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Motivations and context

K simplicial complex on a set S ,
|K |1 geometric realization with |α− β|1 =

∑
s∈S |α(s)− β(s)|,

(Ω,B, λ) nonatomic standard probability space,
L(Ω,K ) measurable functions.

Consider the "probability law" map :

Ψ : L(Ω,K ) → |K |1
f 7→ α : s 7→ λ(f −1({s})).

→ Are its fibers contractible ?
Answer for Aut(Ω) : Keane’s theorem. Proof uses Poincaré’s
recurrence theorem !
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Dynamical system

A dynamical system consists of a phase space X and a rule which
determines how points in X evolve in time. Time can be :

either continuous : given by a first order autonomous differential
equation,
or discrete : given by the iterates of a map f : X → X .

Denote f 0 = idX and f n+1 = f ◦ f n = f n ◦ f with n ∈ N.

The set X can be topological, a manifold, an algebraic variety,
C-analytic,...
The map f can be C0, C1 or C∞, algebraic, holomorphic,...

Goal: study the orbits {f n(x)}n∈N for some x ∈ X .
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Questions and examples

When is an orbit finite ?

→ Concept of fixed, periodic and preperiodic points.

Example (finite set)
On a finite set X , all points are preperiodic. So, one may look at
periodic points : Per(f ,X ) := {x ∈ X : f n(x) = x for some n ≥ 1}.

Take X = Fp. By Fermat’s little theorem, we have Per(zp,Fp) = Fp
and Per(zp−1,Fp) = {0, 1}.

Example (abelian group)
Let G be an abelian group, let d ≥ 2 be an integer, and let
f : G → G be the d-th power map f (g) = gd .
Then, Preper(f ,G ) = Gtors.

Clément Lefèvre GdT - Simplicial random variables May 5, 2021 5 / 24



Questions and examples

When is an orbit finite ?
→ Concept of fixed, periodic and preperiodic points.

Example (finite set)
On a finite set X , all points are preperiodic. So, one may look at
periodic points : Per(f ,X ) := {x ∈ X : f n(x) = x for some n ≥ 1}.

Take X = Fp. By Fermat’s little theorem, we have Per(zp,Fp) = Fp
and Per(zp−1,Fp) = {0, 1}.

Example (abelian group)
Let G be an abelian group, let d ≥ 2 be an integer, and let
f : G → G be the d-th power map f (g) = gd .
Then, Preper(f ,G ) = Gtors.

Clément Lefèvre GdT - Simplicial random variables May 5, 2021 5 / 24



Questions and examples

When is an orbit finite ?
→ Concept of fixed, periodic and preperiodic points.

Example (finite set)
On a finite set X , all points are preperiodic. So, one may look at
periodic points : Per(f ,X ) := {x ∈ X : f n(x) = x for some n ≥ 1}.

Take X = Fp. By Fermat’s little theorem, we have Per(zp,Fp) = Fp

and Per(zp−1,Fp) = {0, 1}.

Example (abelian group)
Let G be an abelian group, let d ≥ 2 be an integer, and let
f : G → G be the d-th power map f (g) = gd .
Then, Preper(f ,G ) = Gtors.

Clément Lefèvre GdT - Simplicial random variables May 5, 2021 5 / 24



Questions and examples

When is an orbit finite ?
→ Concept of fixed, periodic and preperiodic points.

Example (finite set)
On a finite set X , all points are preperiodic. So, one may look at
periodic points : Per(f ,X ) := {x ∈ X : f n(x) = x for some n ≥ 1}.

Take X = Fp. By Fermat’s little theorem, we have Per(zp,Fp) = Fp
and Per(zp−1,Fp) = {0, 1}.

Example (abelian group)
Let G be an abelian group, let d ≥ 2 be an integer, and let
f : G → G be the d-th power map f (g) = gd .
Then, Preper(f ,G ) = Gtors.

Clément Lefèvre GdT - Simplicial random variables May 5, 2021 5 / 24



Questions and examples

When is an orbit finite ?
→ Concept of fixed, periodic and preperiodic points.

Example (finite set)
On a finite set X , all points are preperiodic. So, one may look at
periodic points : Per(f ,X ) := {x ∈ X : f n(x) = x for some n ≥ 1}.

Take X = Fp. By Fermat’s little theorem, we have Per(zp,Fp) = Fp
and Per(zp−1,Fp) = {0, 1}.

Example (abelian group)
Let G be an abelian group, let d ≥ 2 be an integer, and let
f : G → G be the d-th power map f (g) = gd .

Then, Preper(f ,G ) = Gtors.

Clément Lefèvre GdT - Simplicial random variables May 5, 2021 5 / 24



Questions and examples

When is an orbit finite ?
→ Concept of fixed, periodic and preperiodic points.

Example (finite set)
On a finite set X , all points are preperiodic. So, one may look at
periodic points : Per(f ,X ) := {x ∈ X : f n(x) = x for some n ≥ 1}.

Take X = Fp. By Fermat’s little theorem, we have Per(zp,Fp) = Fp
and Per(zp−1,Fp) = {0, 1}.

Example (abelian group)
Let G be an abelian group, let d ≥ 2 be an integer, and let
f : G → G be the d-th power map f (g) = gd .
Then, Preper(f ,G ) = Gtors.

Clément Lefèvre GdT - Simplicial random variables May 5, 2021 5 / 24



Questions and examples

Let X be a topological space and let f : X → X be a continuous
map.

One might ask a description of the accumulation points of
an orbit. When is a point recurrent ?
→ Later with Poincaré’s recurrence theorem.
Let X be a compact metric space. Knowing the behavior of
{f n(x)}n∈N for a given x ∈ X , one might study {f n(y)}n∈N for y
close to x . Is the orbit stable ? Is the orbit chaotic ?

Example
Take X = C ∪ {∞} and f : z 7→ z2. Outside the unit circle, all the
points goes either to 0 or ∞. The unit circle is stable under f but
this is not the case of a neighborhood of |z0| = 1.

There are other questions like the distribution of the points of an
orbit.
→ Ergodicity and Birchoff’s theorem.
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Questions and examples

More examples in the case of a topological dynamical system (X ,T )
with X metric and compact and T continuous.

Examples

X = T2 ' R
2
�Z2 and T :

(
x
y

)
7→ A

(
x
y

)
with A ∈ GL2(Z).

This is an automorphism of the 2-dimensional torus.
X = {0, 1}N and T : (xn)n≥0 7→ (xn+1)n≥0. This is known as the
shift operator.
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Poincaré’s recurrence theorem
We will now consider a measured dynamical system (X ,B, µ,T ) with
(X ,B, µ) a probability space, T measurable and µ invariant by T .

Definition
We say that µ is a T -invariant measure (or, equivalently, T is a
measure-preserving transformation) if µ(T−1B) = µ(B) for all
B ∈ B.

Lemma
The following are equivalent :

1 T preserves the measure µ,

2 for each f ∈ L1(X ,B, µ), we have
∫

f dµ =

∫
f ◦ T dµ,

3 for each f ∈ L2(X ,B, µ), we have
∫

f dµ =

∫
f ◦ T dµ.
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Poincaré’s recurrence theorem

Examples of maps preserving the measure

X = T ' R�Z, T : x 7→ x + α mod 1 with α ∈ R and µ the
Lebesgue measure. This is a rotation on the circle.

X = R�Z, T : x 7→ 2x mod 1 and µ the Lebesgue measure.
This is known as the doubling map.

We can know look at a remarkable result due to Poincaré !
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Poincaré’s recurrence theorem

Theorem (Poincaré’s Recurrence)
Let T : X → X be a measure preserving transformation of the
probability space (X ,B, µ). Let B ∈ B be such that µ(B) > 0.
Then for µ-a.e. x ∈ B , the orbit {T nx}n∈N returns to B infinitely
often.

Remark
That is to say that it exists E ⊂ B with µ(E ) = µ(B) such that for
every x ∈ E , it exists integers n1 < n2 < · · · < nj < · · · such that
T nix ∈ E for all i ≥ 1.
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Poincaré’s recurrence theorem

Sketch of the proof :

Let E = {x ∈ B | T nx ∈ B for infinitely many n ≥ 1}. One may
check that µ(B \ E ) = 0.
Denote F = {x ∈ B | T nx /∈ B for every n ≥ 1}. We have

B \ E =
⋃
k≥0

(T−kF ∩ B).

For all k ≥ 0, µ(T−kF ) = µ(F ) because T preserves the measure
and

+∞∑
k=0

µ(F ) = µ

(⋃
k≥0

T−kF

)
≤ µ(X ) = 1.

Whence µ(F ) = 0 and µ(B \ E ) = 0.
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Keane’s theorem

Let (Ω,B,m) be a nonatomic measure space with m(Ω) <∞ and let
G be the group of automorphisms of Ω. Here by an automorphism,
we mean a bi-measurable transformation that preserves the measure.

Theorem (Keane)
G is contractible.

Find θ : [0, 1]× G → G continuous s.t. θ(0,T ) = id and
θ(1,T ) = T .
Metric on the measure algebra : |E ,F | := m(E∆F ).

First claim : ∃Ψ : [0, 1]→ B continuous s.t. Ψ(0) = ∅ and
Ψ(1) = Ω.
It uses m(Ω) finite and Ω is nonatomic. The idea is that we can find
an increasing sequence of sets and a right-inverse to the measure m.
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Keane’s theorem

Goal : Find ϕ : B × G → G continuous. Then, set
θ(t,T ) = ϕ(Ψ(t),T ) for (t,T ) ∈ [0, 1]× G .

→ This is the big part of Keane’s article. It uses Poincaré’s
recurrence theorem !

Symmetric difference operator :
E∆F := (E \ F ) ∪ (F \ E ) = (E ∪ F ) \ (E ∩ F ).

Commutative, associative, E∆∅ = E and E∆E = ∅,
E ∩ (F1∆F2) = (E ∩ F1)∆(E ∩ F2),
E∆(F1 ∪ F2) ⊂ (E∆F1) ∪ (E∆F2) with equality if F1 and F2 are
disjoint,
f −1(E∆F ) = f −1(E )∆f −1(F ) for any function f : B → B .
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Keane’s theorem

Togology on G :

Strong one : uniform convergence on B .
Weak one : pointwise convergence on B .

Fix E ∈ B and T ∈ G . By Poincaré’s recurrence theorem, we can
build a partition of Ω as follows :

Ω0 = E {,
Ω1 = E ∩ T−1E ,
Ωk = E ∩ (T−1E ){ ∩ · · · ∩ (T−(k−1)E ){ ∩ T−kE , for k ≥ 2.
We have an automorphism TE induced by E and T by

TE (ω) = T k(ω), for ω ∈ Ωk , k = 0, 1, . . .

Remark
Ωk depends continuously on (E ,T ).
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Proof

Lemma
The map ϕ : B × G → G defined by ϕ(E ,T ) = TE is continuous.

Remark
The statement is true for both topologies on G .

Sketch of the proof for the weak topology on G :
Fix F ∈ B and (E ∗,T ∗) ∈ B × G . Choose ε > 0.
Take an integer k0 large enough such that

m

(⋃
k>k0

Ω∗k

)
< ε.
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Proof

Let N be a weak neighborhood of (E ∗,T ∗) such that for each
(E ,T ) ∈ N and each 1 ≤ k ≤ k0,

we have

m(T k(F ∩ Ω∗k)∆T ∗k(F ∩ Ω∗k)) <
ε

k0
.

Set Λk := Ω∗k ∩ Ωk .Then,

m

(⋃
k>k0

Λk

)
< ε.
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Proof

What does it mean for ϕ to be weakly continuous ?

We take a weak neighborhood at the start and we have to show that
TE → T ∗E∗ pointwise, i.e. that m(TE (F )∆T ∗E∗(F )) is small !

In the following, let Ak0 =
k0⋃
k=1

Λk and A{
k0

=
⋃
k>k0

Λk .

Remember that m(A{
k0

) < ε.
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Keane’s theorem

On Λk , TE = T k and T ∗E∗ = T ∗k and the measure is subadditive.
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Proof

A priori, both sides of the symmetric difference depends on (E ,T ).
To understand it better, we split it by "adding" the terms in Ω∗k .

T k(F ∩ Λk)∆T ∗k(F ∩ Λk) ⊂
(
T k(F ∩ Λk)∆T k(F ∩ Ω∗k)

∪ T k(F ∩ Ω∗k)∆T ∗k(F ∩ Ω∗k)

∪ T ∗k(F ∩ Ω∗k)∆T ∗k(F ∩ Λk)
)
.

Now, using the preservation of the measure, we may observe that the
first and third terms have the same weight ! The second term is
controlled by the estimate given by our choice of the neighborhood N .
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Keane’s theorem

It suffices to understand the last "sum".
Note that (F ∩ Λk)∆(F ∩ Ω∗k) = F ∩ (Λk∆Ω∗k) and (Ω∗k)1≤k≤k0 are
pairwise disjoint (same goes for (Λk)1≤k≤k0). Thus, we have

k0⋃
k=1

Λk∆
k0⋃
k=1

Ω∗k =
k0⋃
k=1

Ω∗k \
k0⋃
k=1

Λk ,

and

m

(
k0⋃
k=1

Ω∗k \
k0⋃
k=1

Λk

)
≤ 1− (1− ε) = ε.
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Expectations

R acts transitively on S1 but S1 is not contractible !

R× S1 → S1

(t, e iθ) 7→ e2iπt · e iθ ⇒ S1 ' R�Stab(1) = R�Z.

But :
Aut(Ω) is contractible.
Aut(Ω) acts transitively on the fibers of Ψ.
Stab(f ) is contractible (by Keane’s theorem !) for f ∈ Ψ−1(α).

Ψ−1(α) ' Aut(Ω)�Stab(f ).

→ Good hope for Ψ−1(α) to be contractible !

→ We will see that Ψ is a Serre fibration in the next talk.
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Thank you !
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