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Abstract The aim of this work is to derive a well-balanced numerical scheme to
approximate the solutions of the Euler equations with a gravitational potential. This
system admits an infinity of steady state solutions which are not all known in an
explicit way. Among all these solutions, the hydrostatic atmosphere has a special
physical interest. We develop an approximate Riemann solver using the formalism
of Harten, Lax and van Leer, which takes into account the source term. The result-
ing numerical scheme is proven to be robust, to preserve exactly the hydrostatic
atmosphere and to preserve an approximation of all the other steady state solutions.

1 Introduction

We consider the Euler equations with a gravity source term
∂tρ +∂xρu = 0,
∂tρu+∂x

(
ρu2 + p

)
=−ρ∂xϕ ,

∂tE +∂x(u(E + p)) =−ρu∂xϕ ,
(1)

where ρ > 0 denotes the density, u ∈ R the velocity, E > 0 the total energy and
p > 0 the pressure. We assume the system is closed by the ideal gas law
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p = (γ −1)(E −ρu2/2), with γ ∈ (1,3].

Concerning the gravity source term, we assume it derives from a gravitational po-
tential ϕ(x), which is a given smooth function. The unknown vector w= (ρ,ρu,E)T

is assumed to belong to the set of physical admissible states

Ω =
{

w ∈ R3 : ρ > 0, E −ρu2/2 > 0
}
.

Following the arguments stated in [9], when dealing with simulations of near
equlibrium states of (1), well-balanced numerical schemes are expected to perform
better than fractional splitting methods. It means that well-balanced schemes accu-
rately capture the steady state solutions of the system, which is not neccesaraly true
for general splitting methods. For the Euler equations with gravity, the steady state
solutions at rest are characterized as follows:

u = 0, ∂x p =−ρ∂xϕ . (2)

We can exhibit a specific steady state solution of (1) which is of particular phys-
ical interest, namely the hydrostatic atmosphere defined for α > 0 and β > 0 by

u(x) = 0, ρ(x) = αe−βϕ(x), p(x) =
α
β

e−βϕ(x). (3)

In the well-known shallow-water model, the lake at rest is the unique steady
state at rest (up to a constant) and it finds an explicit definition. In the last decade,
numerous numerical schemes were developed to preserve the lake at rest in the
shallow-water equations. The reader is referred for instance to [6, 5, 1].

For the Euler equations with gravity (1), the main discrepancy lies in the fact
there are an infinity of solutions of (2) and we cannot explicit all of them. Therefore
it is very difficult to derive numerical schemes which accurately capture all the so-
lutions of (2). In a recent work [2], Chalons et al. succeeded to do so, but only in the
case of a constant gravity field. We also mention the work of Käppeli and Mishra [8]
where they manage to preserve all the isentropic solutions of (2).

Our aim is thus to derive a numerical scheme which captures exactly the hydro-
static atmosphere (3) and which preserves approximately all the solutions of (2). To
address such an issue, we propose to build an approximate Riemann solver, follow-
ing the formalism of Harten, Lax and van Leer [7] and the extensions introduced by
Gallice [4].

The paper is organized as follows. Section 2 is devoted to the derivation of a
simple approximate Riemann solver which takes into account the definition of the
steady states (2). In Section 3, we present the associated numerical scheme and we
establish that it is positive preserving and well-balanced, since it preserves exactly
the steady state (3). The relevance of this approach is illustrated in Section 4 with
some numerical experiments.



A well-balanced scheme for the Euler equation with a gravitational potential 3

λL 0 λR

ρL

uL

pL
ρR

uR

pR

ρ⋆
L

u⋆

L

p⋆
L

ρ⋆
R

u⋆

R

p⋆
R

Fig. 1: Structure of the approximate Riemann solver W̃ (x/t,wL,wR)

2 The approximate Riemann solver

We now derive an approximate Riemann solver W̃ (x/t,wL,wR) made of three waves
with speeds λL, 0 and λR separating two intermediate states w⋆

L and w⋆
R (see Fig. 1).

In order to enforce enough numerical viscosity, these speeds are assumed to satisfy
λL < 0 < λR. As a consequence, this approximate Riemann solver will be fully char-
acterized as soon as the intermediate values ρ⋆

L,R, u⋆L,R and p⋆L,R are given suitable
definitions.

According to the work by Harten, Lax and van Leer [7], the approximate solver
must satisfy the consistency relation

1
∆x

∫ ∆x/2

−∆x/2
W̃

( x
∆ t

,wL,wR

)
dx =

1
∆x

∫ ∆x/2

−∆x/2
WR

( x
∆ t

,wL,wR

)
dx, (4)

where WR(x/t,wL,wR) denotes the exact solution of the Riemann problem for (1). If
the CFL restriction ∆ t

∆x max(|λL|, |λR|)≤ 1
2 is satisfied, we can compute the average

of the approximate Riemann solver W̃ to get an equivalent formulation to (4):(
1
2
+λL

∆ t
∆x

)
wL −λL

∆ t
∆x

w⋆
L +λR

∆ t
∆x

w⋆
R +

(
1
2
−λR

∆ t
∆x

)
wR

=
1

∆x

∫ ∆x/2

−∆x/2
WR

( x
∆ t

,wL,wR

)
dx. (5)

First, we deal with the momentum equation by integrating the momentum com-
ponent of the Riemann solution W ρu

R associated to (1). Provided that the wave ve-
locities involved in the exact Riemann solution WR stay within (λL,λR), we get

1
∆x

∫ ∆x/2

−∆x/2
(ρu)R

( x
∆ t

,wL,wR

)
dx=

ρLuL +ρRuR

2
− ∆ t

∆x
(ρRu2

R+ pR−ρLu2
L− pL)

− 1
∆x

∫ ∆x/2

−∆x/2

∫ ∆ t

0
ρR

(x
t
,wL,wR

)
∂xϕdtdx. (6)
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For the sake of simplicity in the notations, we set

q̂ =
λRρRuR −λLρLuL

λR −λL
− 1

λR −λL
(ρRu2

R + pR −ρLu2
L − pL).

Plugging (6) into relation (5) gives

λRρ⋆
Ru⋆R −λLρ⋆

Lu⋆L
λR −λL

= q̂− 1
(λR −λL)∆ t

∫ ∆x/2

−∆x/2

∫ ∆ t

0
ρR

(x
t
,wL,wR

)
∂xϕdtdx

The integral of the source term is usually difficult to compute exactly, so we propose
the following approximation:

1
∆ t

∫ ∆x/2

−∆x/2

∫ ∆ t

0
ρR

(x
t
,wL,wR

)
∂xϕdtdx ≈ ρ(ϕR −ϕL). (7)

Here, ρ represents an average between ρL and ρR that will be defined later in order
to preserve the steady states. Finally, we get the equation

λRρ⋆
Ru⋆R −λLρ⋆

Lu⋆L
λR −λL

= q̂− 1
(λR −λL)

ρ(ϕR −ϕL). (8)

We adopt the same strategy for the total energy. We introduce the intermediate
total energy as follows:

Ê =
λRER −λLEL

λR −λL
− 1

λR −λL
(uR(ER + pR)−uL(EL + pL)).

Then, an integration of the E-component of the Riemann solution associated to (1)
leads to the following relation:

λRE⋆
R −λLE⋆

L
λR −λL

= Ê − 1
(λR −λL)∆ t

∫ ∆x/2

−∆x/2

∫ ∆ t

0
(ρu)R

(x
t
,wL,wR

)
∂xϕdtdx.

According to (7), we approximate the integral of the source term by

1
∆ t

∫ ∆x/2

−∆x/2

∫ ∆ t

0
(ρu)R

(x
t
,wL,wR

)
∂xϕdtdx ≈ ρ

uL +uR

2
(ϕR −ϕL). (9)

It is worth noticing that we could replace (uL + uR)/2 by any consistent average
between uL and uR, like we did for ρ . However this choice will not intervene into the
preservation of the steady states, so for the sake of simplicity, we use the arithmetic
mean value. We finally obtain the equation

λRE⋆
R −λLE⋆

L
λR −λL

= Ê − 1
(λR −λL)

ρ
uL +uR

2
(ϕR −ϕL). (10)
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Concerning the density, we suggest the three following Rankine-Hugoniot jump
relations through the waves of speed λL, 0 and λR:

ρ⋆
Lu⋆L −ρLuL = λL(ρ⋆

L −ρL), (11)

ρ⋆
Ru⋆R = ρ⋆

Lu⋆L, (12)

ρRuR −ρ⋆
Ru⋆R = λR(ρR −ρ⋆

R). (13)

Let us notice that the consistency relation (5) for the density component is automat-
ically satisfied as soon as the three relations (11), (12) and (13) hold.

To complete the solver, there is one missing equation. We decide to choose a
linearization of the equation (2) describing the steady states:

p⋆R − p⋆L =−ρ(ϕR −ϕL). (14)

The system formed by equations (8), (10), (11), (12), (13) and (14) is easily
solved to find

ρ⋆
L,R = ρL,R +

1
λL,R

(q⋆−ρL,RuL,R), u⋆L,R =
q⋆

ρ⋆
L,R

,

E⋆
L = Ê +

λR

λR −λL

(
ρ⋆

L(u
⋆
L)

2

2
− ρ⋆

R(u
⋆
R)

2

2

)
+

ρ(ϕR −ϕL)

λR −λL

(
λR

γ −1
− uL +uR

2

)
,

E⋆
R = Ê +

λL

λR −λL

(
ρ⋆

L(u
⋆
L)

2

2
− ρ⋆

R(u
⋆
R)

2

2

)
+

ρ(ϕR −ϕL)

λR −λL

(
λL

γ −1
− uL +uR

2

)
,

where we have set
q⋆ = q̂− 1

λR −λL
ρ(ϕR −ϕL).

The characterisation of the approximate Riemann solver will be achieved as soon
as the density average ρ will be stated. The precise definition of ρ will be given in
the next section, accordingly to the well-balanced property.

3 The numerical scheme

Now, we describe the numerical scheme associated with the approximate Riemann
solver W̃ . We consider a mesh of R made of cells [xi−1/2,xi+1/2) for i ∈ Z, with
constant size ∆x = xi+1/2−xi−1/2. We search an update wn+1

i of the solution at time
tn+1, knowing an approximation wn

i at time tn and on the cell [xi−1/2,xi+1/2). We
also introduce a discretization of the gravitational potential ϕ as follows:

ϕi =
1

∆x

∫ xi+1/2

xi−1/2

ϕ(x)dx.
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To evolve this approximate solution from tn to tn+∆ t, we consider the juxtaposition
of Riemann problems located at the interfaces xi+1/2. We denote by λ L,R

i+1/2 the left
and right speed and by ρn

i+1/2 the average value of the density which appear in the

approximate Riemann solver W̃
(

x−xi+1/2
t−tn ,wn

i ,w
n
i+1

)
. To ensure that the approximate

Riemann solvers do not interact, we enforce the CFL condition

∆ t
∆x

max
i∈Z

∣∣∣λ L,R
i+1/2

∣∣∣≤ 1
2
.

Next, we follow the classical procedure for Godunov-type schemes to obtain a nu-
merical scheme. It consists of a step of evolution using the approximate Riemann
solver, followed by a step of projection on the space of piecewise constant functions.
The update approximation at time tn+1 = tn +∆ t is thus given by

wn+1
i =

1
∆x

∫ 0

−∆x/2
W̃

( x
∆ t

,wn
i−1,w

n
i

)
dx+

1
∆x

∫ ∆x/2

0
W̃

( x
∆ t

,wn
i ,w

n
i+1

)
dx.

After straightforward computations, the numerical scheme associated with the
approximate Riemann solver developed in the Section 2 can be written as follows:

ρn+1
i = ρn

i − ∆ t
∆x

(
Fρ

i+1/2 −Fρ
i−1/2

)
,

ρn+1
i un+1

i = ρn
i un

i − ∆ t
∆x

(
Fρu

i+1/2 −Fρu
i−1/2

)
−∆ t

2

(
ρ i−1/2

ϕi−ϕi−1
∆x +ρ i+1/2

ϕi+1−ϕi
∆x

)
,

En+1
i = En

i − ∆ t
∆x

(
FE

i+1/2 −FE
i−1/2

)
−∆ t

2

(
ρ i−1/2

un
i−1+un

i
2

ϕi−ϕi−1
∆x +ρ i+1/2

un
i +un

i+1
2

ϕi+1−ϕi
∆x

)
,

(15)

where the numerical flux is defined by(
Fρ

i+1/2,F
ρu
i+1/2,F

E
i+1/2

)
=
(
Fρ ,Fρu,FE)(wn

i ,w
n
i+1), (16)

Fρ(wL,wR) =
ρLuL +ρRuR

2
+

λL

2
(ρ⋆

L −ρL)+
λR

2
(ρ⋆

R −ρR), (17)

Fρu(wL,wR) =
ρLu2

L + pL +ρRu2
R + pR

2
+

λL

2
(q⋆−ρLuL)+

λR

2
(q⋆−ρRuR), (18)

FE(wL,wR) =
uL(EL + pL)+uR(ER + pR)

2
+

λL

2
(E⋆

L −EL)+
λR

2
(E⋆

R −ER). (19)

Now, we present the properties satisfied by the scheme (15). The first two re-
sults deal with the well-balanced properties and are straightforward according to the
derivation of the scheme. The last result concerns the robustness of the scheme. The
proof is more technical and the reader is referred to [3] for the details.

Theorem 1. Assume there are positive constants α and β such that the initial data
satisfies for all i ∈ Z:
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u0
i = 0, ρ0

i = αe−βϕi , p0
i =

α
β

e−βϕi .

Assume the ρ-average is defined by ρ =

{ ρR−ρL
ln(ρR)−ln(ρL)

if ρL ̸= ρR,

ρL if ρL = ρR.

Then the approximation given by (15) stays at rest: wn
i = w0

i , for all n ∈N and i ∈Z.

Theorem 2. Assume the initial data satisfies the following approximation of (2) for
all i ∈ Z:

u0
i = 0,

pi+1 − pi

∆x
+ρ i+1/2

ϕi+1 −ϕi

∆x
= 0. (20)

Then the approximation given by (15) stays at rest: wn
i = w0

i , for all n ∈N and i ∈Z.

We underline that this result holds true independently of the definition of ρ . In fact,
Theorem 2 states a preservation of approximations of the solutions of (2), according
to the discretization (20).

Finally, we establish the robustness of the scheme (15).

Theorem 3. For all i ∈ Z, assume |λ L
i+1/2| and λ R

i+1/2 are large enough such that

•
∣∣λ R

i+1/2/λ L
i+1/2

∣∣ is large enough if ϕi+1 > ϕi;
•

∣∣λ L
i+1/2/λ R

i+1/2

∣∣ is large enough if ϕi+1 < ϕi.

Then the scheme (15) preserves the set Ω : ∀i ∈ Z, wn
i ∈ Ω ⇒ wn+1

i ∈ Ω .

4 Numerical results

We present now two numerical experiments to underline the relevance of the de-
signed scheme.

The first experiment is taken from [10]. We consider here a constant gravity
field given by the potential ϕ(x) = x. We start with a hydrostatic atmosphere with a
perturbation in pressure:

ρ0(x) = e−x, u0(x) = 0, p0(x) = e−x +0.01e−100(x−0.5)2
.

This initial data is evolved on the computational domain [0,1] using 100 cells until
time t = 0.25. The obtained perturbation in pressure is presented in Fig. 2, where it
is compared to a reference solution computed using 30.000 cells.

The second test is devoted to illustrate the behaviour of the scheme (15) around
a non-hydrostatic steady state. Moreover, this experiment also emphasizes that the
scheme can deal with more complex gravitational fields than the constant one. In-
deed, we consider a gravitational potential given by ϕ(x) = −sin(2πx) on the do-
main [0,1] with periodic boundary conditions. We can easily check that the solution

ρ(x) = 3+2sin(2πx), u(x) = 0, p(x) = 3+3sin(2πx)−0.5cos(4πx) (21)
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is a non-hydrostatic steady state of (1). We evolve the initial data given by (21) until
time t = 1 for different values of the number of cells N. The L1 errors in density and
velocity are shown in Table 1 and we observe that although this steady state is not
exactly preserved, a second-order convergence is achieved. Let us notice that the
scheme (15) is first-order, but this particular steady state is captured up to second-
order. This is due to the fact that equation (14) is a second-order approximation of
(2).
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Fig. 2: Pressure perturbation for the hydro-
static atmosphere

N Density Velocity
100 2.68E-05 – 2.11E-05 –
200 6.05E-06 2.15 5.40E-06 1.97
400 1.09E-06 2.47 1.36E-06 1.99
800 2.20E-07 2.31 3.39E-07 2.00
1600 4.86E-08 2.18 8.46E-08 2.00
3200 1.14E-08 2.09 2.11E-08 2.00

Table 1: L1 error and convergence rates
for the density and the velocity
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