies Assumption 7. Assume wni belongs to � for all i 2 Z. Then, under the
CFL condition (69), the updated state wnC1i , defined by the relaxation scheme (72), satisfies the
following properties:

1. Robustness: For all i in Z, wnC1i belongs to �.
2. Entropy preserving: For all smooth function F such that (8) is verified, wnC1i satisfies the

following discrete entropy inequality:

�nC1i F.�nC1i / 6 �ni F.�ni / �

t


x

�
¹�F.�/uºniC1=2 � ¹�F.�/uº

n
iC1=2

�
; (76)

where the entropy numerical flux are defined by

¹�F.�/uºniC1=2 D f
�

iC1=2
�

´
F.�ni / if F �

iC1=2
> 0;

F.�niC1/ if F �
iC1=2

< 0:
(77)

3. General steady-state preserving: Let us consider an initial data w0i given by

1


x

�
p0iC1 � p

0
i

�
C �

�
�0i ; �

0
iC1

� ˆiC1 �ˆi

x

D 0: (78)

Then the updated state wnC1i stays at rest and thus satisfies wnC1i D wni for all i 2 Z.

Proof
First, let us establish the robustness of the scheme. Because we have imposed (29) and (30),
Lemma 4 can be applied locally to each function weq.x=t Iwni ; w

n
iC1/, which thus stays in �.

The CFL restriction (69) ensures that the Riemann problems do not interact, so the function
x 7! wn.x; tn C 
t/ is valued in �. Then the update formula (70) and the convexity of � imply
that wnC1i belongs to �.

Next, we prove the stability property satisfied by the scheme. Because the CFL restriction (69)
and the Whitham conditions (43) are satisfied, we can apply Theorem 8. Inequality (45), where we
have set wL D wni�1 and wR D wni , reads

1


x

Z xi

xi�1=2

.�F.�//
�
weq

�x � xi�1=2

t

Iwni�1; w
n
i

��
dx

6
�ni F.�ni /

2
�

t


x

�
�ni F.�ni /uni � ¹�F.�/uºni�1=2

�
dx;

(79)

whereas inequality (46), where we have set wL D wni and wR D wniC1, reads

1


x

Z xiC1=2

xi

.�F.�//
�
weq

�x � xiC1=2

t

Iwni ; w
n
iC1

��

6
�ni F.�ni /

2
�

t


x

�
¹�F.�/uºniC1=2 � �

n
i F.�ni /uni

�
:

(80)

Summing (79) and (80), we obtain

1


x

Z xiC1=2

xi�1=2

.�F.�// .wn.x; tn C
t// dx � �ni F.�ni /

�

t


x

�
¹�F.�/uºniC1=2 � ¹�F.�/uº

n
i�1=2

�
:

(81)
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Now, according to assumption (8), the function w 7! �F.�/ is strictly convex, so we can apply
the Jensen inequality to obtain

�F.�/
 
1


x

Z xiC1=2

xi�1=2

wn.x; tn C
t/dx

!
6 1


x

Z xiC1=2

xi�1=2

.�F.�// .wn.x; tn C
t// dx: (82)

Using the definition (70) of the numerical scheme together with inequalities (81) and (82), we obtain
the required discrete entropy inequality (76).

About the establishment of the well-balanced property, the proof directly comes from Lemma 5.
Indeed, at each interface, the initial data satisfy (31)–(32), and Lemma 5 can be applied. As a
consequence, at each interface, the approximate Riemann solver stays at rest. Because the updated
statew1i , at time t D 
t , is defined by (70), we immediately deducew1i D w

0
i for all i in Z. Arguing

an induction procedure, the proof of the steady-state preserving property is then completed. �

Concerning the steady-state preserving property, we notice that no additional definition is
imposed to the �-average. We just impose an initial data given by a specific approxima-
tion of the partial differential equation (14), given by (78). Then, this initial data are exactly
preserved. Concerning the capture of the polytropic steady states, the �-average must be specified as
presented next.

Theorem 14
Assume one of the following conditions occurs:

1. Isothermal equilibrium: The average function � is defined by (35), and the initial data
w0i satisfy 8̂̂̂

ˆ̂<
ˆ̂̂̂̂
:

u0i D 0;

�0i D exp

�
C �ˆi

K

�
;

p0i D K exp

�
C �ˆi

K

�
;

with K > 0 and C 2 R:

2. General polytropic equilibrium: The average function � is defined by (37), and the initial data
w0i satisfy8̂̂̂

ˆ̂̂<
ˆ̂̂̂̂
:̂

u0i D 0;

�0i D

�
� � 1

�K
.C �ˆi /

� 1
��1

;

p0i D K
1

1��

�
� � 1

�
.C �ˆi /

� �
��1

;

with � 2 .0; 1/ [ .1;C1/;
K > 0 and C 2 R:

3. Incompressible equilibrium: The initial data w0i satisfy8<
:
u0i D 0;

�0i DM;

p0i C �
0
i ˆi D C;

with M > 0 and C 2 R:

Then the updated state wnC1i stays at rest and thus satisfies wnC1i D wni for all i 2 Z.

Proof
Because the initial data w0i satisfy one of the conditions 1, 3, or 2, we can apply Lemma 6, so each
approximate Riemann solver stays at rest. As a consequence, each approximate Riemann solver is
given by (33). With the updated state w1i defined by (70), we obtain immediately w1i D w

0
i .

The proof is then easily achieved by an induction procedure. �
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5. NUMERICAL RESULTS

The scheme (72)–(74) is now illustrated performing several numerical experiments. In all the
applications, the pressure will be given by an ideal gas law:

p D .� � 1/�e;

where the adiabatic coefficient is set to � D 1:4.
In the following experiments, unless specified otherwise, the boundaries will be treated by the

following Dirichlet conditions:

wn0 D w
0
0 ; wnN D w

0
N ; (83)

where 0 and N are the index of the first and last cells, respectively. These conditions are valid when
steady states are considered, as soon as no perturbation reaches the boundary.

The first two experiments concern how the scheme handles hydrostatic atmospheres. We set up
different types of hydrostatic equilibria to check whether the scheme can preserve these for a certain
amount of time. Here, we choose the so-called hydrodynamic time scale of an atmosphere. This is
the time on which an atmosphere reacts to slight perturbations. We compute this time as Thyts D
.R
g
/1=2, where R refers to the radius and g to the gravitational acceleration. Thyts is some kind of a

mean free fall time. See, for example, [42] for more details on time scales for atmospheres.

5.1. Isothermal atmosphere

The aim of this experiment is to illustrate the exact preservation of the isothermal equilibrium. To
underline that this property does not depend on the gravitational potential, we consider a gravity
source term given by

ˆ.x/ D x2;

on the computational domain Œ0; 1�. The initial condition is fixed to the isothermal equilibrium

.�0; u0; p0/.x/ D
�
e�x

2

; 0; e�x
2
�
:

As an isothermal equilibrium is considered, we choose the definition (35) for �. At final time
Thyts D 0:25, we compute the L1 error between the approximated solution and the exact solution.
The results are given in Table I in density and velocity for an increasing number of cells N .

The results show that the isothermal atmosphere is preserved up to machine precision. This
is coherent with Theorem 14. Of course, a similar result would be achieved concerning an
incompressible or polytropic atmosphere.

5.2. General steady state

Next, we investigate the behavior of the scheme on a general steady state, that is, a steady state that
does not belong to the polytropic family described by (15). We consider the computational domain
Œ0; 1� with periodic boundary conditions. The gravitational potential is here defined by

ˆ.x/ D � sin.2	x/:

Table I. L1 error in density and velocity
for the isothermal atmosphere.

N Density Velocity

100 1.01E � 16 1.41E � 16
200 2.24E � 16 1.42E � 16
400 3.61E � 16 1.38E � 16
800 5.39E � 16 1.71E � 16
1600 9.28E � 16 2.49E � 16
3200 1.60E � 15 2.50E � 16
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Table II. L1 error in density and velocity for
general steady state.

N Density Velocity

100 4.46E � 05 2.03E � 05
200 7.11E � 06 2.65 5.29E � 06 1.94
400 1.23E � 06 2.53 1.34E � 06 1.98
800 2.35E � 07 2.39 3.37E � 07 1.99
1600 5.02E � 08 2.23 8.44E � 08 2.00
3200 1.15E � 08 2.13 2.11E � 08 2.00

One can easily check that the initial condition

.�0; u0; p0/.x/ D .3C 2 sin.2	x/; 0; 3C 3 sin.2	x/ � 0:5 cos.4	x//; (84)

defined a steady-state solution.
Here, we choose the definition (35) for the �-average �. The hydrodynamic time scale Thyts is not

bounded in this example. However, with the choice of T D 1, we cover the free fall time for more
than half of the computational domain. We compute the L1 error at time T D 1 for an increasing
number of cells N . The results, as well as the convergence orders, are displayed in Table II for the
density and the velocity. We observe that a second order is achieved, although the scheme is only
first order. This can be formally explained by the fact that relation (78) is satisfied up to second
order. Indeed, a straightforward computation leads to

p0.x C
x/ � p0.x/C �.�0.x/; �0.x C
x//.ˆ.x C
x/ �ˆ.x// D O.
x
2/:

5.3. Perturbation of an isothermal atmosphere

The following test case has been introduced in [23, 43]. Here, we consider a classical constant
gravitational field described by the potential ˆ.x/ D x. The computational domain Œ0; 1� is initially
filled with a gas staying in an isothermal equilibrium:

�0.x/ D p0.x/ D e
�x; u0.x/ D 0:

At time t D 0, the pressure is perturbed by

p.x; t D 0/ D p0.x/C 0:01e
�100.x�0:5/2 :

For the average �, we choose here the definition (35).
We compute the solution at time T D 0:2 using 100 cells. The results are compared with a refer-

ence solution, which is obtained using 30,000 cells. In Figure 1, we display the results in pressure
perturbation (i.e., p.x/ � p0.x/) and in velocity perturbation.

The initial perturbation splits into two waves moving in opposite directions. We can see that the
scheme does not create spurious oscillations near the bumps. In addition, the size of the bumps
decreases with time. This shows the stability of the numerical scheme with respect to this steady
state. Finally, comparison with the reference solution shows that the general shape is well captured
by the numerical scheme, although it is only a first-order scheme.

5.4. Perturbation of a polytropic equilibrium

The last test is designed to investigate the ability of the scheme to propagate small distur-
bances in a polytropic atmosphere. We consider once again a constant gravitational field given by
ˆ.x/ D x. We consider the computational domain Œ0; 2� initially filled with a gas staying in a
polytropic equilibrium:

�0.x/ D

�
1 �

2

5
ˆ.x/

�3=2
; u0.x/ D 9; p0.x/ D

�
1 �

2

5
ˆ.x/

�5=2
;

which corresponds to a polytropic coefficient � D 5=3.
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Figure 1. Perturbation in pressure (left) and in velocity (right).
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Figure 2. Perturbation in pressure (left) and in velocity (right).

This time, the perturbation is applied as a boundary condition:

u.0; t/ D A sin.4	t/;

where the amplitude is set to A D 10�6. We stop the computation at t D 1:5, shortly before the
perturbation reaches the right boundary. Thus, the right boundary condition is treated by (83). As
the excited wave move through the domain, its amplitude is modified by the stratification because
of gravity.

The final perturbation in pressure and velocity is displayed in Figure 2. Here, we compare the
results obtained with 1000 cell with a reference solution computed with 30,000 cells.
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