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Abstract We propose to extend some recent gradient reconstrudtiersa—called

DDFV approaches, to derive accurate finite volume schemegppooximate the
weak solutions of the 2D Euler equations. A particular diternis paid on the limi-

tation procedure to enforce the required robustness pofs&me numerical exper-
iments are performed to highlight the relevance of the ssiggeMUSCL-DDFV

technique.
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1 Introduction

This work is devoted to the numerical approximation of th® Zuler equations,
given as follows:

p ;2)u pv
pu pu“+p puv _

01 PV + dx pUV + ay pVZ + p - Oa (1)
E u(E+p) V(E+p)

wherep > 0 denotes the densitft, v) € R? the velocity vector an& > 0 the total
energy. For the sake of the simplicity in the presentatiompressure is given by the
perfect gas lawp = (y— 1) [E— %(u2 +v2)} . The forthcoming developments will
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easily extend to general pressure laws. To shorten theionsathe system can be
rewritten as follows:
AW + o« f (W) + 9,9(W) =0, (2)

where W = Y(p,pu,pv,E) : R? x R — Q is the unknown state vector and

f(W):Q — R*andg(W) : Q — R* are the flux functions which find clear defi-

nitions. The convex set of admissible states is defined by:
Q:{W€R4;p>0,(u,v)GRZ,Efg(uervz)>0}. 3)

When approximating (1), several strategies have been peapt increase the
accuracy of the numerical solutions among which the mostijaos certainly the
MUSCL scheme (for instance see [16, 15, 12, 13]). This schextends any first—
order scheme into a second—order approximation using &\pise linear recon-
struction. In the 2-D case, the main difficulty is to find a teglue to reconstruct
gradients that can be extended to unstructured meshesi{}ee [

The DDFV (Discrete Duality Finite Volume) method was intunéd in the field
of elliptic equations in order to reconstruct gradients @taidted meshes (see [9, 6,
1, 10]). The idea of this method is to combine two distincténiolume schemes on
two overlapping meshes: the primal mesh and the dual meskentells are built
around the vertices of the primal mesh. This process addsinaverical unknowns
at the vertices of the primal mesh, but it will allow to rectvost very accurate
gradients.

It was first proposed to take advantage of the DDFV gradiemtrder to built
second order schemes for the linear convection—diffusipragon in [5]. In this
paper, new values of the unknown are built at the midpointhefinterfaces by
mean of some averages of the DDFV gradient. The resultingnsehs proved to be
of second order in the diffusive regime.

The aim of this work is to extend DDFV-like methods to the cak¢éhe Eu-
ler equations. As a first step, we have only developed suchtloti®n structured
meshes in order to simplify the computation and to checkfisiency. On unstruc-
tured meshes, the extension of the DDFV gradient is strinighérd. Our recon-
struction and limitation procedures generalize althougjhdpmore technical. Note
that the vertices of the primal cells do not coincide with ¢tleater of gravity of the
dual cells. It might influence the accuracy of the method amdesalternatives will
be considered in future work.

The paper is organized as follows. In Section 2, we introdbealual mesh and
we describe the reconstruction process and the limitationgss of our scheme.
Section 3 concerns the robustness of our scheme. Indeddmait of first—order
schemes, if a numerical solution is initially valued) then it remains i2. Such
a property must be preserved by the second—order accuheamecSection 4 is de-
voted to numerical experiments to illustrate the relevafd@DFV approach when
evaluating second-order reconstructions. We give somelusions and future de-
velopments in Section 5.
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2 Presentation of the scheme

First let us introduce the main notations. We consider a @ritmnesh composed of
rectangular cells

Kij =1 g < ly_pyjeal LieZ (4)

For the sake of simplicity, we will assume that the mesh isarni, and we enforce
Xl =X 1 =YY= h, fo_r all I-,J € Z, whereh > 0 is fixed.

Let W'} stand for an approximation of the mean valuevéfon the cellK;
at timet". We denote byAt > 0 the time increment. At tim&™! = t" 4+ At, the

updated first—order approximation is given by (see [7, 13,12

At
W = W — = (RO W ) — F W5, W)

h L

+G(Vvln] aW H»l) G(Vvlnj l?Wn )) ) (5)
whereF : Q x Q — R*andG: Q x Q — R* are consistent numerical flux functions.
In addition, to avoid some instabilities [12, 13], the tintesis restricted according
to a CFL-like condition given as follows:

At 1
FUB?’Z%(’A (W W )] [Ag (WS W4 ]) < S (6)

whereA (WL, Wk) denotes suitable numerical wave velocities associatetetad-
merical flux function®(\W_,WR).

2.1 Thedual mesh

We denote byBiJr%‘H% = (xi+%,yj+%) the vertices of the primal mesh and by
Bi,j = (Xi,y;j) the center of the primal ceK; ;. Around each vertex of the primal
meshB, 144 We construct a dual ceINIJr 1jed = (X, Xi+1] % [Y¥j,Yj+1]. The set of
the dual ceIIs(Ki+%7j+%)i7j€Z
The centers of the dual cells are the vertices of the primahnaed conversely.

At time t", we assume known approxmatlo‘v/\é1 141 . of the mean values of

constitutes a second mesh which we call dual mesh.

W on cellsK; . 141 As a consequence, at tlnh& on each primal or dual cell,
we know four approxmate values at the vertices and one appate value at the
center (see Fig.1b).

In the sequel, we will deal simultaneously with primal andldecells. We thus
define the set of the indexes of primal and dual cBlls Z?U (Z + 3)2. The

set of primal and dual cells is thefKi |} jes- For (i,j) € S, we denote by
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Q|+_ | (x]Jr ,Yj), the middle of the interface between the ceédlg andKi;q j
and byQ, j+3 = (X,Yj+ %), the middle of the interface between the céllg and

Ki,j+1 (see Fig. 1a). On each cd] j for (i, j) € S, we reconstruct values/? and
W”i at pomtsQil andQ, jtl (see Fig. 1b). Arguing these notations, the second
order scheme reads as follows

Wi,anrl =W - AF [F (V\/|+ J’\Nlil J) F (Wn 1 J’Wn J)
+G< |J+’Wnr+1) G(er Wi )] ()

We now detail the evaluation cwi;j andV\/i”ji. We recall that both the primal

. Qi1 W, wn n o
Byt he Biigitd i-3.0+3 i 3043
T T
T3
n n n
Q 1jt T4 Bij T +Qi1 W2+ WY +WE |
T
: :
B 1.1 B.,1. 1 wWn n Wn
i-3,0-3 Q”;% i+3.0-3 i-3.-3 W i+3.j-3

(@ (b)

Fig. 1: (Left) Geometry of the cekK; ;. (Right) Location of the known states and of
the reconstructed states.

and dual unknowns are solutions of a finite volume scheme tWwheschemes are
coupled through the gradient reconstruction.

2.2 Gradient reconstruction

As a first step, we perform a gradient reconstruction. To @gkisuch an issue, we
derive a relevant cell splitting. We consider a primal orldigdl K; j, (i, j) € S. The
cell can be decomposed into four triangles using the fouioesand the center. We
denote byT; the bottom triangle and the other ones are denotet,p¥s andTy,
clockwise (see Fig. 1a).

We define a functioiV : Kij — R4 piecewise linear on th& and which coin-
cides with the approximate values at the four vertices anideatenter.
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Next, we project each coordinafé of W on the space of linear function which
takes the valugW ;)" at the point; ;. This means that for all integekse [1,4],
we seekuy € R? which minimizes the functiond,(v) : R? — R defined by

Ex(v) :/K

Existence and uniqueness of the minimum are immediate $hreeéunctional is
strictly convex. The numerical computation of the minimwsmuite easy since we
only need to compute the JacobiarEpfand to find its zero. For the sake of simplic-
ity in the notations, we denote iy = (1, Lo, Uz, Ha), the vector of the solutions
of these minimization problems. Hence, we defitig(X) : K — R* the function

whose k-th coordinate ié\A/i[‘j)kJr Ui - (X =B j).

‘W‘(X)* [(\Ni?i)kjLV'(X*Bi,j)] ‘zdx. (8)

i)

2.3 Limitation

We assume that the statéé], (i) €S, are inQ. Let us remark that the recon-
structed functiorVN\/“ does not necessarily remaingh As a consequence, we have
to limit the slopegu. To address such an issue, we propose to substitute thegslope
by 6 whereb € [0, 1] is a limitation parameter to be fixed according to the reqlire
robustness property. To ensure existence and uniquenas®pfimal limited slope,
we have to restric@ to a close set. We fix a small parameder 0 and we define

_ng{WERA';p28,(U,V)ER2,E—§(UZ+V2)28}. (9)
Since we need the values of the reconstructed function dnppiaits Bii%.j and
B ju1. We require\K/e,,(Bii%yj) € Q; andVT/gu(Biyji%) € Q.. We thus define the
optimal slope limiter by

0= max{t €[o, 1]?\7\4“(8&%,1') € QS,VT&“(BL&%) € Qg} . (10)

We emphasize that this set is nonempty since it contains €ldBg, the maximum
is reached becauge; is a close set and— W (B m) is continuous. Solving for
6 requires to find the roots of some quadratic functions (thergn. Finally, the

reconstructed states are given\ifj ; = Wp, (Buz ;) andwW. = W, (B, 1)

3 Robustness

We now establish the robustness of the proposed recoristiugtrst, let us assume
that the directional flux functions andG are first—order robust on both primal and
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dual meshes. Indeed, under the CFL condition

1

At
w max(|)\ W, W )| |’\ (W] WJ+1|) Ik

h ( ]) ] (11)

we assume that the updated states, given by (5) for all paifsin S, stay inQ.
Now, let us recall the following statements (for instance[® 12]) about robustness
of the directional numerical flux functions:

Theorem 1. Let us consider a robust numerical flax Assume that WWs and W

areinQ. LetW, and W' be two reconstructed statesésuch that W= u
Assume the CFL condition
At _ _ - 1

Then we have W- 4! (®(W,",Ws) — d(Wi,W,)) € Q.

We assume that the 1D numerical flu¥eandG are robust. In addition, we assume
that the state®y"}, (i, j) € S are inQ, so that the limitation procedure described in
section 2.3 ensures that the reconstructed tha{fjeFandV\II”Ji (i,j) €S, remainin
Q. To shorten the notations, we set

n
Ae = max (IAZ W WE LA (W2 W) )
Ao = max (IAS (W} W )1 IAG OWE) Wi 1)

By applying Theorem 1 we have

W - % [F (Wirl W J) F (\Nirlltjvvvirl,j)} €Q, (13)

as soon as the CFL restrictigi/r < 1 holds, and we get

At
W — h [G (\Nir,]ﬁ’vvlnj+l ) G (\Ni?jflﬂvvi?j*)} €Q, (14)

under the CFL conditioft Ag < 1.
Considering half sum of (13) and (14), we finally obtam{ffl € Q, for all

(i,j) € S under the CFL condition [12§* max(Ar,Ac) < 3. The robustness of
the proposed numerical method is thus established.
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4 Numerical tests

We have chosen two cases from the collection of 2D Riemariigmts proposed by
[11], namely configuration 3 (p. 594) and 6 (p. 596). They alked case 1 and case
2. These problems are solved on the sqU@r# x [0,1] divided in four quadrants
by linesx=1/2 andy = 1/2. The Riemann problems are defined by initial constant
states on each quadrant. All four 1D Riemann Problems betweeadrants have
exactly one wave: four shocks for the case 1 and four contscbudtinuities for the
case 2. Both cases were computed with primal grids of2R00 cells which repre-
sent about 80,000 cells counting the dual mesh. In ordentptete the scheme (7),
the adopted numerical flux functiofsandG are given by the well-known HLLC
approximate Riemann solver (see [8, 14, 3]). The resultslizm@ayed for density
in Fig. 2. We also provide a comparison with the classical MUScheme on the
liney = xand a comparison of the CPU time between the two methods.

1000 T
DDFV ——

MUSCL e

100 f

CPU time

10

1 . .
1000 10000 100000 le+06
02 0'a 0% 08 1 12 14 16 Number of cells

Fig. 2: Results for the 2D Riemann Problem Case 1 (top left) eamse 2 (top
right) obtained by the derived MUSCL-DDFV scheme. Compuerisetween the
MUSCL-DDFV scheme and the classical MUSCL scheme for caskedsity on
the liney = x (bottom left) and CPU time (bottom right).
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5 Conclusion

We have presented a second—order robust scheme to appteximaolutions of the
2D Euler equations. The main novelty of this work lies in thadient reconstruction
based on the DDFV methods and the use of two overlapping regdlechave shown
that the method gives good results on structured meshesirgythe properties of
the DDVF approach, unstructured mesh extensions will biéyeaistained.

In order to ensure the robustness, we have enforced tha¢toastructed state
vectors remain conservative. Another improvement mustdséopmed to propose
robust non—conservative reconstructions.
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