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SECOND-ORDER MUSCL SCHEMES BASED ON DUAL MESH GRADIENT

RECONSTRUCTION (DMGR)

Christophe Berthon1, Yves Coudière2, 3 and Vivien Desveaux1

Abstract. We discuss new MUSCL reconstructions to approximate the solutions of hyperbolic sys-
tems of conservations laws on 2D unstructured meshes. To address such an issue, we write two MUSCL
schemes on two overlapping meshes. A gradient reconstruction procedure is next defined by involving
both approximations coming from each MUSCL scheme. This process increases the number of numer-
ical unknowns, but it allows to reconstruct very accurate gradients. Moreover a particular attention
is paid on the limitation procedure to enforce the required robustness property. Indeed, the invariant
region is usually preserved at the expense of a more restrictive CFL condition. Here, we try to optimize
this condition in order to reduce the computational cost.

Résumé. Nous présentons de nouvelles extensions de la méthode MUSCL pour approcher les solutions
des systèmes hyperboliques de lois de conservation sur des maillages non-structurés. Ici, deux schémas
MUSCL sont écrits sur deux maillages se recouvrant. La procédure de reconstruction des gradients
est alors obtenue à partir des approximations résultant de chacun des schémas MUSCL. Ce procédé
augmente le nombre d’inconnues numériques, mais cela permet de reconstruire des gradients très précis.
Par ailleurs, on portera une attention particulière à la procédure de limitation pour s’assurer que le
schéma vérifie la propriété de robustesse attendue. En effet, la région invariante est habituellement
préservée au prix d’une condition CFL plus restrictive. Nous nous efforçons ici d’optimiser cette
condition afin de réduire le coût de calcul.
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Introduction

The present work is devoted to the numerical approximation of the weak solutions of nonlinear hyperbolic
systems of conservation laws in two dimensions. The system under consideration reads

∂tw + ∂xf(w) + ∂yg(w) = 0, t ≥ 0, (x, y) ∈ R
2, (1)
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where w : R+ × R
2 → Ω stands for the unknown state vector. Here, Ω ⊂ R

d denotes the well-known set of
admissible states and is assumed to be convex. Concerning the flux functions f, g : Ω → R

d, as usual they are
assumed to be smooth enough, at least Lipschitz-continuous.

In addition, we assume that the weak solutions satisfy the following entropy inequalities (see [31, 32])

∂tη(w) + ∂xF(w) + ∂yG(w) ≤ 0, (2)

where w 7→ η(w) is convex and F and G are the entropy flux functions and satisfy the following compatibility
relations:

∇f∇η = ∇F , ∇g∇η = ∇G.

During the few past decades, the derivation of numerical schemes to approximate the weak solutions of (1)
was and remains a very active field and numerous methods are proposed in the literature. In the present
paper, we focus on second-order finite volume schemes (see [23, 33, 43] and references therein) and we here
discuss extensions of the well-known MUSCL scheme introduced by van Leer [44]. According to an a priori
easy derivation of these approaches, the second-order MUSCL method turns out to be one of the most popular
second-order finite volume procedure. Indeed, by considering a standard first-order finite volume scheme, van
Leer [44] suggested to introduce a linear reconstruction of the approximated solution on each cell to evaluate
the numerical flux function arguing these state reconstructions.

The gradient reconstructions are easily defined for 1D problems. We refer the reader to Leveque [33] (see
also [5, 9, 28, 38]) where several approaches are detailed. Of course, these 1D MUSCL reconstructions directly
extend when 2D Cartesian meshes are involved. As soon as an unstructured mesh is considered, an important
issue coming for the MUSCL scheme derivation turns out to be to correctly evaluate the prediction of the
gradients. With triangles as control cells, several techniques of gradient reconstructions were introduced (see
[10–12, 23, 35, 36]) but do not easily extend to more general control cells like for cell-vertex schemes. One of
the aim of the present work is to introduce a gradient reconstruction technique free from the definition of the
control cells. To address such an issue, we suggest a suitable extension of the Discrete Duality Finite Volume
(DDFV) methods [2, 21, 25, 26] to consider nonlinear hyperbolic systems.

In fact, the linear reconstruction procedure turns out to be a crucial point since spurious oscillations may
occur. To avoid such numerical nuisances, a limitation procedure must be considered. A wide literature is
devoted to the derivation of relevant limitations. For a non-exhaustive state of the art, the reader is referred for
instance to the following works: [3,5,7–11,13,18,19,22,27,29,34,37,45]. In [3,19,45], the main objective is the
derivation of genuinely 2D limiters to get relevant reconstructions on unstructured meshes. Such an approach
may enforce too much numerical viscosity in the regions where the solutions are smooth. Authors propose some
additional limiter to artificially reduce the numerical viscosity (see [29,37]). To enforce some stability properties,
articles are devoted to modify usual limiters to satisfy maximum principle statements (for instance [4, 27, 34]).
In these works, the limiter is based on one gradient reconstruction over each cell. Another strategy consists in
introducing one scalar slope per edge within each cell (see [10, 13]).

The limitation is a key-point to ensure some robustness properties. Indeed, the MUSCL extension is not
able to restore the invariance of Ω and a specific attention must be paid on the limitation derivation to ensure
this essential property. Several strategies were introduced during the last decade. For instance, in [7,18,38–40]
the authors introduced a suitable gradient limitation to enforce the required robustness under a restrictive CFL
condition. More recently, to avoid the CFL restriction, in [14, 20], it is suggested an a posteriori limitation by
imposing a vanishing gradient reconstruction as soon as the robustness is lost. Such a technique makes the
scheme Ω-preserving but at the cost of a locally lost of accuracy. As a consequence, it appears that enforcing
robustness of second-order MUSCL schemes needs, in general, more restrictive CFL and therefore induces larger
computational cost. Currently, it seems impossible to avoid such additional CFL restriction coming from the
MUSCL procedure and we have to deal with it. Moreover, one of the goal of the present paper is to optimize
this restriction. From now on, let us mention that the CFL condition is issued from both CFL number of
the associated first-order scheme and the MUSCL robustness. Considering 2D unstructured meshes, we will
establish that the usual first-order CFL condition is not optimal at all (for instance see [40]), introducing a
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non-relevant CFL multiplying factor which is sometime large. As a consequence, involving a rigorous first-order
CFL condition may produce an excessive computation cost. Here, we will exhibit an optimal first-order CFL
condition.

The paper is organized as follows. In the next Section we introduce the main notations and we briefly recall
the derivation of second-order MUSCL schemes for 2D unstructured meshes. A particular attention is paid to
the Ω-preserving property which must be satisfied by the scheme and we recall the CFL restriction to ensure
the required robustness. We conclude this section by exhibiting an optimal CFL condition coming for the
announced first-order scheme. Section 2 deals with the derivation of the Dual Mesh Gradient Reconstruction.
This approach is supplemented by a limitation procedure in order to enforce the Ω-invariant preserving property.
Next, Section 3 is devoted to the numerical experiments. Finally, the paper is concluded in Section 4 with some
comments and perspectives.

1. Main notations and MUSCL scheme

For the sake of completeness, we recall the description of the MUSCL scheme for a 2D unstructured mesh,
and we follow the usual approach (for instance see [23,39]). Next we focus on robustness of the method and we
present new CFL conditions which are less restrictive than usual.

1.1. MUSCL schemes

First, we introduce the main notations to describe the considered unstructured mesh. Let us assume a mesh
made of polygonal control cells (Ki)i∈Z. We denote by γ(i) the index set of the cells neighbouring Ki. For all
j ∈ γ(i), we set eij the common edge which separates Ki and Kj , and νij the unit outward normal to eij (see
Figure 1). To simplify the notations, we introduce |Ki| the area of Ki and Pi =

∑
j∈γ(i) |eij | its perimeter,

where |eij | denotes the length of eij .

Kj3

Kj4

Kj5

Kj1

Kj2

Ki νij1

νij2

νij3

νij4 νij5

e
ij

1

Figure 1. Geometry of the cell Ki

Now, on each cell Ki at time tn, wn
i stands for an approximation of the exact solution of the system (1). To

obtain an approximation at time tn+1 = tn +∆t, the sequence (wn
i )i∈Z evolves in time as follows:

wn+1
i = wn

i −
∆t

|Ki|

∑

j∈γ(i)

|eij |ϕ (wij , wji, νij) , (3)

where wij and wji, assumed to be in Ω, are second-order approximations of the solution at the middle of the
edge eij on each side (see Figure 2). The reconstruction procedure to obtain both wij and wji is the purpose
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of the next section. Concerning the numerical flux function, as usual we assume ϕ to be Lipschitz-continuous,
consistent and conservative (see [23, 33, 43] and references therein).

b

b

b

wn
i

wn
j

wij

wji

Ki

Kj

e
ij

Figure 2. First-order states wn
i and wn

j and second-order reconstructed states wij and wji

In the present work, in order to establish an optimal CFL condition, we restrict our analysis to Godunov-type
numerical flux functions according to the work by Harten, Lax and van Leer [24]. Hence we introduce a one
dimensional approximate Riemann solver w̃ν

(
x
t ;wL, wR

)
assumed to belong to Ω for t > 0 and x ∈ R, defined

by

1

δ

∫ δ
2

− δ
2

w̃ν

(x
t
;wL, wR

)
dx =

1

2
(wL + wR)−

∆t

δ
(hν(wR)− hν(wL)) , (4)

where hν : Ω → R
d defines the flux function in the ν-direction as follows:

hν(w) = νxf(w) + νyg(w), with ν = (νx, νy)
T.

From [24], the relation (4) is relevant as long as the time step ∆t is restricted according to the following CFL
condition:

∆t

δ
max

∣∣λ±(wL, wR, ν)
∣∣ ≤ 1

2
, (5)

where λ±(wL, wR, ν) stand for both maximum and minimum characteristic speeds of the approximate Riemann
solver w̃ν

(
x
t ;wL, wR

)
. As mentioned in [24], let us note that we naturally impose the fan involved by the exact

Riemann solution of the following 1D hyperbolic system of conservation laws:





∂tw + ∂xhν(w) = 0,

w(x, 0) =

{
wL if x < 0,
wR if x > 0,

to be included into the fan coming from w̃ν

(
x
t ;wL, wR

)
.

We are now able to give the 2D numerical flux function:

ϕ(wL, wR, ν) = hν(wL) +
δ

2∆t
wL −

1

∆t

∫ 0

− δ
2

w̃ν

( x

∆t
, wL, wR

)
dx. (6)

Arguing such a definition, we easily have the following statement:
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Lemma 1.1. Assume w̃ν

(
x
t ;w,w

)
= w for all w ∈ Ω. Then the numerical flux function (6) is consistent:

ϕ(w,w, ν) = hν(w), for all w ∈ Ω.

In addition, let us impose that the following relation holds:

∫ 0

− δ
2

w̃ν

(x
t
;wL, wR

)
dx =

∫ δ
2

0

w̃−ν

(x
t
;wR, wL

)
dx, (7)

then the numerical flux function is conservative in the following sense:

ϕ(wL, wR, ν) = −ϕ(wR, wL,−ν). (8)

We skip the proof which is obvious.

Remark 1.2. From now on, let us emphasize that the numerical flux function ϕ, given by (6), is defined
independently from the parameter δ. Indeed, since we have

∫ 0

− δ
2

w̃ν

( x

∆t
, wL, wR

)
dx =

(
δ

2
+ λ−(wL, wR, ν)−∆t

)
wL +

∫ 0

λ−(wL,wR,ν)−∆t

w̃ν

( x

∆t
, wL, wR

)
dx,

where x− = min(0, x), the numerical flux function rewrites

ϕ(wL, wR, ν) = hν(wL) + λ−(wL, wR, ν)−wL −
1

∆t

∫ 0

λ−(wL,wR,ν)−∆t

w̃ν

( x

∆t
, wL, wR

)
dx.

As expected, δ will characterize a mesh length definition. A precise definition of δ will be given later on to
get an optimal CFL condition.

Moreover, once again following [24], we impose the approximate Riemann solver w̃ν to be consistent with
the entropy inequalities (2) as follows:

1

δ

∫ δ
2

− δ
2

η
(
w̃ν

(x
t
;wL, wR

))
dx ≤

1

2
(η(wL) + η(wR))−

∆t

δ
(Hν(wR)−Hν(wL)) , (9)

where Hν : Ω → R
d defines the entropy flux function in the ν-direction given by:

Hν(w) = νxF(w) + νyG(w), with ν = (νx, νy)
T.

This leads to a natural definition of the entropy numerical flux function

Φ(wL, wR, ν) = Hν(wL) +
δ

2∆t
η(wL)−

1

∆t

∫ 0

− δ
2

η
(
w̃ν

( x

∆t
, wL, wR

))
dx. (10)

We can now prove an extension of Lemma 1.1 concerning the entropy:

Lemma 1.3. Assume w̃ν

(
x
t ;w,w

)
= w for all w ∈ Ω. Then the entropy numerical flux function (10) is

consistent:
Φ(w,w, ν) = Hν(w), for all w ∈ Ω.

In addition, let us impose that the following relation holds:

∫ 0

− δ
2

η
(
w̃ν

(x
t
;wL, wR

))
dx =

∫ δ
2

0

η
(
w̃−ν

(x
t
;wR, wL

))
dx, (11)
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then the entropy numerical flux function satisfies the following property

Φ(wL, wR, ν) + Φ(wR, wL,−ν) ≥ 0. (12)

Proof. The consistency is easily proven thanks to (10). To establish the property (12), relations (10) and (11)
give

Φ(wL, wR, ν) = Hν(wL) +
δ

2∆t
η(wL)−

1

∆t

∫ δ
2

0

η
(
w̃−ν

( x

∆t
, wR, wL

))
dx,

which implies

Φ(wL, wR, ν) + Φ(wR, wL,−ν) = Hν(wL) +H−ν(wR) +
δ

2∆t
η(wL) +

δ

2∆t
η(wR)

−
1

∆t

∫ δ
2

− δ
2

η
(
w̃−ν

( x

∆t
, wR, wL

))
dx.

Using the inequality (9) and the exact flux property H−ν = −Hν , we obtain (12). �

Remark 1.4. Let us notice that in Lemma 1.3, (11) has to be satisfied for all entropy η, which is a priori a
strong condition. However the pointwise conservation property

w̃ν

(x
t
, wL, wR

)
= w̃−ν

(
−
x

t
, wR, wL

)
, for all x ∈ R and t > 0, (13)

implies both relations (7) and (11), and it is satisfied by the classical Riemann solvers (Godunov, HLL, Suliciu
relaxation for Euler equations for instance, see [8, 15, 23, 24]).

1.2. A positive preserving first-order scheme

Before we study the robustness of the scheme (3), we propose to analyse the CFL condition, called first-order
CFL condition, to be satisfied by the associated first-order scheme:

wn+1
i = wn

i −
∆t

|Ki|

∑

j∈γ(i)

|eij |ϕ
(
wn

i , w
n
j , νij

)
, (14)

which is obtained by enforcing wij = wn
i in (3).

By considering the numerical flux given by (6) in the following statement, we propose to exhibit an optimal
first-order CFL condition.

Theorem 1.5. For all wL and wR in Ω, assume that w̃ν

(
x
t ;wL, wR

)
stays in Ω. Let wn

i belongs to Ω for all
i ∈ Z. Assume the following CFL restriction:

∆t
Pi

|Ki|
max
j∈γ(i)

∣∣λ±(wn
i , w

n
j , νij)

∣∣ ≤ 1, ∀i ∈ Z. (15)

Then the updated states wn+1
i , given by (14) remain in Ω.

In addition, the scheme (14) satisfies the following entropy inequalities:

η(wn+1
i ) ≤ η(wn

i )−
∆t

|Ki|

∑

j∈γ(i)

|eij |Φ(w
n
i , w

n
j , νij). (16)
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Proof. First, let us note that both CFL conditions (5) and (15) coincide as soon as wL = wn
i , wR = wn

j and

δ = 2|Ki|
Pi

. As a consequence, the integral formulation of the numerical flux (6) can be adopted:

ϕ(wn
i , w

n
j , νij) = hνij (w

n
i ) +

|Ki|

Pi∆t
wn

i −
1

∆t

∫ 0

−
|Ki|

Pi

w̃νij

( x

∆t
, wn

i , w
n
j

)
dx. (17)

Now, by involving the Green formula, let us recall that
∑

j∈γ(i) |eij |hνij (w
n
i ) = 0. Then, by plugging (17) into

(14), we obtain

wn+1
i =

1

|Ki|

∑

j∈γ(i)

|eij |

∫ 0

−
|Ki|

Pi

w̃νij

( x

∆t
, wn

i , w
n
j

)
dx. (18)

Since w̃νij

(
x
∆t , w

n
i , w

n
j

)
∈ Ω and Ω is a convex set, we immediately deduce that

ŵij :=
Pi

|Ki|

∫ 0

−
|Ki|

Pi

w̃νij

( x

∆t
, wn

i , w
n
j

)
dx ∈ Ω.

Finally, the state wn+1
i stands for a convex combination of states in Ω and thus the Ω–preserving property is

established.
To prove the entropy inequalities, we use the convexity of η and the Jensen inequality in equation (18) to get

η(wn+1
i ) ≤

1

|Ki|

∑

j∈γ(i)

|eij |

∫ 0

−
|Ki|

Pi

η
(
w̃νij

( x

∆t
, wn

i , w
n
j

))
dx. (19)

Involving the Green formula, we have

η(wn
i )−

∆t

|Ki|

∑

j∈γ(i)

|eij |

(
Hνij (w

n
i ) +

|Ki|

∆tPi
η(wn

i )

)
= 0. (20)

Summing equations (19) and (20), and using the definition (10), we get exactly the expected entropy inequalities
(16). �

To conclude this section devoted to the presentation of the adopted first-order scheme, let us emphasize that
similar 2D techniques can be found in the literature (for instance see [40]). In general, a specific attention is
paid to the CFL condition and several works [39, 40] involve a half-CFL number. However, it is important to
note that this too restrictive time step easily increases to get the CFL condition (15) as soon as the numerical
flux function comes from an approximate Riemann solver. Moreover, let us notice that the CFL condition (15)
coincides with the one proposed in [7] as soon as the cells are nothing but regular polygons. An easy calculation
shows that the derived CFL condition (15) is less restrictive than the one given in [7] when the cells turn out
to be non-regular polygons.

1.3. Robustness of the MUSCL scheme

The objective is now to extend Theorem 1.5 to second-order MUSCL scheme. To obtain such a result, we
adopt classical decomposition of the MUSCL scheme as a convex combination of first-order schemes (for instance
see [7, 39]). As a consequence, the CFL restriction of the MUSCL scheme is strongly related to the first-order
one (15).

We first need to introduce further notations. Let Gi be the mass center of the cell Ki and for all j ∈ γ(i), we
denote by Tij the triangle formed by the point Gi and the edge eij . These triangles are essential since these are
the subcells on which we will apply Theorem 1.5. Let γ(i, j) be the index set of the two subcells neighbouring
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Tij in the cell Ki. For all k ∈ γ(i, j), we set eijk the common edge which separate Tij and Tik and νijk the unit

outward normal to eijk (see Figure 3). Finally, we denote respectively by |Tij |, Pij and |eij |, the area of the
subcell Tij , its perimeter and the length of the edge eij .

Kj3

Kj4

Kj5

Kj1

Kj2

Tij3

Tij4 Tij5

Tij1

Tij2

eij1j5

νij1j5

bGi

Figure 3. Subcells decomposition of the cell Ki

Arguing these notations, we are able to establish the robustness of the second-order MUSCL scheme.

Theorem 1.6. For all wL and wR in Ω, assume that w̃ν

(
x
t ;wL, wR

)
stays in Ω. Let the average states wn

i

and the reconstructed states wij belong to Ω for all i ∈ Z and for all j ∈ γ(i). Assume the reconstructed states
satisfy the following conservation property:

∑

j∈γ(i)

|Tij |

|Ki|
wij = wn

i . (21)

If the CFL restriction

∆t max
j∈γ(i)

Pij

|Tij |
max

k∈γ(i,j)

{
λ±(wij , wji, νij), λ

±(wij , wik, ν
i
jk)

}
≤ 1, ∀i ∈ Z, (22)

is satisfied, then the updated states wn+1
i , given by (3), remain in Ω.

In addition, the scheme (3) satisfies the following entropy inequalities:

η(wn+1
i ) ≤ ηni −

∆t

|Ki|

∑

j∈γ(i)

|eij |Φ(wij , wji, νij), (23)

where ηni is defined as follows:

ηni =
∑

j∈γ(i)

|Tij |

|Ki|
η(wij). (24)

Proof. At time tn, let us assume that we know a piecewise constant approximate solution whose value on the
subcell Tij is wij . We evolve this solution by the first-order scheme (14) until time tn+1 and we get a state

wn+1
ij on the subcell Tij , given by

wn+1
ij = wij −

∆t

|Tij |


|eij |φ(wij , wji, νij) +

∑

k∈γ(i,j)

|eijk|φ(wij , wik, ν
i
jk)


 .
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Since the CFL condition (22) implies (15), Theorem 1.5 can be applied to ensure that the state wn+1
ij is in

Ω. Next, arguing the flux conservation property (8), we easily establish the following relation satisfied by the
intermediate states wn+1

ij :

1

|Ki|

∑

j∈γ(i)

|Tij |w
n+1
ij =

∑

j∈γ(i)

|Tij |

|Ki|
wij −

∆t

|Ki|

∑

j∈γ(i)

|eij |φ(wij , wji, νij).

Next, involving the conservation assumption (21) and the definition of second-order scheme (3), we immediately
obtain

wn+1
i =

1

|Ki|

∑

j∈γ(i)

|Tij |w
n+1
ij . (25)

Since wn+1
i is nothing but a convex combination of states in Ω, we deduce that wn+1

i belongs to Ω.
In order to establish the entropy inequalities (23)–(24), the second part of Theorem 1.5 ensures that we have

η(wn+1
ij ) ≤ η(wij)−

∆t

|Tij |


|eij |Φ(wij , wji, νij) +

∑

k∈γ(i,j)

|eijk|Φ(wij , wik, ν
i
jk)


 .

The discrete Jensen inequality applied to equation (25) immediately gives

η(wn+1
i ) ≤

1

|Ki|

∑

j∈γ(i)

|Tij |η(w
n+1
ij ),

to deduce

η(wn+1
i ) ≤ ηni −

∆t

|Ki|

∑

j∈γ(i)

|eij |Φ(wij , wji, νij)−
∆t

|Ki|

∑

j∈γ(i)

∑

k∈γ(i,j)

|eijk|Φ(wij , wik, ν
i
jk). (26)

Finally, Lemma 1.3 ensures that ∆t
|Ki|

∑
j∈γ(i)

∑
k∈γ(i,j) |e

i
jk|Φ(wij , wik, ν

i
jk) ≥ 0 and the result is proven. �

To conclude this section, we show that the reconstruction conservation property (21) rewrites in a very
easy equivalent form as soon as a linear reconstruction is adopted. Indeed, let us consider an linear function
w̃i : Ki → R

d defined by

w̃i(X) = wGi
+ µ · (X −Gi) with X ∈ Ki, (27)

where µ ∈ R
d × R

d is a constant given matrix. We introduce Qij the middle of the edge eij to set

wij = w̃i(Qij).

We establish that the condition (21) is satisfied as soon as we have

wGi
= wn

i , (28)

and reversely.
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In one hand, by definition of the mass center Gi, we have
∫
Ki

w̃i(X) dX = |Ki|wGi
. On the other hand, the

mean value of a linear function on the triangles Tij is given by

∫

Tij

w̃i(X) dX = |Tij |w̃i

(
2

3
Qij +

1

3
Gi

)
,

= |Tij |

(
wGi

+
2

3
µ · (Qij −Gi)

)
,

=
2

3
|Tij |wij +

1

3
|Tij |wGi

.

Summing over j, we obtain
∑

j∈γ(i)

|Tij |wij = |Ki|wGi
,

and the condition (28) holds.

2. The DMGR scheme

In this section, we describe the DMGR technique. The main idea is to consider two overlapping meshes,
namely a primal mesh and its associated dual mesh, and to write two distinct finite volume schemes on these
meshes. This process increases the number of numerical unknowns, but it allows to reconstruct very accurate
gradients. First, we introduce some notations and we define the dual mesh. Next, we describe the reconstruction
procedure which is performed in agreement with the assumptions made in Theorem 1.6 to enforce the required
robustness. Finally we show how we take advantage of the two meshes to get states at both vertices and mass
centers.

2.1. Both primal and dual meshes

We consider a polygonal primal mesh {Kp
i }i∈Z of R2. We keep all the notations introduced in Section 1,

adding an exponent p to specify we are dealing with the primal mesh. We now define a dual mesh whose cells
are centered around the vertices of the primal mesh. Therefore, we denote by {Sp

i }i∈Z the set of all the vertices
of the primal mesh and for all i ∈ Z we set δ(i) the index set of all the cells Kp

i which have Sp
i as a vertex.

For each primal vertex Sp
i , we construct an associated dual cell Kd

i obtained by joining the mass centers
(Gp

j )j∈δ(i) of the neighbouring cells. By construction, the vertices of the cell Kd
i are thus the points Gp

j with

j ∈ δ(i). As described in [21], the cells Kd
i may overlap. As a consequence, from here on we only consider

primal meshes such that the cells Kd
i constitute a second partition of R2, namely the dual mesh. Once again,

concerning the dual mesh, we adopt the notations introduced in Section 1 by adding an exponent d. Let us
underline that the vertices Sd

i of the dual mesh coincide with the mass centers Gp
i of the primal mesh. Reversely,

the mass center Gd
i of a dual cell is, in general, distinct from the associated primal vertex Sp

i (see Figure 4).
Provided these two meshes, we write a MUSCL scheme on each of them:

wp,n+1
i = wp,n

i −
∆t

|Kp
i |

∑

j∈γp(i)

|epij |φ
(
wp

ij , w
p
ji, ν

p
ij

)
, (29)

wd,n+1
i = wd,n

i −
∆t

|Kd
i |

∑

j∈γd(i)

|edij |φ
(
wd

ij , w
d
ji, ν

d
ij

)
. (30)

At this level, the derived scheme is completed as soon as the reconstructed states wp
ij and wd

ij are prescribed.
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i

× Center of a dual cell Gd
i

Figure 4. An example of a primal mesh and its associated dual mesh

2.2. Reconstruction process

We now propose a reconstruction procedure over a cell based on the value of the state vector evaluated at
vertices and mass center of the considered cell. Since the procedure is the same on both primal and dual cells,
we detail the reconstruction in a unified way and we omit the exponent p or d respectively. Moreover, in this
section, we assume known the value of the involved state vector at the vertices and the mass center of the
adopted cell. The detail of the evaluation of w at vertices and mass center will be given in the next section.

For the sake of simplicity in the notations, we here consider a cell K with vertices S1, . . . , Sk. In order to
adopt some simplifications, we will abusively write Sk+1 = S1. The mass center of the cell K is denoted G and,
for 1 ≤ i ≤ k, we introduce Ti+1/2 the triangle formed by the points Si, Si+1 and G. At last, Qi+1/2 is the
middle of the edge SiSi+1 (see Figure 5).

T7/2

T9/2
T1/2

T3/2

T5/2

bC
bC

bC

bC

bC

b

b

b

bb

b

S1

S2S3

S4

S5

G

Q3/2

Q5/2

Q7/2

Q9/2
Q1/2

bC
bC

bC

bC

bC

b

b

b

bb

b

w1

w2w3

w4

w5

w0

ŵ3/2

ŵ5/2

ŵ7/2

ŵ9/2
ŵ1/2

Figure 5. Left: geometry of the cell K. Right: known states (black dots) and unknown
reconstructed states (white dots)

We assume known the state vectors wi ∈ Ω at each vertex Si, as well as the state vector w0 ∈ Ω at the mass
center G. The aim is to reconstruct a state vector ŵi+1/2 at each point Qi+1/2. The reader is referred to Figure
5 for an illustration of the locations of the known states and the reconstructed states.

Here, we suggest linear reconstructions. According to (27) and (28), the assumption (21) of Theorem 1.6 will
be satisfied as soon as the considered linear reconstruction w̃µ : K → R

d writes as follows:

w̃µ(X) = w0 + µ · (X −G),

where µ stands for an accurate approximation of the space gradient of the solution. To evaluate µ, a three-step
procedure is adopted.
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First step: Gradient reconstruction
There exists a unique linear function wi : Ti 7→ R

d such that wi(Si) = wi, wi(Si+1) = wi+1 and
wi(G) = w0. Next, let us introduce w : K 7→ R

d, the continuous piecewise linear function defined by

w(X) = wi(X), ∀X ∈ Ti.

Second step: Projection
We define w̃µ : K → R

d, the linear function resulting from the L2-projection of w as follows:

∫

K

‖w(X)− w̃µ(X)‖
2
dX = min

α∈Rd×Rd

∫

K

‖w(X)− w̃α(X)‖
2
dX.

By involving standard convex arguments, we easily have the existence of a unique µ. Let us underline
that the numerical evaluation of µ straightforwardly comes from the minimum of a quadratic function.

Third step: Limitation of the slopes
At this level, we cannot directly consider the reconstructed states given by ŵi+1/2 = w̃µ(Qi+1/2). Indeed,
the reconstruction coming from the above projection-step does not necessarily belong to Ω. To enforce
the reconstruction to be Ω-preserving, we suggest multiplying the slopes by a limiter. Let us consider
the sets of admissible slope limiters as follows:

Fi+1/2 =
{
θ ∈ [0, 1]/ w̃sµ(Qi+1/2) ∈ Ω, ∀s ∈ [0, θ]

}
.

Since for all 0 ≤ i ≤ k − 1 we have w̃0(Qi+1/2) = w0 ∈ Ω, none of the sets Fi+1/2 is empty. We define
the optimal slope limiter as follows:

β = min
0≤i≤k−1

sup(Fi+1/2)− ǫ,

where ǫ > 0 is a fixed parameter such that β ∈
⋂

i

Fi+1/2. As a consequence, we obtain w̃βµ(Qi+1/2) ∈ Ω,

for all 0 ≤ i ≤ k − 1.

The required reconstructed states are given by ŵi+1/2 = w̃βµ(Qi+1/2). By construction, they satisfy the
hypotheses of Theorem 1.6 and therefore the DMGR scheme is Ω-preserving under the CFL condition (22).

2.3. State evaluations at the vertices and at the mass centers

To conclude the presentation of the reconstruction procedure, we have to specify the evaluation of the states
at the vertices and at the mass centers of both primal and dual cells. The primal and dual mass center states
are given by the numerical schemes (29)-(30). In addition, the vertices of the dual mesh exactly coincide with
the mass centers of the primal mesh. As a consequence, the values at a dual vertex are given by the values at
the mass center of the associated primal cell (see Figure 5).

At this level, the reconstruction procedure on the dual cells can be applied. Hence, on each cell Kd
i , we can

characterized the linear function w̃d
i .

Next, to define the primal reconstruction w̃p
i , we need an evaluation of the state vector at vertex Sp

i . As
mentioned before, a vertex Sp

i of the primal mesh do not necessarily coincide with the mass center Gd
i of the

associated dual cell. A basic first choice for the state at the point Sp
i would be to consider the value at the mass

center of the associated dual cell wd,n
i . However this turns out to be a too coarse approximation, mainly with

very distorted meshes. Since the dual reconstruction w̃d
i is known, we suggest to consider w̃d

i (S
p
i ) as the state

value at the point Sp
i which will be a fine approximation as illustrated in the numerical experiments.
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3. Numerical results

The DMGR scheme has been implemented into an unstructured code to approximate the weak solutions of
the 2D Euler equations:

∂t




ρ
ρu
ρv
E


+ ∂x




ρu
ρu2 + p
ρuv

u(E + p)


+ ∂y




ρv
ρuv

ρv2 + p
v(E + p)


 = 0,

where ρ, (u, v), E and p are the density, the velocity, the total energy and the pressure respectively. The system
is closed by the perfect gas law

p = (γ − 1)

(
E − ρ

u2 + v2

2

)
,

with γ ∈ (1, 3] the adiabatic coefficient. In the following numerical experiments, γ will be fixed to 1.4. The set
of admissible states is defined by

Ω =
{
w = (ρ, ρu, ρv, E)T ∈ R

4, ρ > 0, E −
ρ

2
(u2 + v2) > 0

}
.

We have performed several classical test cases to assess the accuracy and the stability of the method. First,
we consider an isentropic vortex to evaluate the errors and the numerical order of convergence. Indeed, the
exact solution of the isentropic vortex is known and smooth enough. Then we proceed with a 2D Riemann
problem as proposed in [30]. We conclude the series of test with two classical experiments, the double Mach
reflection on a ramp and the Mach 3 wind tunnel with a step. These problems emphasize the ability of the
DMGR scheme to accurately capture strong shocks and contact discontinuities. In addition, the Double Mach
reflection on a ramp benchmark is considered to performed several comparisons between the DMGR scheme
and a classical MUSCL reconstruction.

For all tests, the adopted numerical flux function is given by the Suliciu relaxation scheme [8, 15]. We
systematically compare the results obtained by the first-order scheme and by the DMGR scheme. Concerning
the time step restriction, we adopt the derived CFL conditions (15) or (22) according to the order of accuracy.
In order to illustrate the efficiency of the DMGR spatial discretization, we only consider a first-order time
approximation. In order to make a fair comparison, we have to perform the simulations with a number of
degrees of freedom (DOF) of the same order. The number of DOF is the number of numerical unknowns of the
scheme: for the first-order scheme and for the classical MUSCL scheme, it is simply the number of cells of the
mesh, while for the DMGR scheme, it is the number of cells of the primal mesh plus the number of cells of the
dual mesh.

To deal with the boundary conditions, the main difficulty comes from the reconstruction on boundary cells.
Indeed, as soon as the reconstruction at the boundary is known, the boundary flux is evaluated as in usual
finite volume methods. First, let us deal with a dual boundary cell as illustrated on Figure 6. In order to
apply our DMGR reconstruction technique, the unknown state vectors at points A′ and B′ are missing and
must be evaluated. To address such an issue, several interpolation techniques can be considered. We adopt
the simplest one given by w(A′) = w(A) and w(B′) = w(B). At this level, the reconstruction is achieved on
the dual cells and it remains to deal with the primal cells. We easily note that the primal cell reconstruction
procedure introduced in Section 2.3 can be directly applied.

3.1. Isentropic vortex

The isentropic vortex problem is presented in [20,42]. Let us consider a mean flow characterized by ρ∞ = 1,
(u∞, v∞) = (1, 1) and p∞ = 1. We add to this mean flow an isentropic vortex, centered at the point (0, 0),
which is defined by perturbations in velocity and temperature T = p

ρ , but which do not involve perturbation
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bC bC
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A′ B′

Figure 6. Reconstruction on a boundary dual cell. Black dots: known states, white dots:
unknown states

for entropy S = p
ργ . The vortex is given by the conditions:

(δu, δv) =
ǫ

2π
exp

(
1− r2

2

)
(−y, x),

δT = −
(γ − 1)ǫ2

8γπ2
exp(1− r2), δS = 0,

where r2 = x2 + y2 and the vortex strength is set at ǫ = 5. The initial density and pressure are thus given by:

ρ = ρ∞

(
T

T∞

) 1

γ−1

=

(
1−

(γ − 1)ǫ2

8γπ2
exp(1− r2)

) 1

γ−1

,

p = ρT =

(
1−

(γ − 1)ǫ2

8γπ2
exp(1 − r2)

) γ
γ−1

.

The computational domain is given by [−5, 5]× [−5, 5] and we impose periodic boundary conditions. We can
easily check that the exact solution is the convection of the initial vortex at the mean velocity.

In order to estimate the numerical convergence order of the DMGR scheme, we compute the numerical
solution on a series of refined Cartesian meshes. The simulations are stopped at time t = 10, after one period,
which means that the exact solutions at final time and at initial time coincide. We evaluate the numerical
relative L1 and L∞ errors for the density as follows:

err1 =

∑
i |ρ

N
i − ρ0i ||Ki|∑
i |ρ

0
i ||Ki|

and err∞ =
maxi |ρ

N
i − ρ0i |

maxi |ρ0i |
,

where (ρ0i )i and (ρNi )i are respectively the primal cell mean density values at initial time and at final time.
In Table 1, the L1 and L∞ errors and rates of convergence for the first-order scheme and the DMGR scheme

are given. We observe that second-order is effectively reached for the DMGR scheme. The corresponding
convergence curves are displayed in Figure 7.

3.2. 2D Riemann problem

We now turn simulating one of the 2D Riemann problems as proposed in [30]. The computational domain
is [0, 1]× [0, 1] divided into four quadrants by the lines x = 1/2 and y = 1/2. The 2D Riemann problems are
defined by initial constant states on each quadrant given in Table 2.

In order to simplify the boundary condition evaluations, we choose our primal mesh as described Figure 8.
We perform the test using about 1.5 × 106 DOF with both the first-order scheme and the DMGR scheme.

The final computational time is t = 0.3. We show a zoom on the complex structure developing in the center in
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First-order scheme DMGR scheme
Nb DOF L1 error L∞ error Nb DOF L1 error L∞ error

841 2.5718E-02 – 4.5570E-01 – 841 1.3296E-02 – 2.6987E-01 –
1600 2.4529E-02 0.15 4.3359E-01 0.15 3281 4.5387E-03 1.58 9.5782E-02 1.52
6400 2.0611E-02 0.25 3.9529E-01 0.13 12961 1.3228E-03 1.79 2.6453E-02 1.87
25600 1.5421E-02 0.42 3.0631E-01 0.37 52480 3.5605E-04 1.88 6.4104E-03 2.03
102400 1.0073E-02 0.61 1.9370E-01 0.66 205541 9.3363E-05 1.96 1.5533E-03 2.08
409600 5.9059E-03 0.77 1.0518E-01 0.88 409513 4.7932E-05 1.93 7.8221E-04 1.99

Table 1. L1 and L∞ errors and convergence rates for the isentropic vortex problem with the
first-order scheme and the DMGR scheme
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Figure 7. Convergence curves for the isentropic vortex approximated by the first-order scheme
and the DMGR scheme. Left: L1 error. Right: L∞ error.

Figure 9. We clearly note the improvement involved by the DMGR approach and the ability of the scheme to
develop Kelvin-Helmotz instabilities.

left right
ρ u v p ρ u v p

upper 0.5323 1.206 0.0 0.3 1.5 0.0 0.0 1.5
lower 0.138 1.206 1.206 0.029 0.5323 0.0 1.206 0.3

Table 2. Initial states of the 2D Riemann problem in the four quadrants for the density ρ,
the velocity (u, v) and the pressure p

3.3. Double Mach reflection on a ramp

The next experiment concerns the double Mach reflection on a ramp as proposed by Woodward and Colella
in [46] (see also [6, 41]). It involves strong shocks and a very complex structure due to contact discontinuities.
This test consists of the interaction of a planar Mach 10 shock with a ramp making a 30◦ angle with the x-axis.

We assume that the whole computation domain have the following initial condition: ρ = 1.4, (u, v) = (0, 0),
p = 1. We assign reflexive boundary condition to the bottom and the top boundaries. We impose an inflow
condition given by ρ = 8, (u, v) = (8.25, 0) and p = 116.5 on the left side in order to create the Mach 10 shock
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Figure 8. Primal mesh used for the 2D Riemann problem

Figure 9. Density solution of the 2D Riemann problem using 1.5× 106 DOF – Zoom on the
square [0.15, 0.55]2 – Left: first-order approximation – Right: DMGR approximation

and an outflow boundary condition on the right side to let the gas break out. We stop the simulation at time
T = 0.2, before the structure reaches the top boundary.

The test is performed using an unstructured mesh about 3.106 DOF. Figure 10 depicts 30 density isolines
obtained by the first-order scheme and both second-order DMGR scheme and usual MUSCL scheme. In addition,
a zoom (made of 50 density isolines) on the wave interaction area is also displayed. In order to make relevant
the second-order scheme comparison, we use the limiter introduced by Barth and Jespersen [3]. This limiter is
widely used in the literature (for instance, see [19,29,37]). The main shock wave is connected to a triple junction
point with an incident and reflected shock wave. Issuing from the triple point, a slip line appears behind the
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incident wave. Another shock wave appears inside the wave structure coming from the main shock to interact
with the slip line.

As expected, the DMGR scheme captures very accurately this sophisticated wave structure. In addition, the
slip line corresponds to a contact discontinuity and we can see that Kelvin-Helmholtz instabilities are generated.
Let us underline that classical MUSCL schemes are not able to capture such small structures. As mentioned
by [41], the appearance of such small structures in the flow points out the smallness of the inherent numerical
viscosities of the DMGR scheme.

Concerning the efficiency of the DMGR method, this numerical experiment needs 62672 time iterations which
represents a physical mean time step given by ∆t = 3.2×10−6. The computation was performed using a parallel
code for a CPU time of 8h49. As a comparison, the standard MUSCL scheme with the same number of DOF
uses 9h02 of CPU time. This numerical experiment was achieved with 78453 time iterations, which corresponds
to a physical mean time step ∆t = 2.5× 10−6. We note that the DMGR scheme is less CFL restrictive than the
classical MUSCL approach since when we consider the same number of DOF, our method involves larger cells.
Indeed, to get 3×106 DOF, the DMGR method is based on a primal mesh made of 2×106 cells and a dual mesh
made of 1 × 106 cells, whereas the MUSCL technique needs a mesh made of 3 × 106 cells. This explains that
the cells involved by the MUSCL scheme are smaller than the cells involved by the DMGR scheme. However it
seems that each cell computation is a little more expensive for the DMGR reconstruction than for the MUSCL
reconstruction. In conclusion, both methods have a similar CPU time cost, but with better accuracy for the
DMGR technique.

3.4. Mach 3 wind tunnel with a step

The last numerical test is devoted to the Mach 3 wind tunnel with a step, initially proposed in [46]. The wind
tunnel is 1 length unit wide and 3 length units long. The step is located 0.6 length units from the left-hand
side of the domain and is 0.2 length units high. Initially, the wind tunnel is filled with a gas with constant
density ρ = 1.4, pressure p = 1 and velocity (u, v) = (3, 0), describing a uniform Mach 3 flow. Along the walls
of the tunnel (and in front of the step), reflective boundary conditions are prescribed. The same Mach 3 flow
is applied as an inflow condition on the left side and an outflow boundary condition is set on the right side.

Unstructured meshes made of about 1.5×106 DOF are used to compute this test case. Numerical results are
displayed in Figure 11 at time t = 4 using 30 density isolines with both first-order scheme and DMGR scheme.

Once again, the DMGR scheme gives very good results. First of all, we notice Kelvin-Helmotlz instabilities
appearing from the upper slip line. Next, concerning the triple point, the first-order approximation locate it
near the step interface while, as mentioned by [14], it should be exactly located on the step interface. According
to Figure 12, this location default of the triple point is corrected by the DMGR scheme. However we note
some oscillations arising behind the first shock. This is probably due to the lack of a TVD–like criterion in the
presented DMGR reconstruction technique.

4. Conclusion

In the present work, we have presented a new strategy to approximate the gradient of the computed solution.
This procedure stays free from the definition of the mesh (structured or unstructured) and it allows us to
introduce an improvement of the so-called MUSCL schemes. To address such an issue, we have built a dual
mesh. By considering simultaneously both primal and dual meshes, we are able to accurately predict the gradient
of the solution. This process increases the number of DOF compared with the classical MUSCL schemes, but
it remains lower than the number of DOF of the P 1-discontinuous-Galerkin method. Indeed, on a triangular
mesh with N cells, the number of DOF for the P 1-discontinuous-Galerkin method is 3N , while it is about 3N/2
for the DMGR scheme.

Concerning 3D extensions, the main difficulty comes from the derivation of a suitable dual mesh. Several
options were developed in the framework of the DDFV method to approximate the solutions of elliptic/parabolic
equations. For instance, in [1, 17], the strategy lies on a localization of the unknowns at the cell centers and at
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Figure 10. Double Mach reflection on a ramp with 3.106 DOF – On the left, full computational
domain with 30 density isolines. On the right, zoom on the wave interaction area with 50 density
isolines – Top: first-order approximation. Middle: classical MUSCL approximation. Bottom:
DMGR approximation
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Figure 11. Mach 3 wind tunnel with a step with 1.5× 106 DOF – 30 density isolines – Top:
first-order approximation – Bottom: DMGR approximation

Figure 12. Mach 3 wind tunnel with a step with 1.5× 106 DOF – Zoom on the triple point
location – 30 density isolines – Left: first-order approximation – Right: DMGR approximation
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the vertices. Supplementary unknowns can be considered either at the face centers [26] or at the middle of the
edges [16]. It is possible to adapt these 3D DDFV techniques to generalize our DMGR reconstruction technique
to 3D problems.

In addition we have proved the robustness of the suggested strategy by introducing suitable CFL like condi-
tion. Accordingly to several recent works, the obtained second-order CFL is surely not optimal since it does not
restore the first-order CFL as soon as the MUSCL reconstruction vanishes. However the performed numerical
simulations have shown a very good behaviour of the approximations.

The authors would like to thank Guy Moebs of the CCIPL (http://www.ccipl.univ-nantes.fr/) for his help in
optimizing the code.

References

[1] B. Andreianov, M. Bendahmane, and K. H. Karlsen. Discrete duality finite volume schemes for doubly nonlinear degenerate
hyperbolic-parabolic equations. J. Hyperbolic Differ. Equ., 7(1):1–67, 2010.

[2] B. Andreianov, F. Boyer, and F. Hubert. Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on
general 2D meshes. Numerical Methods for Partial Differential Equations, 23(1):145–195, 2007.

[3] T. Barth and D. Jespersen. The design and application of upwind schemes on unstructured meshes. In AIAA, Aerospace
Sciences Meeting, 27 th, Reno, NV, 1989.

[4] Marsha Berger, Michael J Aftosmis, and Scott M Murman. Analysis of slope limiters on irregular grids. In 43rd AIAA Aerospace
Sciences Meeting, volume NAS Technical Report NAS-05-007, 2005.

[5] C. Berthon. Stability of the MUSCL schemes for the Euler equations. Comm. Math. Sci, 3:133–158, 2005.
[6] C. Berthon. Numerical approximations of the 10-moment Gaussian closure. Mathematics of Computation, 75(256):1809–1832,

2006.
[7] C. Berthon. Robustness of MUSCL schemes for 2D unstructured meshes. Journal of Computational Physics, 218(2):495–509,

2006.
[8] F. Bouchut. Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for

sources. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2004.
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[11] C. Calgaro, E. Chane-Kane, E. Creusé, and T. Goudon. L∞-stability of vertex-based MUSCL finite volume schemes on unstruc-

tured grids: Simulation of incompressible flows with high density ratios. Journal of Computational Physics, 229(17):6027–6046,
2010.
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