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Motivations and context

@ K simplicial complex on a set S,
o |K|; geometric realization with |a — 8|1 = > ¢ |a(s) — B(s)],
e (2,8, ) nonatomic standard probability space,

e L£(9, K) measurable functions.
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Motivations and context

@ K simplicial complex on a set S,
o |K|; geometric realization with |a — 8|1 = > ¢ |a(s) — B(s)],
e (2,8, ) nonatomic standard probability space,
e L£(9, K) measurable functions.
Consider the "probability law" map :

VLK) = |K:
f o= a:s—= AN {s})).

— Are its fibers contractible 7

Answer for Aut(2) : Keane's theorem. Proof uses Poincaré’s
recurrence theorem |
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Dynamical system

A dynamical system consists of a phase space X and a rule which
determines how points in X evolve in time. Time can be :
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Dynamical system

A dynamical system consists of a phase space X and a rule which
determines how points in X evolve in time. Time can be :

@ either continuous : given by a first order autonomous differential
equation,

@ or discrete : given by the iterates of a map f: X — X.
Denote O = idy and f™1 = fo f" = f"o f with n € N.

The set X can be
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@ either continuous : given by a first order autonomous differential
equation,

@ or discrete : given by the iterates of a map f: X — X.
Denote O = idy and f™1 = fo f" = f"o f with n € N.
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The map f can be C° C! or C,

Clément Lefévre GdT - Simplicial random variables May 5, 2021 4/24



Dynamical system

A dynamical system consists of a phase space X and a rule which
determines how points in X evolve in time. Time can be :

@ either continuous : given by a first order autonomous differential
equation,

@ or discrete : given by the iterates of a map f: X — X.
Denote O = idy and f™1 = fo f" = f"o f with n € N.

The set X can be topological, a manifold, an algebraic variety,

The map f can be C° C! or C*, algebraic,
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Dynamical system

A dynamical system consists of a phase space X and a rule which
determines how points in X evolve in time. Time can be :

@ either continuous : given by a first order autonomous differential
equation,
@ or discrete : given by the iterates of a map f: X — X.
Denote O = idy and f™1 = fo f" = f"o f with n € N.

The set X can be topological, a manifold, an algebraic variety,

C-analytic,...
The map f can be C° C! or C™, algebraic, holomorphic, ...
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Dynamical system

A dynamical system consists of a phase space X and a rule which
determines how points in X evolve in time. Time can be :

@ either continuous : given by a first order autonomous differential
equation,

@ or discrete : given by the iterates of a map f: X — X.
Denote O = idy and f™1 = fo f" = f"o f with n € N.
The set X can be topological, a manifold, an algebraic variety,
C-analytic,...

The map f can be C° C! or C™, algebraic, holomorphic, ...

Goal: study the orbits {f"(x)}qen for some x € X.
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Questions and examples

When is an orbit finite ?
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When is an orbit finite ?
— Concept of fixed, periodic and preperiodic points.

Example (finite set)

On a finite set X, all points are preperiodic. So, one may look at
periodic points : Per(f,X) := {x € X : f"(x) = x for some n > 1}.
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When is an orbit finite ?
— Concept of fixed, periodic and preperiodic points.

Example (finite set)

On a finite set X, all points are preperiodic. So, one may look at
periodic points : Per(f,X) := {x € X : f"(x) = x for some n > 1}.

Take X = FF,. By Fermat’s little theorem, we have Per(z",F,) = F,
and Per(zP~1F,) = {0, 1}.
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When is an orbit finite ?
— Concept of fixed, periodic and preperiodic points.

Example (finite set)

On a finite set X, all points are preperiodic. So, one may look at
periodic points : Per(f,X) := {x € X : f"(x) = x for some n > 1}.

Take X = FF,. By Fermat’s little theorem, we have Per(z",F,) = F,
and Per(zP~1F,) = {0, 1}.

Example (abelian group)

Let G be an abelian group, let d > 2 be an integer, and let
f: G — G be the d-th power map f(g) = g?.
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Questions and examples

When is an orbit finite ?
— Concept of fixed, periodic and preperiodic points.

Example (finite set)

On a finite set X, all points are preperiodic. So, one may look at
periodic points : Per(f,X) := {x € X : f"(x) = x for some n > 1}.

Take X = FF,. By Fermat’s little theorem, we have Per(z",F,) = F,
and Per(zP~1F,) = {0, 1}.

Example (abelian group)

Let G be an abelian group, let d > 2 be an integer, and let
f: G — G be the d-th power map f(g) = g¢.
Then, Preper(f, G) = Giors.

Clément Lefévre GdT - Simplicial random variables May 5, 2021 5/24



Questions and examples

@ Let X be a topological space and let f : X — X be a continuous
map.
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@ Let X be a topological space and let f : X — X be a continuous
map. One might ask a description of the accumulation points of
an orbit. When is a point recurrent ?

— Later with Poincaré’s recurrence theorem.

@ Let X be a compact metric space. Knowing the behavior of
{f"(x)}nen for a given x € X, one might study {f"(y)}nen for y
close to x. Is the orbit stable ? Is the orbit chaotic ?

Take X =CU {0} and f : z — 2°.
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Questions and examples

@ Let X be a topological space and let f : X — X be a continuous
map. One might ask a description of the accumulation points of
an orbit. When is a point recurrent ?

— Later with Poincaré’s recurrence theorem.

@ Let X be a compact metric space. Knowing the behavior of
{f"(x)}nen for a given x € X, one might study {f"(y)}nen for y
close to x. Is the orbit stable ? Is the orbit chaotic ?
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@ Let X be a topological space and let f : X — X be a continuous
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@ Let X be a topological space and let f : X — X be a continuous
map. One might ask a description of the accumulation points of
an orbit. When is a point recurrent ?

— Later with Poincaré’s recurrence theorem.

@ Let X be a compact metric space. Knowing the behavior of
{f"(x)}nen for a given x € X, one might study {f"(y)}nen for y
close to x. Is the orbit stable ? Is the orbit chaotic ?
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@ There are other questions like the distribution of the points of an
orbit.
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Questions and examples

@ Let X be a topological space and let f : X — X be a continuous
map. One might ask a description of the accumulation points of
an orbit. When is a point recurrent ?

— Later with Poincaré’s recurrence theorem.

@ Let X be a compact metric space. Knowing the behavior of
{f"(x)}nen for a given x € X, one might study {f"(y)}nen for y
close to x. Is the orbit stable ? Is the orbit chaotic ?

Take X = CU {0} and f : z — z2. Outside the unit circle, all the
points goes either to 0 or co. The unit circle is stable under f but
this is not the case of a neighborhood of |z| = 1.

@ There are other questions like the distribution of the points of an

orbit.
— Ergodicity and Birchoff's theorem.
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Questions and examples

More examples in the case of a topological dynamical system (X, T)
with X metric and compact and T continuous.
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Questions and examples

More examples in the case of a topological dynamical system (X, T)
with X metric and compact and T continuous.

o X =T =R, and T (;) — A (;) with A € GL,(Z).

This is an automorphism of the 2-dimensional torus.
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Questions and examples

More examples in the case of a topological dynamical system (X, T)
with X metric and compact and T continuous.

o X =T =R, and T (;) — A (;) with A € GL,(Z).
This is an automorphism of the 2-dimensional torus.

o X ={0,1}"and T : (x4)n>0 = (Xn+1)n>0. This is known as the
shift operator.
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Poincaré's recurrence theorem

We will now consider a measured dynamical system (X, B, i, T) with
(X, B, 1) a probability space, T measurable and y invariant by T.
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Poincaré's recurrence theorem

We will now consider a measured dynamical system (X, B, i, T) with
(X, B, 1) a probability space, T measurable and y invariant by T.

Definition

We say that u is a T-invariant measure (or, equivalently, T is a
measure-preserving transformation) if u(T1B) = u(B) for all
B e B.
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(X, B, 1) a probability space, T measurable and y invariant by T.

We say that  is a T-invariant measure (or, equivalently, T is a
measure-preserving transformation) if u(T1B) = u(B) for all
B e B.

Lemma

The following are equivalent :

© T preserves the measure p,
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Poincaré's recurrence theorem

We will now consider a measured dynamical system (X, B, i, T) with
(X, B, 1) a probability space, T measurable and y invariant by T.

We say that  is a T-invariant measure (or, equivalently, T is a
measure-preserving transformation) if u(T1B) = u(B) for all
B e B.

Lemma
The following are equivalent :

© T preserves the measure p,

@ foreach f € LY(X,B, 1), we have/fdu:/fo T du,

© foreach f € L%(X,B, 1), we have/fdu:/fo T dp.
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Poincaré's recurrence theorem

Examples of maps preserving the measure

° X:']I‘:R/Z, T :x+— x+a mod 1 with « € R and p the
Lebesgue measure. This is a rotation on the circle.
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Poincaré's recurrence theorem

Examples of maps preserving the measure

° X:']I‘:R/Z, T :x+— x+a mod 1 with « € R and p the
Lebesgue measure. This is a rotation on the circle.

o X = R/Z, T : x+— 2x mod 1 and y the Lebesgue measure.
This is known as the doubling map.
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Poincaré's recurrence theorem

Examples of maps preserving the measure

° X:']I‘:R/Z, T :x— x+amod 1 with « € R and p the
Lebesgue measure. This is a rotation on the circle.

o X = R/Z, T : x+— 2x mod 1 and y the Lebesgue measure.
This is known as the doubling map.

We can know look at a remarkable result due to Poincaré !
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Poincaré's recurrence theorem

Theorem (Poincaré’'s Recurrence)

Let T : X — X be a measure preserving transformation of the
probability space (X, B, i). Let B € B be such that u(B) > 0.
Then for pi-a.e. x € B, the orbit { T"x},en returns to B infinitely
often.
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Poincaré's recurrence theorem

Theorem (Poincaré’'s Recurrence)

Let T : X — X be a measure preserving transformation of the
probability space (X, B, i). Let B € B be such that u(B) > 0.
Then for pi-a.e. x € B, the orbit { T"x},en returns to B infinitely
often.

That is to say that it exists E C B with u(E) =
-<n

w(B) such that for
every x € E, it exists integers n; < np, < -- ; < --- such that

Trix € E forall i > 1.
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Poincaré's recurrence theorem

Sketch of the proof :
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Denote F = {x € B | T"x ¢ B for every n > 1}.
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Sketch of the proof :

Let E = {x € B | T"x € B for infinitely many n > 1}. One may
check that p(B\ E) = 0.

Denote F = {x € B | T"x ¢ B for every n > 1}. We have

B\E=|J(T*FnB).

k>0
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Sketch of the proof :

Let E = {x € B | T"x € B for infinitely many n > 1}. One may
check that p(B\ E) = 0.

Denote F = {x € B | T"x ¢ B for every n > 1}. We have

B\E=|J(T*FnB).

k>0

For all k >0, u(T~%F) = u(F) because T preserves the measure

and
> u(F)=p (U T‘kF> < u(X)=1.

k>0
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Poincaré's recurrence theorem

Sketch of the proof :

Let E = {x € B | T"x € B for infinitely many n > 1}. One may
check that p(B\ E) = 0.

Denote F = {x € B | T"x ¢ B for every n > 1}. We have

B\E=|J(T*FnB).

k>0

For all k >0, u(T~%F) = u(F) because T preserves the measure

and
> u(F)=p (U T‘kF> < u(X)=1.

k>0

Whence p(F) =0 and p(B\ E) = 0.
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References

To know more about problems and ideas in dynamics :
@ J. Milnor, Dynamics in One Complex Variable.
@ J. H. Silverman, The Arithmetic of Dynamical Systems.
o C. Walkden, Ergodic Theory.
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Keane's theorem

Let (Q2, B, m) be a nonatomic measure space with m(2) < oo and let
G be the group of automorphisms of Q2. Here by an automorphism,
we mean a bi-measurable transformation that preserves the measure.
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Let (Q2, B, m) be a nonatomic measure space with m(2) < oo and let
G be the group of automorphisms of Q2. Here by an automorphism,
we mean a bi-measurable transformation that preserves the measure.

Theorem (Keane)

G Is contractible.
Find 6 : [0,1] x G — G continuous s.t. (0, T) = id and

(1, T)=T.
Metric on the measure algebra : |E, F| .= m(EAF).
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Keane's theorem

Let (Q2, B, m) be a nonatomic measure space with m(2) < oo and let
G be the group of automorphisms of Q2. Here by an automorphism,
we mean a bi-measurable transformation that preserves the measure.

Theorem (Keane)

G Is contractible.
Find 6 : [0,1] x G — G continuous s.t. (0, T) = id and

(1, T)=T.
Metric on the measure algebra : |E, F| .= m(EAF).

First claim : 3V : [0, 1] — B continuous s.t. ¥(0) = @ and

V(1) =Q.

It uses m(Q2) finite and € is nonatomic. The idea is that we can find
an increasing sequence of sets and a right-inverse to the measure m.

Clément Lefévre GdT - Simplicial random variables May 5, 2021 13 /24



Keane's theorem

Goal : Find ¢ : B x G — G continuous. Then, set

o(t, T) = p(W(t), T) for (t, T) € [0,1] x G.
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Keane's theorem

Goal : Find ¢ : B x G — G continuous. Then, set

O(t, T) = @(W(t), T) for (t, T) € [0,1] x G.

— This is the big part of Keane's article. It uses Poincaré's
recurrence theorem !
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Goal : Find ¢ : B x G — G continuous. Then, set

O(t, T) = @(W(t), T) for (t, T) € [0,1] x G.

— This is the big part of Keane's article. It uses Poincaré's
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Symmetric difference operator :
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Keane's theorem

Goal : Find ¢ : B x G — G continuous. Then, set

O(t, T) = @(W(t), T) for (t, T) € [0,1] x G.

— This is the big part of Keane's article. It uses Poincaré's

recurrence theorem !

Symmetric difference operator :

EAF :=(E\F)U(F\E)=(EUF)\ (ENF).
o Commutative, associative, EA® = E and EAE = &,
o EN(FRAFR)=(ENnFR)A(ENF),

o EA(FUFR) C (EAF) U (EAF,) with equality if F; and F, are
disjoint,
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Keane's theorem

Goal : Find ¢ : B x G — G continuous. Then, set
O(t, T) = @(W(t), T) for (t, T) € [0,1] x G.
— This is the big part of Keane's article. It uses Poincaré's
recurrence theorem !
Symmetric difference operator :
EAF :=(E\F)U(F\E)=(EUF)\ (ENF).
o Commutative, associative, EA® = E and EAE = &,
o EN(RAR) =(ENF)AENF),
o EA(FLUF;) C (EAF) U (EAF,) with equality if F; and F; are
disjoint,
o Y EAF) = fY(E)Af~Y(F) for any function f : B — B.
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Keane's theorem

Togology on G :
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Keane's theorem

Togology on G :

@ Strong one : uniform convergence on B.
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Keane's theorem

Togology on G :
@ Strong one : uniform convergence on B.

@ Weak one : pointwise convergence on B.
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Keane's theorem

Togology on G :
@ Strong one : uniform convergence on B.
@ Weak one : pointwise convergence on B.
Fix EEBand T € G.
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Keane's theorem

Togology on G :
@ Strong one : uniform convergence on B.
@ Weak one : pointwise convergence on B.

Fix E€ B and T € G. By Poincaré’s recurrence theorem, we can
build a partition of Q as follows :
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Keane's theorem

Togology on G :
@ Strong one : uniform convergence on B.
@ Weak one : pointwise convergence on B.

Fix E€ B and T € G. By Poincaré’s recurrence theorem, we can
build a partition of Q as follows :

o QOZEB,
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Keane's theorem

Togology on G :
@ Strong one : uniform convergence on B.
@ Weak one : pointwise convergence on B.

Fix E€ B and T € G. By Poincaré’s recurrence theorem, we can
build a partition of Q as follows :

e O, = EC,

e 01 =ENTE,
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Keane's theorem

Togology on G :
@ Strong one : uniform convergence on B.
@ Weak one : pointwise convergence on B.

Fix E€ B and T € G. By Poincaré’s recurrence theorem, we can
build a partition of Q as follows :

o Qo = EB,
o Oy =ENTE,
o U =En(TEXNn...n(T-,DEXNT*E, for k > 2.
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Keane's theorem

Togology on G :
@ Strong one : uniform convergence on B.
@ Weak one : pointwise convergence on B.

Fix E€ B and T € G. By Poincaré’s recurrence theorem, we can
build a partition of Q as follows :

e O, = EC,

e Oy =ENTE,

o U =En(TEXNn...n(T-,DEXNT*E, for k > 2.
We have an automorphism Tg induced by E and T by

Te(w) = THw), forw € Qu, k=0,1,...
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Keane's theorem

Togology on G :
@ Strong one : uniform convergence on B.
@ Weak one : pointwise convergence on B.

Fix E€ B and T € G. By Poincaré’s recurrence theorem, we can
build a partition of Q as follows :

e O, = EC,

e Oy =ENTE,

o U =En(TEXNn...n(T-,DEXNT*E, for k > 2.
We have an automorphism Tg induced by E and T by

Te(w) = THw), forw € Qu, k=0,1,...

Qy depends continuously on (E, T).
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The map ¢ : B x G — G defined by o(E, T) = Tg is continuous.
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The map ¢ : B x G — G defined by o(E, T) = Tg is continuous.

The statement is true for both topologies on G. \
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The map ¢ : B x G — G defined by o(E, T) = Tg is continuous.

The statement is true for both topologies on G. \

Sketch of the proof for the weak topology on G :
Fix F e Band (E*,T*) € B x G.
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The map ¢ : B x G — G defined by o(E, T) = Tg is continuous.

The statement is true for both topologies on G. \

Sketch of the proof for the weak topology on G :
Fix F € Band (E*, T*) € B x G. Choose ¢ > 0.
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The map ¢ : B x G — G defined by o(E, T) = Tg is continuous.

The statement is true for both topologies on G. l

Sketch of the proof for the weak topology on G :
Fix F € Band (E*, T*) € B x G. Choose ¢ > 0.
Take an integer ko large enough such that
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Let N be a weak neighborhood of (E*, T*) such that for each
(E, T) € N and each 1 < k < ko,
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Let N be a weak neighborhood of (E*, T*) such that for each
(E, T) € N and each 1 < k < kg, we have

m(T*(FN QAT FNQ)) < kio
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Let N be a weak neighborhood of (E*, T*) such that for each
(E, T) € N and each 1 < k < kg, we have

m(T*(FN QAT FNQ)) < kio

Set /\k = Q?; N Qk.
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Let N be a weak neighborhood of (E*, T*) such that for each
(E, T) € N and each 1 < k < kg, we have

m(T*(FN QAT FNQ)) < kio

Set Ay := Q; N Q. Then,

m (U Ak) <E.
k>ko
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What does it mean for ¢ to be weakly continuous ?
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What does it mean for ¢ to be weakly continuous ?

We take a weak neighborhood at the start
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What does it mean for ¢ to be weakly continuous ?

We take a weak neighborhood at the start and we have to show that
Te — TE. pointwise,
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What does it mean for ¢ to be weakly continuous ?

We take a weak neighborhood at the start and we have to show that
Te — TE. pointwise, i.e. that m(Tg(F)ATE.(F)) is small !
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What does it mean for ¢ to be weakly continuous ?
We take a weak neighborhood at the start and we have to show that
Te — TE. pointwise, i.e. that m(Tg(F)ATE.(F)) is small !

ko
In the following, let Ay, = U A, and AEO = U Ag.

k=1 k>ko
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What does it mean for ¢ to be weakly continuous ?
We take a weak neighborhood at the start and we have to show that
Te — TE. pointwise, i.e. that m(Tg(F)ATE.(F)) is small !

ko
In the following, let Ay, = U A, and AEO = U Ag.

k=1 k>ko
Remember that m(AEO) <e.
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Keane's theorem

ko ko
m(Te(F) AT5(F)) < m(Tx (F Ny Ak) ATg (F Ny A;,)) + 2¢
) Je==1

Jeme1

<2+ f‘,m(ﬂ(ﬁ N AYAT*(F N A)).
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Keane's theorem

ko ko
m(Te(F) AT5(F)) < m(Tx (F Ny Ak) ATg (F Ny A;,)) + 2¢
) Je==1

Jeme1

<2+ f‘,m(ﬂ(ﬁ N AYAT*(F N A)).

m(Te(F)AT}. (F)) = m([TE<F>ATg* )N TE<AE(,>)

m([TE<F>AT;5* )N TE<AM)>)
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Keane's theorem

ko ko
m(Te(F) AT5(F)) < m(Tx (F Ny Ak) ATg (F Ny A;,)) + 2¢
) Je==1

Jeme1

<2+ f‘,m(ﬂ(ﬁ N AYAT*(F N A)).

C Tr(AL)

m(Te(F)AT}. (F)) = m([TE<F>ATg* ()N TE<AE(,>)

m([TE<F>AT;5* )N TE<AM)>)
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Keane's theorem

ko ko
m(Te(F) AT5(F)) < m(Tx (F Ny Ak) ATg (F Ny A;,)) + 2¢
) Je==1

Jeme1

<2+ f‘,m(ﬂ(ﬁ N AYAT*(F N A)).

<e

— T

m(Te(F)AT}. (F)) = m([TE<F>ATg* )N TE<AE(,>)

m([TE<F>AT;5* )N TE<AM)>)
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Keane's theorem

ko ko
m(Te(F) AT5(F)) < m(Tx (F Ny Ak) ATg (F Ny A;,)) + 2¢
) Je==1

Jeme1

<2+ f‘,m(ﬂ(ﬁ N AYAT*(F N A)).

m(Te(F)ATs. (F)) < e+m ([TE(F)ATE* (F))N TE(A;\,“)>
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Keane's theorem

ko ko
m(Te(F) AT5(F)) < m(Tx (F Ny Ak) ATg (F Ny A;,)) + 2¢
) Je==1

Jeme1

<2+ f‘,m(ﬂ(ﬁ N AYAT*(F N A)).

m(TE(F)ATE* (F)) <e+ m([TE(F)ATE* (F))N TE(A;\,“)>
—

= Tg(F N Ap))A[TE. (F) N T (Ag, )]
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Keane's theorem

ko ko
m(Te(F) AT5(F)) < m(Tx (F Ny Ak) ATg (F Ny A;,)) + 2¢
) Je==1

Jeme1

<2+ f‘,m(ﬂ(ﬁ N AYAT*(F N A)).

m(TE(F)ATE* (F)) <e+ m([TE(F)ATE* (F))N TE(A;\,“)>
—

= Tg(F N Ap))A[TE. (F) N T (Ag, )]
C Tg(Ak,)
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Keane's theorem

ko ko
m(Te(F) AT5(F)) < m(Tx (F Ny Ak) ATg (F Ny A;,)) + 2¢
) Je==1

Jeme1

<2+ f‘,m(ﬂ(ﬁ N AYAT*(F N A)).

m(TE(F)ATE* (F)) <e+ m([TE(F)ATE* (F))N TE(A;\,“)>
—

= Tg(F N Ap))A[TE. (F) N T (Ag, )]
H/_/

C Tp(Ak,) C Tf.(F)
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Keane's theorem

ko ko
m(Te(F) AT5(F)) < m(Tx (F Ny Ak) ATg (F Ny A;,)) + 2¢
) Je==1

Jeme1

<2+ f‘,m(ﬂ(ﬁ N AYAT*(F N A)).

m(Te(F)ATs. (F)) < e+m ([TE(F)ATE* (F))N TE(A;\,“)>
R
= TE(F N Ako)A[TE* (F) N TE(AkO)]

C TE(F n AkU)ATE* (F)
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Keane's theorem

ko ko
m(Te(F) AT5(F)) < m(Tx (F Ny Ak) ATg (F Ny A;,)) + 2¢
) Je==1

Jeme1

<2+ f‘,m(ﬂ(ﬁ N AYAT*(F N A)).

m(Tp(F)ATS. (F)) < & +m <TE(F N Ay, )ATE. (F)>
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Keane's theorem

ko ko
m(Te(F) AT5(F)) < m(Tx (F Ny Ak) ATg (F Ny A;,)) + 2¢
) Je==1

Jeme1

<2+ f‘,m(ﬂ(ﬁ N AYAT*(F N A)).

m(Tp(F)ATS. (F)) < & +m <TE(F N Ay, )ATE. (F)>

Now, doing the same steps using Th. (Ax,) and T (AEO)
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Keane's theorem

ko ko
m(Te(F) AT5(F)) < m(Tx (F Ny Ak) ATg (F Ny A;,)) + 2¢
) Je==1

Jeme1

<2+ f‘,m(ﬂ(ﬁ N AYAT*(F N A)).

m(Te(F)AT;. (F)) <e+m <TE(F N Ay, ) AT} (F)>
Now, doing the same steps using Tj. (Ax,) and Th. (AS )
m(Te(F)AT). (F)) < 2e+ m<TE(F N Ay ) ATg. (F N Ak0)>
On Ay, Tg = T¥ and T%. = T*F and the measure is subadditive.
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m(THF M A)AT*(F M A)) < m(THF N ADATHF N D))
+ m(THF M G AT*(F M )
+ m(T*(F N G AT*™(F N A),
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m(THF N A AT*(F N A)) < m(T+EF N ADATHEF N 0Y)
+ m(THF N G) AT*(F M )
+ m(T*(F N G AT*™(F N A),

A priori, both sides of the symmetric difference depends on (E, T).
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m(THF N A AT*(F N A)) < m(T+EF N ADATHEF N 0Y)
+ m(THF N G) AT*(F M )
+ m(T*(F N G AT*™(F N A),

A priori, both sides of the symmetric difference depends on (E, T).
To understand it better, we split it by "adding" the terms in Q}.

Clément Lefévre GdT - Simplicial random variables May 5, 2021 20 /24



m(THF N A AT*(F N A)) < m(T+EF N ADATHEF N 0Y)
+ m(THF N G) AT*(F M )
+ m(T*(F N G AT*™(F N A),

A priori, both sides of the symmetric difference depends on (E, T).
To understand it better, we split it by "adding" the terms in Q}.

TY(FNAN)ATH(FNA) C(THFNN)ATH(F N Q)
U THF N QAT (F N Q)
U T*(FNQp)AT™H(FNAL)).
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m(THF N A AT*(F N A)) < m(T+EF N ADATHEF N 0Y)
+ m(THF N G) AT*(F M )
+ m(T*(F N G AT*™(F N A),

A priori, both sides of the symmetric difference depends on (E, T).
To understand it better, we split it by "adding" the terms in Q}.

TY(FNAN)ATH(FNA) C(THFNN)ATH(F N Q)
U THF N QAT (F N Q)
U T*(FNQp)AT™H(FNAL)).

Now, using the preservation of the measure, we may observe that the
first and third terms have the same weight !
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m(THF N A AT*(F N A)) < m(T+EF N ADATHEF N 0Y)
+ m(THF N G) AT*(F M )
+ m(T*(F N G AT*™(F N A),

A priori, both sides of the symmetric difference depends on (E, T).
To understand it better, we split it by "adding" the terms in Q}.

TY(FNAN)ATH(FNA) C(THFNN)ATH(F N Q)
UTHFNQ)ATH(FNQ)
U T*(FNQp)AT™H(FNAL)).
Now, using the preservation of the measure, we may observe that the

first and third terms have the same weight | The second term is
controlled by the estimate given by our choice of the neighborhood M.
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Keane's theorem

* ko
m(Ta(F) AT we(F)) < 2¢ + ka-ki F 23 m(EN AAFNDY,
0

k=1

ko ko
<3e+ 2m( 3 A A}:sﬁ) < 5e.

K=l k=1
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Keane's theorem

* ko
m(Te(F) AT we(F)) < 2¢ + ka-ki F2mFN AAFEN DY),
0

k=1
ko ko »
<3¢+ 2m( 3 A AZQ.) < Se

K=l k=1

It suffices to understand the last "sum".
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Keane's theorem

* ko
m(Te(F) AT we(F)) < 2¢ + ka-ki + 25 m(F N AAFEN D),
0

k=1

ko ko
<3e+ 2m( 3 A AZQI) < 5e.

K=l k=1

It suffices to understand the last "sum".
Note that (F N A )A(F N Q) = F N (AAQ)
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Keane's theorem

* ko
m(Te(F) AT we(F)) < 2¢ + ka-ki + 25 m(F N AAFEN D),
0

k=1

ko ko
<3e+ 2m( 3 A AEQI) < 5e.

K=l k=1

It suffices to understand the last "sum".
Note that (F N A)A(F N Q) = F N (AAQL) and () 1<k<k, are
pairwise disjoint (same goes for (Ax)1<k<k,)-
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Keane's theorem

* ko
m(Te(F) AT we(F)) < 2¢ + ka-ki + 25 m(F N AAFEN D),
0

k=1

ko ko
<3e+ 2m( 3 A AEQI) < 5e.

K=l k=1

It suffices to understand the last "sum".
Note that (F N A)A(F N Q) = F N (AAQL) and () 1<k<k, are
pairwise disjoint (same goes for (Ax)i1<k<k,). Thus, we have

ko ko ko ko
UnaalJa =\ UM
k=1 k=1 k=1 k=1

Clément Lefévre GdT - Simplicial random variables May 5, 2021 21/24



Keane's theorem

* ko
m(Te(F) AT we(F)) < 2¢ + ka-ki + 25 m(F N AAFEN D),
0

k=1

ko ko
< 3e+ 2m( 3 A AEQI) < Se.

K=l k=1

It suffices to understand the last "sum".
Note that (F N A)A(F N Q) = F N (AAQL) and () 1<k<k, are
pairwise disjoint (same goes for (Ax)i1<k<k,). Thus, we have

ko ko ko ko
UnaalJa =\ UM
k=1 k=1 k=1 k=1

and

m(@ﬂi\@/\k> <l—(1-¢)=c.

k=1 k=1
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Expectations

R acts transitively on S* but S! is not contractible !

RxS' — St

~ R _R
(t, eio9) — eZiﬂ't X 6”9 = S /Stab( ) - /Z
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Expectations

R acts transitively on S* but S! is not contractible !

RxS' — St

1 R _R
(t,e) o e¥mt.gt 75 = Stab(1) = VL

But :
o Aut(Q) is contractible.
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R acts transitively on S* but S! is not contractible !

RxS' — St

1 R _R
(t,e) o e¥mt.gt 75 = Stab(1) = VL

But :
o Aut(Q) is contractible.
o Aut(Q) acts transitively on the fibers of V.
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Expectations

R acts transitively on S* but S! is not contractible !

RxS' — St

1 R _R
(t,e) o e¥mt.gt 75 = Stab(1) = VL

But :
o Aut(Q) is contractible.
o Aut(Q) acts transitively on the fibers of V.
e Stab(f) is contractible (by Keane's theorem 1) for f € W~1(a).
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Expectations

R acts transitively on S* but S! is not contractible !

RxSt — St 1 R R
(t,e) s et gif =5 ~ /Stab(l) =7
But :
o Aut(Q) is contractible.
o Aut(Q) acts transitively on the fibers of V.
e Stab(f) is contractible (by Keane's theorem !) for f € W~1(a).

7 0) = A )

— Good hope for V() to be contractible !
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Expectations

R acts transitively on S* but S! is not contractible !

RxSt — St 1 R R
(t,e) s et gif =5 ~ /Stab(l) =7
But :
o Aut(Q) is contractible.
o Aut(Q) acts transitively on the fibers of V.
e Stab(f) is contractible (by Keane's theorem !) for f € W~1(a).

7 0) = A )

— Good hope for V() to be contractible !

— We will see that U is a Serre fibration in the next talk.
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Thank you !
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