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Abstract

In this document, we make an overview of Scilab features so that we can
get familiar with this environment. The goal is to present the core of skills
necessary to start with Scilab. In the first part, we present how to get and
install this software on our computer. We also present how to get some help
with the provided in-line documentation and also thanks to web resources and
forums. In the remaining sections, we present the Scilab language, especially
its structured programming features. We present an important feature of
Scilab, that is the management of real matrices and overview the linear algebra
library. The definition of functions and the elementary management of input
and output variables is presented. We present Scilab’s graphical features and
show how to create a 2D plot, how to configure the title and the legend and
how to export that plot into a vectorial or bitmap format.
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1 Overview

In this section, we present an overview of Scilab. The first subsection introduces the
open source project associated with the creation of this document. Then we present
the software, licence and scientific aspects of Scilab. In the third subsection, we
describe the methods to download and install Scilab on Windows, GNU/Linux and
Mac operating systems. In the remaining subsections, we describe various sources of
information needed when we have to get some help from Scilab or from other users.
We describe the built-in help pages and analyse the mailing lists and wiki which are
available online. Finally, we take a moment to look at the demonstrations which are
provided with Scilab.

1.1 Introduction

This document is an open-source project. The LATEX sources are available on the
Scilab Forge:

http://forge.scilab.org/index.php/p/docintrotoscilab/

The LATEX sources are provided under the terms of the Creative Commons Attribution-
ShareAlike 3.0 Unported License:

http://creativecommons.org/licenses/by-sa/3.0

The Scilab scripts are provided on the Forge, inside the project, under the scripts

sub-directory. The scripts are available under the CeCiLL licence:

http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt

1.2 Overview of Scilab

Scilab is a programming language associated with a rich collection of numerical
algorithms covering many aspects of scientific computing problems.

From the software point of view, Scilab is an interpreted language. This generally
allows to get faster development processes, because the user directly accesses a
high-level language, with a rich set of features provided by the library. The Scilab
language is meant to be extended so that user-defined data types can be defined
with possibly overloaded operations. Scilab users can develop their own modules
so that they can solve their particular problems. The Scilab language allows to
dynamically compile and link other languages such as Fortran and C: this way,
external libraries can be used as if they were a part of Scilab built-in features.
Scilab also interfaces LabVIEW, a platform and development environment for a
visual programming language from National Instruments.

From the license point of view, Scilab is a free software in the sense that the user
does not pay for it and Scilab is an open source software, provided under the Cecill
license [2]. The software is distributed with source code, so that the user has an
access to Scilab’s most internal aspects. Most of the time, the user downloads and
installs a binary version of Scilab, since the Scilab consortium provides Windows,
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Linux and Mac OS executable versions. Online help is provided in many local
languages.

From the scientific point of view, Scilab comes with many features. At the very
beginning of Scilab, features were focused on linear algebra. But, rapidly, the number
of features extended to cover many areas of scientific computing. The following is a
short list of its capabilities:

• Linear algebra, sparse matrices,

• Polynomials and rational functions,

• Interpolation, approximation,

• Linear, quadratic and non linear optimization,

• Ordinary Differential Equation solver and Differential Algebraic Equations
solver,

• Classic and robust control, Linear Matrix Inequality optimization,

• Differentiable and non-differentiable optimization,

• Signal processing,

• Statistics.

Scilab provides many graphics features, including a set of plotting functions,
which allow to create 2D and 3D plots as well as user interfaces. The Xcos environ-
ment provides a hybrid dynamic systems modeler and simulator.

1.3 How to get and install Scilab

Whatever your platform is (i.e. Windows, Linux or Mac), Scilab binaries can be
downloaded directly from the Scilab homepage

http://www.scilab.org

or from the Download area

http://www.scilab.org/download

Scilab binaries are provided for both 32 and 64-bit platforms so that they match
the target installation machine.

Scilab can also be downloaded in source form, so that you can compile Scilab by
yourself and produce your own binary. Compiling Scilab and generating a binary is
especially interesting when we want to understand or debug an existing feature, or
when we want to add a new feature. To compile Scilab, some prerequisites binary
files are necessary, which are also provided in the Download center. Moreover, a
Fortran and a C compiler are required. Compiling Scilab is a process which will not
be detailed further in this document, because this chapter is mainly devoted to the
external behavior of Scilab.
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Figure 1: Scilab console under Windows.

1.3.1 Installing Scilab under Windows

Scilab is distributed as a Windows binary and an installer is provided so that the
installation is really easy. The Scilab console is presented in figure 1. Several com-
ments may be made about this installation process.

On Windows, if your machine is based on an Intel processor, the Intel Math
Kernel Library (MKL) [7] enables Scilab to perform faster numerical computations.

1.3.2 Installing Scilab under Linux

Under Linux, the binary versions are available from Scilab website as .tar.gz files.
There is no need for an installation program with Scilab under Linux: simply unzip
the file in one target directory. Once done, the binary file is located in<path>/scilab-
5.x.x/bin/scilab. When this script is executed, the console immediately appears and
looks exactly the same as on Windows.

Notice that Scilab is also distributed with the packaging system available with
Linux distributions based on Debian (for example, Ubuntu). This installation
method is extremely simple and efficient. Nevertheless, it has one little drawback:
the version of Scilab packaged for your Linux distribution may not be up-to-date.
This is because there is some delay (from several weeks to several months) between
the availability of an up-to-date version of Scilab under Linux and its release in
Linux distributions.

For now, Scilab comes on Linux with a binary linear algebra library which guar-
antees portability. Under Linux, Scilab does not come with a binary version of
ATLAS [1], so that linear algebra is a little slower for that platform, compared to
Windows.
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1.3.3 Installing Scilab under Mac OS

Under Mac OS, the binary versions are available from Scilab website as a .dmg file.
This binary works for Mac OS versions starting from version 10.5. It uses the Mac
OS installer, which provides a classical installation process. Scilab is not available
on Power PC systems.

Scilab version 5.2 for Mac OS comes with a Tcl / Tk library which is disabled for
technical reasons. As a consequence, there are some small limitations on the use of
Scilab on this platform. For example, the Scilab / Tcl interface (TclSci), the graphic
editor and the variable editor are not working. These features will be rewritten in
Java in future versions of Scilab and these limitations will disappear.

Still, using Scilab on a Mac OS system is easy, and uses the shorcuts which
are familiar to the users of this platform. For example, the console and the editor
use the Cmd key (Apple key) which is found on Mac keyboards. Moreover, there
is no right-click on this platform. Instead, Scilab is sensitive to the Control-Click
keyboard event.

For now, Scilab comes on Mac OS with a linear algebra library which is optimized
and guarantees portability. Under Mac OS, Scilab does not come with a binary
version of ATLAS [1], so that linear algebra is a little slower for that platform.

1.4 How to get help

The most simple way to get the online help integrated to Scilab is to use the function
help. Figure 2 presents the Scilab help window. To use this function, simply type
”help” in the console and press the <Enter> key, as in the following session.

help

Suppose that you want some help about the optim function. You may try to
browse the integrated help, find the optimization section and then click on the optim
item to display its help.

Another possibility is to use the function help, followed by the name of the
function, for which help is required, as in the following session.

help optim

Scilab automatically opens the associated entry in the help.
We can also use the help provided on the Scilab web site

http://www.scilab.org/product/man

This page always contains the help for the up-to-date version of Scilab. By using
the ”search” feature of my web browser, I can most of the time quickly find the
help page I need. With that method, I can see the help pages for several Scilab
commands at the same time (for example the commands derivative and optim,
so that I can provide the cost function suitable for optimization with optim by
computing derivatives with derivative).

A list of commercial books, free books, online tutorials and articles is presented
on the Scilab homepage:

http://www.scilab.org/publications
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Figure 2: Scilab help window.

1.5 Mailing lists, wiki and bug reports

The mailing list users@lists.scilab.org is designed for all Scilab usage questions. To
subscribe to this mailing list, send an e-mail to users-subscribe@lists.scilab.org. The
mailing list dev@lists.scilab.org focuses on the development of Scilab, be it the devel-
opment of Scilab core or of complicated modules which interacts deeply with Scilab
core. To subscribe to this mailing list, send an e-mail to dev-subscribe@lists.scilab.org.

These mailing lists are archived at:

http://dir.gmane.org/gmane.comp.mathematics.scilab.user

and:

http://dir.gmane.org/gmane.comp.mathematics.scilab.devel

Therefore, before asking a question, users should consider looking in the archive
if the same question or subject has already been answered.

A question posted on the mailing list may be related to a very specific technical
point, so that it requires an answer which is not general enough to be public. The
address scilab.support@scilab.org is designed for this purpose. Developers of the
Scilab team provide accurate answers via this communication channel.

The Scilab wiki is a public tool for reading and publishing general information
about Scilab:

http://wiki.scilab.org
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Figure 3: Scilab demos window.

It is used both by Scilab users and developers to publish information about Scilab.
From a developer’s point of view, it contains step-by-step instructions to compile
Scilab from the sources, dependencies of various versions of Scilab, instructions to
use Scilab source code repository, etc...

The Scilab Bugzilla http://bugzilla.scilab.org allows to submit a report each time
we find a new bug. It may happen that this bug has already been discovered by
someone else. This is why it is advised to search the bug database for existing related
problems before reporting a new bug. If the bug is not reported yet, it is a very
good thing to report it, along with a test script. This test script should remain as
simple as possible, which allows to reproduce the problem and identify the source
of the issue.

An efficient way of getting up-to-date information is to use RSS feeds. The RSS
feed associated with the Scilab website is

http://www.scilab.org/en/rss_en.xml

This channel regularly delivers press releases and general announces.

1.6 Getting help from Scilab demonstrations and macros

The Scilab consortium maintains a collection of demonstration scripts, which are
available from the console, in the menu ? > Scilab Demonstrations. Figure 3
presents the demonstration window. Some demonstrations are graphic, while some
others are interactive, which means that the user must type on the <Enter> key to
go on to the next step of the demo.

The associated demonstrations scripts are located in the Scilab directory, inside
each module. For example, the demonstration associated with the optimization
module is located in the file

<path>\scilab-5.2.0\modules\optimization\demos\datafit\datafit.dem.sce

Of course, the exact path of the file depends on your particular installation and your
operating system.
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Analyzing the content of these demonstration files is often an efficient solution
for solving common problems and to understand particular features.

Another method to find some help is to analyze the source code of Scilab itself
(Scilab is indeed open-source!). For example, the derivative function is located in

<path>\scilab-5.2.0\modules\optimization\macros\derivative.sci

Most of the time, Scilab macros are very well written, taking care of all possible
combinations of input and output arguments and many possible values of the input
arguments. Often, difficult numerical problems are solved in these scripts so that
they provide a deep source of inspiration for developing your own scripts.

1.7 Exercises

Exercise 1.1 (Installing Scilab) Install the current version of Scilab on your system: at the
time where this document is written, this is Scilab v5.2. It is instructive to install an older version
of Scilab, in order to compare current behavior against the older one. Install Scilab 4.1.2 and see
the differences.

Exercise 1.2 (Inline help: derivative) The derivative function allows to compute the nu-
merical derivative of a function. The purpose of this exercise is to find the corresponding help page,
by various means. In the inline help, find the entry corresponding to the derivative function.
Find the corresponding entry in the online help. Use the console to find the help.

Exercise 1.3 (Asking a question on the forum) You probably already have one or more
questions. Post your question on the users’ mailing list users@lists.scilab.org.

2 Getting started

In this section, we make our first steps with Scilab and present some simple tasks
we can perform with the interpreter.

There are several ways of using Scilab and the following paragraphs present three
methods:

• using the console in the interactive mode,

• using the exec function against a file,

• using batch processing.

2.1 The console

The first way is to use Scilab interactively, by typing commands in the console,
analyzing the results and continuing this process until the final result is computed.
This document is designed so that the Scilab examples which are printed here can
be copied into the console. The goal is that the reader can experiment by himself
Scilab behavior. This is indeed a good way of understanding the behavior of the
program and, most of the time, it allows a quick and smooth way of performing the
desired computation.

In the following example, the function disp is used in the interactive mode to
print out the string ”Hello World!”.
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Figure 4: The completion in the console.

-->s="Hello World!"
s =
Hello World!

-->disp(s)
Hello World!

In the previous session, we did not type the characters ”-->”which is the prompt,
and which is managed by Scilab. We only type the statement s="Hello World!"

with our keyboard and then hit the <Enter> key. Scilab answer is s = and Hello

World!. Then we type disp(s) and Scilab answer is Hello World!.
When we edit a command, we can use the keyboard, as with a regular editor.

We can use the left ← and right → arrows in order to move the cursor on the line
and use the <Backspace> and <Suppr> keys in order to fix errors in the text.

In order to get access to previously executed commands, use the up arrow ↑ key.
This allows to browse the previous commands by using the up ↑ and down ↓ arrow
keys.

The <Tab> key provides a very convenient completion feature. In the following
session, we type the statement disp in the console.

-->disp

Then we can type on the <Tab> key, which makes a list appear in the console,
as presented in figure 4. Scilab displays a listbox, where items correspond to all
functions which begin with the letters ”disp”. We can then use the up and down
arrow keys to select the function we want.

The auto-completion works with functions, variables, files and graphic handles
and makes the development of scripts easier and faster.

2.2 The editor

Scilab version 5.2 provides a new editor which allows to edit scripts easily. Figure 5
presents the editor during the editing of the previous ”Hello World!” example.
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Figure 5: The editor.

The editor can be accessed from the menu of the console, under the Applications
> Editor menu, or from the console, as presented in the following session.

-->editor ()

This editor allows to manage several files at the same time, as presented in
figure 5, where we edit five files at the same time.

There are many features which are worth to mention in this editor. The most
commonly used features are under the Execute menu.

• Load into Scilab allows to execute the statements in the current file, as if we
did a copy and paste. This implies that the statements which do not end with
the semicolon ”;” character will produce an output in the console.

• Evaluate Selection allows to execute the statements which are currently se-
lected.

• Execute File Into Scilab allows to execute the file, as if we used the exec

function. The results which are produced in the console are only those which
are associated with printing functions, such as disp for example.

We can also select a few lines in the script, right click (or Cmd+Click under Mac),
and get the context menu which is presented in figure 6.

The Edit menu provides a very interesting feature, commonly known as a ”pretty
printer” in most languages. This is the Edit > Correct Indentation feature, which

13



Figure 6: Context menu in the editor.

automatically indents the current selection. This feature is extremelly convenient,
as it allows to format algorithms, so that the if, for and other structured blocks
are easy to analyze.

The editor provides a fast access to the inline help. Indeed, assume that we have
selected the disp statement, as presented in figure 7. When we right-click in the
editor, we get the context menu, where the Help about ”disp” entry allows to open
the help page associated with the disp function.

2.3 Docking

The graphics in Scilab version 5 has been updated so that many components are
now based on Java. This has a number of advantages, including the possibility to
manage docking windows.

The docking system uses Flexdock [10], an open-source project providing a Swing
docking framework. Assume that we have both the console and the editor opened
in our environment, as presented in figure 8. It might be annoying to manage two
windows, because one may hide the other, so that we constantly have to move them
around in order to actually see what happens.

The Flexdock system allows to drag and drop the editor into the console, so that
we finally have only one window, with several sub-windows. All Scilab windows are
dockable, including the console, the editor, the help and the plotting windows. In
figure 9, we present a situation where we have docked four windows into the console
window.

In order to dock one window into another window, we must drag and drop the
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Figure 7: Context help in the editor.

Drag from here
and drop into 
the console

Figure 8: The title bar in the source window. In order to dock the editor into the
console, drag and drop the title bar of the editor into the console.
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Click here
to un-dock

Click here to
close the dock

Figure 9: Actions in the title bar of the docking window. The round arrow in the
title bar of the window allows to undock the window. The cross allows to close the
window.

source window into the target window. To do this, we left-click on the title bar of the
docking window, as indicated in figure 8. Before releasing the click, let us move the
mouse over the target window and notice that a window, surrounded by dotted lines
is displayed. This ”phantom” window indicates the location of the future docked
window. We can choose this location, which can be on the top, the bottom, the
left or the right of the target window. Once we have chosen the target location, we
release the click, which finally moves the source window into the target window, as
in figure 9.

We can also release the source window over the target window, which creates
tabs, as in figure 10.

2.4 Using exec

When several commands are to be executed, it may be more convenient to write
these statements into a file with Scilab editor. To execute the commands located in
such a file, the exec function can be used, followed by the name of the script. This
file generally has the extension .sce or .sci, depending on its content:

• files having the .sci extension contain Scilab functions and executing them
loads the functions into Scilab environment (but does not execute them),

• files having the .sce extension contain both Scilab functions and executable
statements.
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The tabs of
the dock

Figure 10: Docking tabs.

Executing a .sce file has generally an effect such as computing several variables and
displaying the results in the console, creating 2D plots, reading or writing into a file,
etc...

Assume that the content of the file myscript.sce is the following.

disp("Hello World !")

In the Scilab console, we can use the exec function to execute the content of this
script.

-->exec("myscript.sce")
-->disp("Hello World !")
Hello World !

In practical situations, such as debugging a complicated algorithm, the interac-
tive mode is used most of the time with a sequence of calls to the exec and disp

functions.

2.5 Batch processing

Another way of using Scilab is from the command line. Several command line
options are available and are presented in figure 11. Whatever the operating system
is, binaries are located in the directory scilab-5.2.0/bin. Command line options
must be appended to the binary for the specific platform, as described below. The
-nw option allows to disable the display of the console. The -nwni option allows
to launch the non-graphics mode: in this mode, the console is not displayed and
plotting functions are disabled (using them will generate an error).
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-e instruction execute the Scilab instruction given in instruction
-f file execute the Scilab script given in the file
-l lang setup the user language

’fr’ for french and ’en’ for english (default is ’en’)
-mem N set the initial stacksize
-ns if this option is present, the startup file scilab.start is not executed
-nb if this option is present, then Scilab welcome banner is not displayed
-nouserstartup don’t execute user startup files SCIHOME/.scilab

or SCIHOME/scilab.ini
-nw start Scilab as command line with advanced features (e.g., graphics)
-nwni start Scilab as command line without advanced features
-version print product version and exit

Figure 11: Scilab command line options.

• Under Windows, two binary executable are provided. The first executable is
WScilex.exe, the usual, graphics, interactive console. This executable cor-
responds to the icon which is available on the desktop after the installation
of Scilab. The second executable is Scilex.exe, the non-graphics console.
With the Scilex.exe executable, the Java-based console is not loaded and
the Windows terminal is directly used. The Scilex.exe program is sensitive
to the -nw and -nwni options.

• Under Linux, the scilab script provides options which allow to configure its
behavior. By default, the graphics mode is launched. The scilab script is
sensitive to the -nw and -nwni options. There are two extra executables on
Linux: scilab-cli and scilab-adv-cli. The scilab-adv-cli executable is
equivalent to the -nw option, while the scilab-cli is equivalent to the -nwni
option[8].

• Under Mac OS, the behavior is similar to the Linux platform.

In the following Windows session, we launch the Scilex.exe program with the
-nwni option. Then we run the plot function in order to check that this function
is not available in the non-graphics mode.

D:\ Programs\scilab -5.2.0\bin >Scilex.exe -nwni
___________________________________________

scilab -5.2.0
Consortium Scilab (DIGITEO)

Copyright (c) 1989 -2009 (INRIA)
Copyright (c) 1989 -2007 (ENPC)

___________________________________________
Startup execution:

loading initial environment
-->plot()

!--error 4
Undefined variable: plot
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The most useful command line option is the -f option, which allows to execute
the commands from a given file, a method generally called batch processing. Assume
that the content of the file myscript2.sce is the following, where the quit function
is used to exit from Scilab.

disp("Hello World !")
quit()

The default behavior of Scilab is to wait for new user input: this is why the quit

command is used, so that the session terminates. To execute the demonstration
under Windows, we created the directory ”C:\scripts” and wrote the statements in
the file C:\scripts\myscript2.sce. The following session, executed from the MS
Windows terminal, shows how to use the -f option to execute the previous script.
Notice that we used the absolute path of the Scilex.exe executable.

C:\scripts >D:\ Programs\scilab -5.2.0\ bin\Scilex.exe -f myscript2.sce
___________________________________________

scilab -5.2.0
Consortium Scilab (DIGITEO)

Copyright (c) 1989 -2009 (INRIA)
Copyright (c) 1989 -2007 (ENPC)

___________________________________________
Startup execution:

loading initial environment
Hello World !

C:\scripts >

Any line which begins with the two slash characters ”//” is considered by Scilab
as a comment and is ignored. To check that Scilab stays by default in interactive
mode, we comment out the quit statement with the ”//” syntax, as in the following
script.

disp("Hello World !")
//quit()

If we type the ”scilex -f myscript2.sce” command in the terminal, Scilab
will now wait for user input, as expected. To exit, we interactively type the quit()

statement in the terminal.

2.6 Exercises

Exercise 2.1 (The console) Type the following statement in the console.

atoms

Now type on the <Tab> key. What happens? Now type the ”I” letter, and type again on <Tab>.
What happens?

Exercise 2.2 (Using exec) When we develop a Scilab, script we often use the exec function
in combination with the ls function, which displays the list of files and directories in the current
directory. We can also use the pwd, which displays the current directory. The SCI variable contains
the name of the directory of the current Scilab installation. We use it very often to execute the
scripts which are provided in Scilab. Type the following statements in the console and see what
happens.

pwd
SCI
ls(SCI+"/modules")
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ls(SCI+"/modules/graphics/demos")
exec(SCI+"/modules/graphics/demos/2 d_3d_plots/contourf.dem.sce")
exec(SCI+"/modules/graphics/demos/2 d_3d_plots/contourf.dem.sce");

3 Basic elements of the language

Scilab is an interpreted language, which means that it allows to manipulate variables
in a very dynamic way. In this section, we present the basic features of the language,
that is, we show how to create a real variable, and what elementary mathematical
functions can be applied to a real variable. If Scilab provided only these features,
it would only be a super desktop calculator. Fortunately, it is a lot more and this
is the subject of the remaining sections, where we will show how to manage other
types of variables, that is booleans, complex numbers, integers and strings.

It seems strange at first, but it is worth to state it right from the start: in
Scilab, everything is a matrix. To be more accurate, we should write: all real,
complex, boolean, integer, string and polynomial variables are matrices. Lists and
other complex data structures (such as tlists and mlists) are not matrices (but can
contain matrices). These complex data structures will not be presented in this
document.

This is why we could begin by presenting matrices. Still, we choose to present
basic data types first, because Scilab matrices are in fact a special organization of
these basic building blocks.

In Scilab, we can manage real and complex numbers. This always leads to some
confusion if the context is not clear enough. In the following, when we write real
variable, we will refer to a variable which content is not complex. Complex variables
will be covered in section 3.7 as a special case of real variables. In most cases, real
variables and complex variables behave in a very similar way, although some extra
care must be taken when complex data is to be processed. Because it would make
the presentation cumbersome, we simplify most of the discussions by considering
only real variables, taking extra care with complex variables only when needed.

3.1 Creating real variables

In this section, we create real variables and perform simple operations with them.
Scilab is an interpreted language, which implies that there is no need to declare

a variable before using it. Variables are created at the moment where they are first
set.

In the following example, we create and set the real variable x to 1 and perform
a multiplication on this variable. In Scilab, the ”=” operator means that we want
to set the variable on the left hand side to the value associated with the right hand
side (it is not the comparison operator, which syntax is associated with the ”==”
operator).

-->x=1
x =

1.
-->x = x * 2
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+ addition
- subtraction
∗ multiplication
/ right division, i.e. x/y = xy−1

\ left division, i.e. x\y = x−1y
ˆ power, i.e. xy

∗∗ power (same as )̂
’ transpose conjugate

Figure 12: Scilab elementary mathematical operators.

x =
2.

The value of the variable is displayed each time a statement is executed. That
behavior can be suppressed if the line ends with the semicolon ”;” character, as in
the following example.

-->y=1;
-->y=y*2;

All the common algebraic operators presented in figure 12 are available in Scilab.
Notice that the power operator is represented by the hat ”̂ ” character so that com-
puting x2 in Scilab is performed by the ”x̂ 2”expression or equivalently by the ”x**2”
expression. The single quote ”’ ” operator will be presented in more depth in sec-
tion 3.7, which presents complex numbers. It will be reviewed again in section 4.12,
which deals with the conjugate transpose of a matrix.

3.2 Variable names

Variable names may be as long as the user wants, but only the first 24 characters
are taken into account in Scilab. For consistency, we should consider only variable
names which are not made of more than 24 characters. All ASCII letters from ”a”
to ”z”, from ”A” to ”Z” and digits from ”0” to ”9” are allowed, with the additional
characters ”%”, ”_”, ”#”, ”!”, ”$”, ”?”. Notice though that variable names, whose first
letter is ”%”, have a special meaning in Scilab, as we will see in section 3.5, which
presents the pre-defined mathematical variables.

Scilab is case sensitive, which means that upper and lower case letters are con-
sidered to be different by Scilab. In the following script, we define the two variables
A and a and check that these two variables are considered to be different by Scilab.

-->A = 2
A =

2.
-->a = 1
a =

1.
-->A
A =

2.
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-->a
a =

1.

3.3 Comments and continuation lines

Any line which begins with two slashes ”//” is considered by Scilab as a comment
and is ignored. There is no possibility to comment out a block of lines, such as with
the ”/* ... */” comments in the C language.

When an executable statement is too long to be written on a single line, the
second and subsequent lines are called continuation lines. In Scilab, any line which
ends with two dots is considered to be the start of a new continuation line. In the
following session, we give examples of Scilab comments and continuation lines.

-->// This is my comment.
-->x=1..
-->+2..
-->+3..
-->+4
x =

10.

3.4 Elementary mathematical functions

Tables 13 and 14 present a list of elementary mathematical functions. Most of these
functions take one input argument and return one output argument. These functions
are vectorized in the sense that their input and output arguments are matrices. This
allows to compute data with higher performance, without any loop.

In the following example, we use the cos and sin functions and check the equality
cos(x)2 + sin(x)2 = 1.

-->x = cos(2)
x =
- 0.4161468

-->y = sin(2)
y =

0.9092974
-->x^2+y^2
ans =

1.

3.5 Pre-defined mathematical variables

In Scilab, several mathematical variables are pre-defined variables, whose names be-
gin with a percent ”%” character. The variables which have a mathematical meaning
are summarized in figure 15.

In the following example, we use the variable %pi to check the mathematical
equality cos(x)2 + sin(x)2 = 1.
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acos acosd acosh acoshm acosm acot acotd acoth

acsc acscd acsch asec asecd asech asin asind

asinh asinhm asinm atan atand atanh atanhm atanm

cos cosd cosh coshm cosm cotd cotg coth

cothm csc cscd csch sec secd sech sin

sinc sind sinh sinhm sinm tan tand tanh

tanhm tanm

Figure 13: Scilab elementary mathematical functions: trigonometry.

exp expm log log10 log1p log2 logm max

maxi min mini modulo pmodulo sign signm sqrt

sqrtm

Figure 14: Scilab elementary mathematical functions: other functions.

-->c=cos(%pi)
c =
- 1.

-->s=sin(%pi)
s =

1.225D-16
-->c^2+s^2
ans =

1.

The fact that the computed value of sin(π) is not exactly equal to 0 is a conse-
quence of the fact that Scilab stores the real numbers with floating point numbers,
that is, with limited precision.

3.6 Booleans

Boolean variables can store true or false values. In Scilab, true is written with %t

or %T and false is written with %f or %F. Figure 16 presents the several comparison
operators which are available in Scilab. These operators return boolean values and
take as input arguments all basic data types (i.e. real and complex numbers, integers
and strings). The comparison operators are reviewed in section 4.14, where the
emphasis is made on comparison of matrices.

In the following example, we perform some algebraic computations with Scilab
booleans.

%i the imaginary number i
%e Euler’s constant e
%pi the mathematical constant π

Figure 15: Pre-defined mathematical variables.
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a&b logical and
a|b logical or
∼a logical not
a==b true if the two expressions are equal
a∼=b or a<>b true if the two expressions are different
a<b true if a is lower than b

a>b true if a is greater than b

a<=b true if a is lower or equal to b

a>=b true if a is greater or equal to b

Figure 16: Comparison operators.

real real part
imag imaginary part
imult multiplication by i, the imaginary unitary
isreal returns true if the variable has no complex entry

Figure 17: Scilab complex numbers elementary functions.

-->a=%T
a =
T

-->b = ( 0 == 1 )
b =
F

-->a&b
ans =
F

3.7 Complex numbers

Scilab provides complex numbers, which are stored as pairs of floating point numbers.
The pre-defined variable %i represents the mathematical imaginary number i which
satisfies i2 = −1. All elementary functions previously presented before, such as sin
for example, are overloaded for complex numbers. This means that, if their input
argument is a complex number, the output is a complex number. Figure 17 presents
functions which allow to manage complex numbers.

In the following example, we set the variable x to 1 + i, and perform several
basic operations on it, such as retrieving its real and imaginary parts. Notice how
the single quote operator, denoted by ”’ ”, is used to compute the conjugate of a
complex number.

-->x= 1+%i
x =

1. + i
-->isreal(x)
ans =
F
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int8 int16 int32

uint8 uint16 uint32

Figure 18: Scilab integer data types.

-->x’
ans =

1. - i
-->y=1-%i
y =

1. - i
-->real(y)
ans =

1.
-->imag(y)
ans =
- 1.

We finally check that the equality (1+ i)(1− i) = 1− i2 = 2 is verified by Scilab.

-->x*y
ans =

2.

3.8 Integers

We can create various types of integer variables with Scilab. The functions which
allow to create such integers are presented in figure 18.

In this section, we first review the basic features of integers, which are associated
with a particular range of values. Then we analyze the conversion between integers.
In the final section, we consider the behaviour of integers at the boundaries and
focus on portability issues.

3.8.1 Overview of integers

There is a direct link between the number of bits used to store an integer and
the range of values that the integer can manage. The range of an integer variable
depends on the number of its bits.

• An n-bit signed integer takes its values from the range [−2n−1, 2n−1 − 1].

• An n-bit unsigned integer takes its values from the range [0, 2n − 1].

For example, an 8-bit signed integer, as created by the int8 function, can store
values in the range [−27, 27 − 1], which simplifies to [−128, 127]. The map from the
type of integer to the corresponding range of values is presented in figure 19.

In the following session, we check that an unsigned 32-bit integer has values
inside the range [0, 232 − 1], which simplifies to [0, 4294967295].

-->format (25)
-->n=32
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y=int8(x) a 8-bit signed integer in [−27, 27 − 1] = [−128, 127]
y=uint8(x) a 8-bit unsigned integer in [0, 28 − 1] = [0, 255]
y=int16(x) a 16-bit signed integer in [−215, 215 − 1] = [−32768, 32767]
y=uint16(x) a 16-bit unsigned integer in [0, 216 − 1] = [0, 65535]
y=int32(x) a 32-bit signed integer in [−231, 231 − 1] = [−2147483648, 2147483647]
y=uint32(x) a 32-bit unsigned integer in [0, 232 − 1] = [0, 4294967295]

Figure 19: Scilab integer functions.

iconvert conversion to integer representation
inttype type of integers

Figure 20: Scilab integer conversion functions.

n =
32.

-->2^n - 1
ans =

4294967295.
-->i = uint32 (0)
i =
0

-->j=i-1
j =
4294967295

-->k = j+1
k =
0

3.8.2 Conversions between integers

There are functions which allow to convert to and from integer data types. These
functions are presented in figure 20.

The inttype function allows to inquire about the type of an integer variable.
Depending on the type, the function returns a corresponding value, as summarised
in table 21.

inttype(x) Type
1 8-bit signed integer
2 16-bit signed integer
4 32-bit signed integer
11 8-bit unsigned integer
12 16-bit unsigned integer
14 32-bit unsigned integer

Figure 21: Types of integers returned by the inttype function.
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When two integers are added, the types of the operands are analyzed: the re-
sulting integer type is the larger, so that the result can be stored. In the following
script, we create an 8-bit integer i (which is associated with inttype=1) and a
16-bit integer j (which is associated with inttype=2). The result is stored in k, a
16-bit signed integer.

-->i=int8 (1)
i =
1

-->inttype(i)
ans =

1.
-->j=int16 (2)
j =
2

-->inttype(j)
ans =

2.
-->k=i+j
k =
3

-->inttype(k)
ans =

2.

3.8.3 Circular integers and portability issues

The behaviour of integers at the range boundaries deserves a particular analysis,
since it is different from software to software. In Scilab, the behaviour is circular,
that is, if an integer at the upper limit is incremented, the next value is at the lower
limit. An example of circular behaviour is given in the following session, where

-->uint8 (0+( -4:4))
ans =
252 253 254 255 0 1 2 3 4

-->uint8 (2^8+( -4:4))
ans =
252 253 254 255 0 1 2 3 4

-->int8 (2^7+( -4:4))
ans =
124 125 126 127 -128 -127 -126 -125 -124

This is in contrast with other mathematical packages, such as Octave or Matlab.
In these packages, if an integer is at the upper limit, the next integer stays at the
upper limit. In the following Octave session, we execute the same computations as
previously.

octave -3.2.4. exe:1> uint8 (0+( -4:4))
ans =

0 0 0 0 0 1 2 3 4
octave -3.2.4. exe:5> uint8 (2^8+( -4:4))
ans =

252 253 254 255 255 255 255 255 255
octave -3.2.4. exe:2> int8 (2^7+( -4:4))
ans =
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124 125 126 127 127 127 127 127 127

The Scilab circular way allows for a greater flexibility in the processing of integers,
since it allows to write algorithms with fewer if statements. But these algorithms
must be checked, particularly if they involve the boundaries. Moreover, translating
a script from another computation system into Scilab may lead to different results.

3.9 Floating point integers

In Scilab, the default numerical variable is the double, that is the 64-bit floating point
number. This is true even if we write what is mathematically an integer. In [9],
Cleve Moler call this number a ”flint”, a short for floating point integer. In practice,
we can safely store integers in the interval [−252, 252] into doubles. We emphasize
that, provided that all input, intermediate and output integer values are strictly
inside the [−252, 252] interval, the integer computations are exact. For example, in
the following example, we perform the exact addition of two large integers which
remain in the ”safe” interval.

-->format (25)
-->a= 2^40 - 12
a =

1099511627764.
-->b= 2^45 + 3
b =

35184372088835.
-->c = a + b
c =

36283883716599.

Instead, when we perform computations outside this interval, we may have unex-
pected results. For example, in the following session, we see that additions involving
terms slightly greater than 253 produce only even values.

-->format (25)
-->(2^53 + (1:10)) ’
ans =

9007199254740992.
9007199254740994.
9007199254740996.
9007199254740996.
9007199254740996.
9007199254740998.
9007199254741000.
9007199254741000.
9007199254741000.
9007199254741002.

In the following session, we compute 252 using the floating point integer 2 in the
first case, and using the 16-bit integer 2 in the second case. In the first case, no
overflow occurs, even if the number is at the limit of 64-bit floating point numbers.
In the second case, the result is completely wrong, because the number 252 cannot
be represented as a 16-bit integer.

-->2^52
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ans =
4503599627370496.

-->uint16 (2^52)
ans =
0

In section 4.15, we analyze the issues which arise when indexes involved to access
the elements of a matrix are doubles.

3.10 The ans variable

Whenever we make a computation and do not store the result into an output variable,
the result is stored in the default ans variable. Once it is defined, we can use this
variable as any other Scilab variable.

In the following session, we compute exp(3) so that the result is stored in the
ans variable. Then we use its content as a regular variable.

-->exp(3)
ans =

20.08553692318766792368
-->t = log(ans)
t =

3.

In general, the ans variable should be used only in an interactive session, in
order to progress in the computation without defining a new variable. For example,
we may have forgotten to store the result of an interesting computation and do not
want to recompute the result. This might be the case after a long sequence of trials
and errors, where we experimented several ways to get the result without taking
care of actually storing the result. In this interactive case, using ans may allow to
save some human (or machine) time. Instead, if we are developping a script used in
a non-interactive way, it is a bad practice to rely on the ans variable and we should
store the results in regular variables.

3.11 Strings

Strings can be stored in variables, provided that they are delimited by double quotes
”" ”. The concatenation operation is available from the ”+” operator. In the follow-
ing Scilab session, we define two strings and then concatenate them with the ”+”
operator.

-->x = "foo"
x =
foo

-->y="bar"
y =
bar

-->x+y
ans =
foobar

They are many functions which allow to process strings, including regular ex-
pressions. We will not give further details about this topic in this document.
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3.12 Dynamic type of variables

When we create and manage variables, Scilab allows to change the type of a variable
dynamically. This means that we can create a real value, and then put a string
variable in it, as presented in the following session.

-->x=1
x =

1.
-->x+1
ans =

2.
-->x="foo"
x =
foo

-->x+"bar"
ans =
foobar

We emphasize here that Scilab is not a typed language, that is, we do not have
to declare the type of a variable before setting its content. Moreover, the type of a
variable can change during the life of the variable.

3.13 Exercises

Exercise 3.1 (Precedence of operators) What are the results of the following computations
(think about it before trying in Scilab) ?

2 * 3 + 4
2 + 3 * 4
2 / 3 + 4
2 + 3 / 4

Exercise 3.2 (Parentheses) What are the results of the following computations (think about it
before trying in Scilab) ?

2 * (3 + 4)
(2 + 3) * 4
(2 + 3) / 4
3 / (2 + 4)

Exercise 3.3 (Exponents) What are the results of the following computations (think about it
before trying in Scilab) ?

1.23456789 d10
1.23456789 e10
1.23456789e-5

Exercise 3.4 (Functions) What are the results of the following computations (think about it
before trying in Scilab) ?

sqrt (4)
sqrt (9)
sqrt(-1)
sqrt(-2)
exp(1)
log(exp (2))
exp(log (2))
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10^2
log10 (10^2)
10^ log10 (2)
sign (2)
sign(-2)
sign (0)

Exercise 3.5 (Trigonometry) What are the results of the following computations (think about
it before trying in Scilab) ?

cos(0)
sin(0)
cos(%pi)
sin(%pi)
cos(%pi/4) - sin(%pi/4)

4 Matrices

In the Scilab language, matrices play a central role. In this section, we introduce
Scilab matrices and present how to create and query matrices. We also analyze how
to access the elements of a matrix, either element by element, or by higher-level
operations.

4.1 Overview

In Scilab, the basic data type is the matrix, which is defined by:

• the number of rows,

• the number of columns,

• the type of data.

The data type can be real, integer, boolean, string and polynomial. When two
matrices have the same number of rows and columns, we say that the two matrices
have the same shape.

In Scilab, vectors are a particular case of matrices, where the number of rows (or
the number of columns) is equal to 1. Simple scalar variables do not exist in Scilab:
a scalar variable is a matrix with 1 row and 1 column. This is why in this chapter,
when we analyze the behavior of Scilab matrices, there is the same behavior for row
or column vectors (i.e. n×1 or 1×n matrices) as well as scalars (i.e. 1×1 matrices).

It is fair to say that Scilab was designed mainly for matrices of real variables.
This allows to perform linear algebra operations with a high-level language.

By design, Scilab was created to be able to perform matrix operations as fast
as possible. The building block for this feature is that Scilab matrices are stored
in an internal data structure which can be managed at the interpreter level. Most
basic linear algebra operations, such as addition, substraction, transpose or dot
product are performed by a compiled, optimized, source code. These operations are
performed with the common operators ”+”, ”-”, ”*” and the single quote ”’ ”, so
that, at the Scilab level, the source code is both simple and fast.
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With these high-level operators, most matrix algorithms do not require to use
loops. In fact, a Scilab script which performs the same operations with loops is
typically from 10 to 100 times slower. This feature of Scilab is known as the vec-
torization. In order to get a fast implementation of a given algorithm, the Scilab
developer should always use high-level operations, so that each statement processes
a matrix (or a vector) instead of a scalar.

More complex tasks of linear algebra, such as the resolution of systems of lin-
ear equations Ax = b, various decompositions (for example Gauss partial pivotal
PA = LU), eigenvalue/eigenvector computations, are also performed by compiled
and optimized source codes. These operations are performed by common opera-
tors like the slash ”/” or backslash ”\” or with functions like spec, which computes
eigenvalues and eigenvectors.

4.2 Create a matrix of real values

There is a simple and efficient syntax to create a matrix with given values. The
following is the list of symbols used to define a matrix:

• square brackets ”[” and ”]” mark the beginning and the end of the matrix,

• commas ”,” separate the values in different columns,

• semicolons ”;” separate the values of different rows.

The following syntax can be used to define a matrix, where blank spaces are optional
(but make the line easier to read) and ”...” denotes intermediate values:

A = [a11 , a12 , ..., a1n; a21 , a22 , ..., a2n; ...; an1 , an2 , ..., ann].

In the following example, we create a 2× 3 matrix of real values.

-->A = [1 , 2 , 3 ; 4 , 5 , 6]
A =

1. 2. 3.
4. 5. 6.

A simpler syntax is available, which does not require to use the comma and semicolon
characters. When creating a matrix, the blank space separates the columns while
the new line separates the rows, as in the following syntax:

A = [a11 a12 ... a1n
a21 a22 ... a2n
...
an1 an2 ... ann]

This allows to lighten considerably the management of matrices, as in the following
session.

-->A = [1 2 3
-->4 5 6]
A =

1. 2. 3.
4. 5. 6.
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eye identity matrix
linspace linearly spaced vector
ones matrix made of ones
zeros matrix made of zeros
testmatrix generate some particular matrices
grand random number generator
rand random number generator

Figure 22: Functions which generate matrices.

The previous syntax for matrices is useful in the situations where matrices are
to be written into data files, because it simplifies the human reading (and checking)
of the values in the file, and simplifies the reading of the matrix in Scilab.

Several Scilab commands allow to create matrices from a given size, i.e. from a
given number of rows and columns. These functions are presented in figure 22. The
most commonly used are eye, zeros and ones. These commands take two input
arguments, the number of rows and columns of the matrix to generate.

-->A = ones (2,3)
A =

1. 1. 1.
1. 1. 1.

4.3 The empty matrix []

An empty matrix can be created by using empty square brackets, as in the following
session, where we create a 0× 0 matrix.

-->A=[]
A =

[]

This syntax allows to delete the content of a matrix, so that the associated
memory is freed.

-->A = ones (100 ,100);
-->A = []
A =

[]

4.4 Query matrices

The functions in figure 23 allow to query or update a matrix.
The size function returns the two output arguments nr and nc, which are the

number of rows and the number of columns.

-->A = ones (2,3)
A =

1. 1. 1.
1. 1. 1.

-->[nr,nc]=size(A)
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size size of objects
matrix reshape a vector or a matrix to a different size matrix
resize_matrix create a new matrix with a different size

Figure 23: Functions which query or modify matrices.

nc =
3.

nr =
2.

The size function is of important practical value when we design a function,
since the processing that we must perform on a given matrix may depend on its
shape. For example, to compute the norm of a given matrix, different algorithms
may be used depending on if the matrix is a column vector with size nr × 1 and
nr > 0, a row vector with size 1 × nc and nc > 0, or a general matrix with size
nr × nc and nr, nc > 1.

The size function has also the following syntax

nr = size( A , sel )

which allows to get only the number of rows or the number of columns and where
sel can have the following values

• sel=1 or sel="r", returns the number of rows,

• sel=2 or sel="c", returns the number of columns.

• sel="*", returns the total number of elements, that is, the number of columns
times the number of rows.

In the following session, we use the size function in order to compute the total
number of elements of a matrix.

-->A = ones (2,3)
A =

1. 1. 1.
1. 1. 1.

-->size(A,"*")
ans =

6.

4.5 Accessing the elements of a matrix

There are several methods to access the elements of a matrix A:

• the whole matrix, with the A syntax,

• element by element with the A(i,j) syntax,

• a range of index values with the colon ”:” operator.
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The colon operator will be reviewed in the next section.
To make a global access to all the elements of the matrix, the simple variable

name, for example A, can be used. All elementary algebra operations are available
for matrices, such as the addition with ”+”, subtraction with ”-”, provided that the
two matrices have the same size. In the following script, we add all the elements of
two matrices.

-->A = ones (2,3)
A =

1. 1. 1.
1. 1. 1.

-->B = 2 * ones (2,3)
B =

2. 2. 2.
2. 2. 2.

-->A+B
ans =

3. 3. 3.
3. 3. 3.

One element of a matrix can be accessed directly with the A(i,j) syntax, pro-
vided that i and j are valid index values.

We emphasize that, by default, the first index of a matrix is 1. This contrasts
with other languages, such as the C language for instance, where the first index is
0. For example, assume that A is an nr×nc matrix, where nr is the number of rows
and nc is the number of columns. Therefore, the value A(i,j) has a sense only if
the index values i and j satisfy 1 ≤ i ≤ nr and 1 ≤ j ≤ nc. If the index values are
not valid, an error is generated, as in the following session.

-->A = ones (2,3)
A =

1. 1. 1.
1. 1. 1.

-->A(1,1)
ans =

1.
-->A(12 ,1)

!--error 21
Invalid index.
-->A(0,1)

!--error 21
Invalid index.

Direct access to matrix elements with the A(i,j) syntax should be used only
when no other higher-level Scilab commands can be used. Indeed, Scilab provides
many features which allow to produce simpler and faster computations, based on
vectorization. One of these features is the colon ”:”operator, which is very important
in practical situations.

4.6 The colon ”:” operator

The simplest syntax of the colon operator is the following:

v = i:j
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where i is the starting index and j is the ending index with i ≤ j. This creates
the vector v = (i, i + 1, . . . , j). In the following session, we create a vector of index
values from 2 to 4 in one statement.

-->v = 2:4
v =

2. 3. 4.

The complete syntax allows to configure the increment used when generating the
index values, i.e. the step. The complete syntax for the colon operator is

v = i:s:j

where i is the starting index, j is the ending index and s is the step. This command
creates the vector v = (i, i + s, i + 2s, . . . , i + ns) where n is the greatest integer
such that i + ns ≤ j. If s divides j − i, then the last index in the vector of index
values is j. In other cases, we have i+ ns < j. While in most situations, the step s

is positive, it might also be negative.
In the following session, we create a vector of increasing index values from 3 to

10 with a step equal to 2.

-->v = 3:2:10
v =

3. 5. 7. 9.

Notice that the last value in the vector v is i+ns = 9, which is smaller than j = 10.
In the following session, we present two examples where the step is negative. In

the first case, the colon operator generates decreasing index values from 10 to 4. In
the second example, the colon operator generates an empty matrix because there
are no values lower than 3 and greater than 10 at the same time.

-->v = 10: -2:3
v =

10. 8. 6. 4.
-->v = 3: -2:10
v =

[]

With a vector of index values, we can access the elements of a matrix in a given
range, as with the following simplified syntax

A(i:j,k:l)

where i,j,k,l are starting and ending index values. The complete syntax is
A(i:s:j,k:t:l), where s and t are the steps.

For example, suppose that A is a 4 × 5 matrix, and that we want to access the
elements ai,j for i = 1, 2 and j = 3, 4. With the Scilab language, this can be done
in just one statement, by using the syntax A(1:2,3:4), as showed in the following
session.

-->A = testmatrix("hilb" ,5)
A =

25. - 300. 1050. - 1400. 630.
- 300. 4800. - 18900. 26880. - 12600.

1050. - 18900. 79380. - 117600. 56700.
- 1400. 26880. - 117600. 179200. - 88200.
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A the whole matrix
A(:,:) the whole matrix
A(i:j,k) the elements at rows from i to j, at column k
A(i,j:k) the elements at row i, at columns from j to k
A(i,:) the row i
A(:,j) the column j

Figure 24: Access to a matrix with the colon ”:” operator.

630. - 12600. 56700. - 88200. 44100.
-->A(1:2 ,3:4)
ans =

1050. - 1400.
- 18900. 26880.

In some circumstances, it may happen that the index values are the result of a
computation. For example, the algorithm may be based on a loop where the index
values are updated regularly. In these cases, the syntax

A(vi,vj),

where vi,vj are vectors of index values, can be used to designate the elements of
A whose subscripts are the elements of vi and vj. That syntax is illustrated in the
following example.

-->A = testmatrix("hilb" ,5)
A =

25. - 300. 1050. - 1400. 630.
- 300. 4800. - 18900. 26880. - 12600.

1050. - 18900. 79380. - 117600. 56700.
- 1400. 26880. - 117600. 179200. - 88200.

630. - 12600. 56700. - 88200. 44100.
-->vi=1:2
vi =

1. 2.
-->vj=3:4
vj =

3. 4.
-->A(vi,vj)
ans =

1050. - 1400.
- 18900. 26880.

-->vi=vi+1
vi =

2. 3.
-->vj=vj+1
vj =

4. 5.
-->A(vi,vj)
ans =

26880. - 12600.
- 117600. 56700.
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There are many variations on this syntax, and figure 24 presents some of the
possible combinations.

For example, in the following session, we use the colon operator in order to
interchange two rows of the matrix A.

-->A = testmatrix("hilb" ,3)
A =

9. - 36. 30.
- 36. 192. - 180.

30. - 180. 180.
-->A([1 2],:) = A([2 1],:)
A =
- 36. 192. - 180.

9. - 36. 30.
30. - 180. 180.

We could also interchange the columns of the matrix A with the statement A(:,[3

1 2]).
In this section we have analyzed several practical use of the colon operator.

Indeed, this operator is used in many scripts where performance matters, since it
allows to access many elements of a matrix in just one statement. This is associated
with the vectorization of scripts, a subject which is central to the Scilab language
and is reviewed throughout this document.

4.7 The eye matrix

The eye function allows to create the identity matrix with the size which depends on
the context. Its name has been chosen in place of I in order to avoid the confusion
with an index or with the imaginary number.

In the following session, we add 3 to the diagonal elements of the matrix A.

-->A = ones (3,3)
A =

1. 1. 1.
1. 1. 1.
1. 1. 1.

-->B = A + 3*eye()
B =

4. 1. 1.
1. 4. 1.
1. 1. 4.

In the following session, we define an identity matrix B with the eye function de-
pending on the size of a given matrix A.

-->A = ones (2,2)
A =

1. 1.
1. 1.

-->B = eye(A)
B =

1. 0.
0. 1.
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Finally, we can use the eye(m,n) syntax in order to create an identity matrix with
m rows and n columns.

4.8 Matrices are dynamic

The size of a matrix can grow or reduce dynamically. This allows to adapt the size
of the matrix to the data it contains.

Consider the following session where we define a 2× 3 matrix.

-->A = [1 2 3; 4 5 6]
A =

1. 2. 3.
4. 5. 6.

In the following session, we insert the value 7 at the indices (3, 1). This creates the
third row in the matrix, sets the A(3, 1) entry to 7 and fills the other values of the
newly created row with zeros.

-->A(3,1) = 7
A =

1. 2. 3.
4. 5. 6.
7. 0. 0.

The previous example showed that matrices can grow. In the following session, we
see that we can also reduce the size of a matrix. This is done by using the empty
matrix ”[]” operator in order to delete the third column.

-->A(:,3) = []
A =

1. 2.
4. 5.
7. 0.

We can also change the shape of the matrix with the matrix function. The matrix

function allows to reshape a source matrix into a target matrix with a different size.
The transformation is performed column by column, by stacking the elements of the
source matrix. In the following session, we reshape the matrix A, which has 3×2 = 6
elements into a row vector with 6 columns.

-->B = matrix(A,1,6)
B =

1. 4. 7. 2. 5. 0.

4.9 The dollar ”$” operator

Usually, we make use of indices to make reference from the start of a matrix. By
opposition, the dollar ”$” operator allows to reference elements from the end of
the matrix. The ”$” operator signifies ”the index corresponding to the last” row or
column, depending on the context. This syntax is associated with an algebra, so that
the index $-i corresponds to the index `− i, where ` is the number of corresponding
rows or columns. Various uses of the dollar operator are presented in figure 25.

In the following example, we consider a 3× 3 matrix and we access the element
A(2,1) = A(nr-1,nc-2) = A($-1,$-2) because nr = 3 and nc = 3.
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A(i,$) the element at row i, at column nc
A($,j) the element at row nr, at column j
A($-i,$-j) the element at row nr − i, at column nc− j

Figure 25: Access to a matrix with the dollar ”$”operator. The ”$”operator signifies
”the last index”.

-->A=testmatrix("hilb" ,3)
A =

9. - 36. 30.
- 36. 192. - 180.

30. - 180. 180.
-->A($-1,$-2)
ans =
- 36.

The dollar ”$”operator allows to add elements dynamically at the end of matrices.
In the following session, we add a row at the end of the Hilbert matrix.

-->A($+1,:) = [1 2 3]
A =

9. - 36. 30.
- 36. 192. - 180.

30. - 180. 180.
1. 2. 3.

The ”$” operator is used most of the time in the context of the ”$+1” statement,
which allows to add at the end of a matrix. This can be convenient, since it avoids
the need of updating the number of rows or columns continuously although it should
be used with care, only in the situations where the number of rows or columns cannot
be known in advance. The reason is that the interpreter has to internally re-allocate
memory for the entire matrix and to copy the old values to the new destination.
This can lead to performance penalties and this is why we should be warned against
bad uses of this operator. All in all, the only good use of the ”$+1” statement is
when we do not know in advance the final number of rows or columns.

4.10 Low-level operations

All common algebra operators, such as ”+”, ”-”, ”*” and ”/”, are available with real
matrices. In the next sections, we focus on the exact signification of these operators,
so that many sources of confusion are avoided.

The rules for the ”+”and ”-”operators are directly applied from the usual algebra.
In the following session, we add two 2× 2 matrices.

-->A = [1 2
-->3 4]
A =

1. 2.
3. 4.

-->B=[5 6
-->7 8]
B =
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5. 6.
7. 8.

-->A+B
ans =

6. 8.
10. 12.

When we perform an addition of two matrices, if one operand is a 1× 1 matrix
(i.e., a scalar), the value of this scalar is added to each element of the second matrix.
This feature is shown in the following session.

-->A = [1 2
-->3 4]
A =

1. 2.
3. 4.

-->A + 1
ans =

2. 3.
4. 5.

The addition is possible only if the two matrices are conformable to addition. In
the following session, we try to add a 2 × 3 matrix with a 2 × 2 matrix and check
that this is not possible.

-->A = [1 2
-->3 4]
A =

1. 2.
3. 4.

-->B = [1 2 3
-->4 5 6]
B =

1. 2. 3.
4. 5. 6.

-->A+B
!--error 8

Inconsistent addition.

Elementary operators which are available for matrices are presented in figure 26.
The Scilab language provides two division operators, that is,the right division ”/”
and the left division ”\”. The right division is so that X = A/B = AB−1 is the
solution of XB = A. The left division is so that X = A\B = A−1B is the solution
of AX = B. The left division A\B computes the solution of the associated least
square problem if A is not a square matrix.

Figure 26 separates the operators which treat the matrices as a whole and the
elementwise operators, which are presented in the next section.

4.11 Elementwise operations

If a dot ”.” is written before an operator, it is associated with an elementwise
operator, i.e. the operation is performed element-by-element. For example, with
the usual multiplication operator ”*”, the content of the matrix C=A*B is cij =
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+ addition .+ elementwise addition
- subtraction .- elementwise subtraction
∗ multiplication .∗ elementwise multiplication
/ right division ./ elementwise right division
\ left division .\ elementwise left division
ˆ or ∗∗ power, i.e. xy .̂ elementwise power
’ transpose and conjugate .’ transpose (but not conjugate)

Figure 26: Matrix operators and elementwise operators.

∑
k=1,n aikbkj. With the elementwise multiplication ”.*” operator, the content of the

matrix C=A.*B is cij = aijbij.
In the following session, two matrices are multiplied with the ”*” operator and

then with the elementwise ”.*” operator, so that we can check that the results are
different.

-->A = ones (2,2)
A =

1. 1.
1. 1.

-->B = 2 * ones (2,2)
B =

2. 2.
2. 2.

-->A*B
ans =

4. 4.
4. 4.

-->A.*B
ans =

2. 2.
2. 2.

4.12 Conjugate transpose and non-conjugate transpose

There might be some confusion when the elementwise single quote ”.’ ” and the
regular single quote ”’ ” operators are used without a careful knowledge of their ex-
act definitions. With a matrix of doubles containing real values, the single quote ”’
” operator only transposes the matrix. Instead, when a matrix of doubles containing
complex values is used, the single quote ”’ ” operator transposes and conjugates the
matrix. Hence, the operation A=Z’ produces a matrix with entries Ajk = Xkj− iYkj,
where i is the imaginary number such that i2 = −1 and X and Y are the real and
imaginary parts of the matrix Z. The elementwise single quote ”.’ ” always trans-
poses without conjugating the matrix, be it real or complex. Hence, the operation
A=Z.’ produces a matrix with entries Ajk = Xkj + iYkj.

In the following session, an unsymetric matrix of doubles containing complex
values is used, so that the difference between the two operators is obvious.

-->A = [1 2;3 4] + %i * [5 6;7 8]
A =
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1. + 5.i 2. + 6.i
3. + 7.i 4. + 8.i

-->A’
ans =

1. - 5.i 3. - 7.i
2. - 6.i 4. - 8.i

-->A.’
ans =

1. + 5.i 3. + 7.i
2. + 6.i 4. + 8.i

In the following session, we define an unsymetric matrix of doubles containing real
values and see that the results of the ”’ ” and ”.’ ” are the same in this particular
case.

-->B = [1 2;3 4]
B =

1. 2.
3. 4.

-->B’
ans =

1. 3.
2. 4.

-->B.’
ans =

1. 3.
2. 4.

Many bugs are created due to this confusion, so that it is mandatory to ask
yourself the following question: what happens if my matrix is complex? If the
answer is ”I want to transpose only”, then the elementwise quote ”.’ ” operator is
to be used.

4.13 Multiplication of two vectors

Let u ∈ Rn be a column vector and vT ∈ Rn be a column vector. The matrix
A = uvT has entries Aij = uivj. In the following Scilab session, we multiply the
column vector u by the row vector v and store the result in the variable A.

-->u = [1
-->2
-->3]
u =

1.
2.
3.

-->v = [4 5 6]
v =

4. 5. 6.
-->u*v
ans =

4. 5. 6.
8. 10. 12.
12. 15. 18.
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and(A,"r") rowwise ”and”
and(A,"c") columnwise ”and”
or(A,"r") rowwise ”or”
or(A,"c") columnwise ”or”

Figure 27: Special comparison operators for matrices. The usual operators ”<”, ”&”,
”|” are also available for matrices, but the and and or allow to perform rowwise and
columnwise operations.

This might lead to some confusion because linear algebra textbooks consider
column vectors only. We usually denote by u ∈ Rn a column vector, so that the
corresponding row vector is denoted by uT . In the associated Scilab implementation,
a row vector can be directly stored in the variable u. It might also be a source of
bugs, if the expected vector is expected to be a row vector and is, in fact, a column
vector. This is why any algorithm which works only on a particular type of matrix
(row vector or column vector) should check that the input vector has indeed the
corresponding shape and generate an error if not.

4.14 Comparing two real matrices

Comparison of two matrices is only possible when the matrices have the same shape.
The comparison operators presented in figure 16 are indeed performed when the
input arguments A and B are matrices. When two matrices are compared, the result
is a matrix of booleans. This matrix can then be combined with operators such
as and, or, which are presented in figure 27. The usual operators ”&”, ”|” are also
available for matrices, but the and and or allow to perform rowwise and columnwise
operations.

In the following Scilab session, we create a matrix A and compare it against the
number 3. Notice that this comparison is valid because the number 3 is compared
element by element against A. We then create a matrix B and compare the two
matrices A and B. Finally, the or function is used to perform a rowwise comparison
so that we get the columns where one value in the column of the matrix A is greater
than one value in the column of the matrix B.

-->A = [1 2 7
-->6 9 8]
A =

1. 2. 7.
6. 9. 8.

-->A>3
ans =
F F T
T T T

-->B=[4 5 6
-->7 8 9]
B =

4. 5. 6.
7. 8. 9.

-->A>B
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ans =
F F T
F T F

-->or(A>B,"r")
ans =
F T T

4.15 Issues with floating point integers

In this section, we analyze the problems which might arise when we use integers
which are stored as floating point numbers. If used without caution, these numbers
can lead to disastrous results, as we are going to see.

Assume that the matrix A is a square 2×2 matrix. In order to access the element
(2,1) of this matrix, we can use a constant index, such as A(2,1), which is safe.
Moreover, we can access the element (2,1) by using floating point values, as in the
following session.

-->A = testmatrix("hilb" ,2)
A =

4. - 6.
- 6. 12.

Now, in order to access the element of the matrix, we can use variables i and j

and use the statement A(i,j), as in the following session.

-->i = 2
i =

2.
-->j = 1
j =

1.
-->A(i,j)
ans =
- 6.

In the previous session, we emphasize that the variables i and j are doubles. This
is why the following statement is valid.

-->A( 2 , [1.0 1.1 1.5 1.9] )
ans =
- 6. - 6. - 6. - 6.

The previous session shows that the floating point values 1.0, 1.1, 1.5 and 1.9 are
all converted to the integer 1, as if the int function had been used to convert the
floating point number into an integer. Indeed, the int function returns the floating
point number storing the integer part of the given floating point number: in some
sense, it rounds towards zero. For example, int(1.0), int(1.1), int(1.5) and
int(1.9) all returns 1 while int(-1.0), int(-1.1), int(-1.5) and int(-1.9) all
returns -1.

Notice that the rounding behavior can be explained by the int function, and not
by the floor function. This can be seen when we consider negative integer values,
where the returned values of the two functions are not the same. Indeed, assume
that the matrix A is a 4× 4 matrix, as created by A = testmatrix("hilb",4) for
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example. The triu function returns the upper triangle part of the input matrix.
The statements triu(A,-1), triu(A,int(-1.5)) and triu(A,-1.5) produce the
same result. Instead, the statement triu(A,floor(-1.5)) produces the same result
as triu(A,-2).

This system allows to have a language which is both simple and efficient. But it
may also have unfortunate consequences, sometimes leading to unexpected results.
For example, consider the following session.

-->ones (1,1)
ans =

1.
-->ones (1 ,(1 -0.9)*10)
ans =

[]

If the computations were performed in exact arithmetic, the result of (1− 0.9) ∗ 10
should be equal to 1, leading to a 1×1 matrix. Instead, the statement ones(1,(1-0.9)*10)
creates an empty matrix, because the value returned by the int function is equal to
zero, as presented in the following session.

-->int ((1 -0.9)*10)
ans =

0.

Indeed, the decimal number 0.9 cannot be exactly represented as a double precision
floating point number. This leads to a rounding, so that the floating point repre-
sentation of 1-0.9 is slightly smaller than 0.1. When the multiplication (1-0.9)*10 is
performed, the floating point result is therefore slightly smaller than 1, as presented
in the following session.

-->format (25)
-->1-0.9
ans =

0.0999999999999999777955
-->(1-0.9)*10
ans =

0.9999999999999997779554

Then the floating point number 0.999999999999999 is considered as the integer zero,
which makes the ones function return an empty matrix. The origin of this issue is
therefore the use of the floating point number 0.1, which should not have been used
without caution to perform integer arithmetic with floating point numbers.

4.16 More on elementary functions

In this section, we analyse several elementary functions, especially degree-based
trigonometry functions, logarithm functions and matrix-based elementary functions.

Trigonometry functions such as sin and cos are provided with the classical
input argument in radian. But some other trigonometry functions, such as the
cosd function for example, are taking an input argument in degree. This means
that, in the mathematical sense tand(x) = tan(xπ/180). These functions can be
easily identified because their name ends with the letter ”d”, e.g. cosd, sind among
others. The key advantage for the degree-based elementary functions is that they
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provide exact results when their argument has special mathematical values, such as
multiples of 90◦. Indeed, the implementation of the degree-based functions is based
on an argument reduction which is exact for integer values. This allows to get exact
floating point results for particular cases.

In the following session, we compute sin(π) and sind(180), which are mathemat-
ically equal, but are associated with different floating point results.

-->sin(%pi)
ans =

1.225D-16
-->sind (180)
ans =

0.

The fact that sin(π) is not exactly zero is associated with the limited precision of
floating point numbers. Indeed, the argument π is stored in memory with a limited
number of significant digits, which leads to rounding. Instead, the argument 180 is
represented exactly as a floating point number, because it is a small integer. Hence,
the value of sind(180) is computed by the sind function as sin(0). Once again,
the number zero is exactly represented by a floating point number. Moreover, the sin
function is represented in the [−π/2, π/2] interval by a polynomial of the form p(x) =
x+x3q(x2) where q is a low degree polynomial. Hence, we get sind(180)=sin(0)=0,
which is the exact result.

The log function computes the natural logarithm of the input argument, that is,
the inverse of the function exp= ex, where e is Euler’s constant. In order to compute
the logarithm function for other bases, we can use the functions log10 and log2,
associated with bases 10 and 2 respectively. In the following session, we compute
the values of the log, log10 and log2 functions for some specific values of x.

-->x = [exp(1) exp(2) 1 10 2^1 2^10]
x =

2.7182818 7.3890561 1. 10. 2. 1024.
-->[x’ log(x’) log10(x’) log2(x’)]
ans =

2.7182818 1. 0.4342945 1.442695
7.3890561 2. 0.8685890 2.8853901
1. 0. 0. 0.
10. 2.3025851 1. 3.3219281
2. 0.6931472 0.30103 1.
1024. 6.9314718 3.0103 10.

The first column in the previous table contains various values of x. The column
number 2 contains various values of log(x), while the columns 3 and 4 contains
various values of log10(x) and log2(x).

Most functions are elementwise, that is, given an input matrix, apply the same
function for each entry of the matrix. Still, some functions have a special meaning
with respect to linear algebra. For example, the matrix exponential of a function
is defined by eX =

∑
k=0,∞

1
k!
Xk, where X is a square n × n matrix. In order to

compute the exponential of a matrix, we can use the expm function. Obviously,
the elementwise exponential function exp does not returns the same result. More
generally, the functions which have a special meaning with respect to matrices have
a name which ends with the letter ”m”, e.g. expm, sinm, among others. In the
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chol Cholesky factorization
companion companion matrix
cond condition number
det determinant
inv matrix inverse
linsolve linear equation solver
lsq linear least square problems
lu LU factors of Gaussian elimination
qr QR decomposition
rcond inverse condition number
spec eigenvalues
svd singular value decomposition
testmatrix a collection of test matrices
trace trace

Figure 28: Some common functions for linear algebra.

following session, we define a 2 × 2 matrix containing specific multples of π/2 and
use the sin and sinm functions.

-->A = [%pi/2 %pi; 2*%pi 3*%pi/2]
A =

1.5707963 3.1415927
6.2831853 4.712389

-->sin(A)
ans =

1. 1.225D-16
- 2.449D-16 - 1.

-->sinm(A)
ans =
- 0.3333333 0.6666667

1.3333333 0.3333333

4.17 Higher-level linear algebra features

In this section, we briefly introduce higher-level linear algebra features of Scilab.
Scilab has a complete linear algebra library, which is able to manage both dense

and sparse matrices. A complete book on linear algebra would be required to make
a description of the algorithms provided by Scilab in this field, and this is obviously
out of the scope of this document. Figure 28 presents a list of the most common
linear algebra functions.

4.18 Exercises

Exercise 4.1 (Plus one) Create the vector (x1 + 1, x2 + 1, x3 + 1, x4 + 1) with the following x.

x = 1:4;

Exercise 4.2 (Vectorized multiplication) Create the vector (x1y1, x2y2, x3y3, x4y4) with the
following x and y.
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x = 1:4;
y = 5:8;

Exercise 4.3 (Vectorized invert) Create the vector
(

1
x1
, 1

x2
, 1

x3
, 1

x4

)
with the following x.

x = 1:4;

Exercise 4.4 (Vectorized division) Create the vector
(

x1
y1
, x2

y2
, x3

y3
, x4

y4

)
with the following x and

y.

x = 12*(6:9);
y = 1:4;

Exercise 4.5 (Vectorized squaring) Create the vector
(
x2

1, x
2
2, x

2
3, x

2
4

)
with x = 1, 2, 3, 4.

Exercise 4.6 (Vectorized sinus) Create the vector (sin(x1), sin(x2), . . . , sin(x10)) with x is a
vector of 10 values linearly chosen in the interval [0, π].

Exercise 4.7 (Vectorized function) Compute the y = f(x) values of the function f defined by
the equation

f(x) = log10 (r/10x + 10x) (1)

with r = 2.220.10−16 and x a vector of 100 values linearly chosen in the interval [−16, 0].

5 Looping and branching

In this section, we describe how to make conditional statements, that is, we present
the if statement. We present the select statement, which allows to create more
complex selections. We present Scilab loops, that is, we present the for and while

statements. We finally present two main tools to manage loops, that is, the break

and continue statements.

5.1 The if statement

The if statement allows to perform a statement if a condition is satisfied. The
if uses a boolean variable to perform its choice: if the boolean is true, then the
statement is executed. A condition is closed when the end keyword is met. In the
following script, we display the string ”Hello!” if the condition %t, which is always
true, is satisfied.

if ( %t ) then
disp("Hello !")

end

The previous script produces:

Hello !

If the condition is not satisfied, the else statement allows to perform an alter-
native statement, as in the following script.

if ( %f ) then
disp("Hello !")

else
disp("Goodbye !")

end
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The previous script produces:

Goodbye !

In order to get a boolean, any comparison operator can be used, e.g. ”==”, ”>”,
etc... or any function which returns a boolean. In the following session, we use the
”==” operator to display the message ”Hello !”.

i = 2
if ( i == 2 ) then

disp("Hello !")
else

disp("Goodbye !")
end

It is important not to use the ”=” operator in the condition, i.e. we must not use
the statement if ( i = 2 ) then. It is an error, since the ”=” operator allows to
set a variable: it is different from the comparison operator ”==”. In case of an error,
Scilab warns us that something wrong happened.

-->i = 2
i =

2.
-->if ( i = 2 ) then
Warning: obsolete use of ’=’ instead of ’==’.

!
--> disp("Hello !")

Hello !
-->else
--> disp("Goodbye !")
-->end

When we have to combine several conditions, the elseif statement is helpful.
In the following script, we combine several elseif statements in order to manage
various values of the integer i.

i = 2
if ( i == 1 ) then

disp("Hello !")
elseif ( i == 2 ) then

disp("Goodbye !")
elseif ( i == 3 ) then

disp("Tchao !")
else

disp("Au Revoir !")
end

We can use as many elseif statements that we need, and this allows to create
as complicated branches as required. But if there are many elseif statements
required, most of the time that implies that a select statement should be used
instead.

5.2 The select statement

The select statement allows to combine several branches in a clear and simple
way. Depending on the value of a variable, it allows to perform the statement
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corresponding to the case keyword. There can be as many branches as required.
In the following script, we want to display a string which corresponds to the

given integer i.

i = 2
select i
case 1

disp("One")
case 2

disp("Two")
case 3

disp("Three")
else

disp("Other")
end

The previous script prints out ”Two”, as expected.
The else branch is used if all the previous case conditions are false.
The else statement is optional, but is considered a good programming practice.

Indeed, even if the programmer thinks that the associated case cannot happen,
there may still exist a bug in the logic, so that all the conditions are false while they
should not. In this case, if the else statement does not interrupt the execution, the
remaining statements in the script will be executed. This can lead to unexpected
results. In the worst scenario, the script still works but with inconsistent results.
Debugging such scripts is extremely difficult and may lead to a massive loss of time.

Therefore, the else statement should be included in most select sequences. In
order to manage these unexpected events, we often combine a select statement
with the error function.

The error function generates an error associated with the given message. When
an error is generated, the execution is interrupted and the interpreter quits all the
functions. The call stack is therefore cleared and the script stops.

In the following script, we display a message depending on the the value of the
positive variable i. If that variable is negative, we generate an error.

i = -5;
select i
case 1

disp("One")
case 2

disp("Two")
case 3

disp("Three")
else

error ( "Unexpected value of the parameter i" )
end

The previous script produces the following output.

-->i = -5;
-->select i
-->case 1
--> disp("One")
-->case 2
--> disp("Two")
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-->case 3
--> disp("Three")
-->else
--> error ( "Unexpected value of the parameter i" )
Unexpected value of the parameter i

In practice, when we see a select statement without the corresponding else,
we may wonder if the developer wrote this on purpose or based on the assumption
that it will never happen. Most of the time, this assumption can be discussed.

5.3 The for statement

The for statement allows to perform loops, i.e. allows to perform a given action
several times. Most of the time, a loop is performed over integer values, which go
from a starting to an ending index value. We will see, at the end of this section,
that the for statement is in fact much more general, as it allows to loop through
the values of a matrix.

In the following Scilab script, we display the value of i, from 1 to 5.

for i = 1 : 5
disp(i)

end

The previous script produces the following output.

1.
2.
3.
4.
5.

In the previous example, the loop is performed over a matrix of floating point
numbers containing integer values. Indeed, we used the colon ”:” operator in order
to produce the vector of index values [1 2 3 4 5]. The following session shows
that the statement 1:5 produces all the required integer values into a row vector.

-->i = 1:5
i =

1. 2. 3. 4. 5.

We emphasize that, in the previous loop, the matrix 1:5 is a matrix of doubles.
Therefore, the variable i is also a double. This point will be reviewed later in this
section, when we will consider the general form of for loops.

We can use a more complete form of the colon operator in order to display the
odd integers from 1 to 5. In order to do this, we set the step of the colon operator
to 2. This is performed by the following Scilab script.

for i = 1 : 2 : 5
disp(i)

end

The previous script produces the following output.

1.
3.
5.
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The colon operator can be used to perform backward loops. In the following
script, we display the numbers from 5 to 1.

for i = 5 : - 1 : 1
disp(i)

end

The previous script produces the following output.

5.
4.
3.
2.
1.

Indeed, the statement 5:-1:1 produces all the required integers.

-->i = 5:-1:1
i =

5. 4. 3. 2. 1.

The for statement is much more general than what we have previously used in
this section. Indeed, it allows to browse through the values of many data types,
including row matrices and lists. When we perform a for loop over the elements of
a matrix, this matrix may be a matrix of doubles, strings, integers or polynomials.

In the following example, we perform a for loop over the double values of a row
matrix containing (1.5, e, π).

v = [1.5 exp(1) %pi];
for x = v

disp(x)
end

The previous script produces the following output.

1.5
2.7182818
3.1415927

We emphasize now an important point about the for statement. Anytime we
use a for loop, we must ask ourselves if a vectorized statement could perform the
same computation. There can be a 10 to 100 performance factor between vectorized
statements and a for loop. Vectorization enables to perform fast computations,
even in an interpreted environment like Scilab. This is why the for loop should
be used only when there is no other way to perform the same computation with
vectorized functions.

5.4 The while statement

The while statement allows to perform a loop while a boolean expression is true.
At the beginning of the loop, if the expression is true, the statements in the body
of the loop are executed. When the expression becomes false (an event which must
occur at certain time), the loop is ended.

In the following script, we compute the sum of the numbers i from 1 to 10 with
a while statement.
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s = 0
i = 1
while ( i<= 10 )

s = s + i
i = i + 1

end

At the end of the algorithm, the values of the variables i and s are:

s =
55.

i =
11.

It should be clear that the previous example is just an example for the while

statement. If we really wanted to compute the sum of the numbers from 1 to 10, we
should rather use the sum function, as in the following session.

-->sum (1:10)
ans =

55.

The while statement has the same performance issue as the for statement. This
is why vectorized statements should be considered first, before attempting to design
an algorithm based on a while loop.

5.5 The break and continue statements

The break statement allows to interrupt a loop. Usually, we use this statement in
loops where, once some condition is satisfied, the loops should not be continued.

In the following example, we use the break statement in order to compute the
sum of the integers from 1 to 10. When the variable i is greater than 10, the loop
is interrupted.

s = 0
i = 1
while ( %t )

if ( i > 10 ) then
break

end
s = s + i
i = i + 1

end

At the end of the algorithm, the values of the variables i and s are:

s =
55.

i =
11.

The continue statement allows to go on to the next loop, so that the statements
in the body of the loop are not executed this time. When the continue statement
is executed, Scilab skips the other statements and goes directly to the while or for
statement and evaluates the next loop.
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In the following example, we compute the sum s = 1 + 3 + 5 + 7 + 9 = 25. The
modulo(i,2) function returns 0 if the number i is even. In this situation, the script
goes on to the next loop.

s = 0
i = 0
while ( i< 10 )

i = i + 1
if ( modulo ( i , 2 ) == 0 ) then

continue
end
s = s + i

end

If the previous script is executed, the final values of the variables i and s are:

-->s
s =

25.
-->i
i =

10.

As an example of vectorized computation, the previous algorithm can be per-
formed in one function call only. Indeed, the following script uses the sum function,
combined with the colon operator ”:” and produces same the result.

s = sum (1:2:10);

The previous script has two main advantages over the while-based algorithm.

1. The computation makes use of a higher-level language, which is easier to un-
derstand for human beings.

2. With large matrices, the sum-based computation will be much faster than the
while-based algorithm.

This is why a careful analysis must be done before developing an algorithm based
on a while loop.

6 Functions

In this section, we present Scilab functions. We analyze the way to define a new
function and the method to load it into Scilab. We present how to create and load
a library, which is a collection of functions. We also present how to manage input
and output arguments. Finally, we present how to debug a function using the pause

statement.

6.1 Overview

Gathering various steps into a reusable function is one of the most common tasks of
a Scilab developer. The most simple calling sequence of a function is the following:

outvar = myfunction ( invar )
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where the following list presents the various variables used in the syntax:

• myfunction is the name of the function,

• invar is the name of the input arguments,

• outvar is the name of the output arguments.

The values of the input arguments are not modified by the function, while the values
of the output arguments are actually modified by the function.

We have in fact already met several functions in this document. The sin function,
in the y=sin(x) statement, takes the input argument x and returns the result in the
output argument y. In Scilab vocabulary, the input arguments are called the right
hand side and the output arguments are called the left hand side.

Functions can have an arbitrary number of input and output arguments so that
the complete syntax for a function which has a fixed number of arguments is the
following:

[o1, ..., on] = myfunction ( i1 , ..., in )

The input and output arguments are separated by commas ”,”. Notice that the input
arguments are surrounded by opening and closing parentheses, while the output
arguments are surrounded by opening and closing square brackets.

In the following Scilab session, we show how to compute the LU decomposition
of the Hilbert matrix. The following session shows how to create a matrix with the
testmatrix function, which takes two input arguments, and returns one matrix.
Then, we use the lu function, which takes one input argument and returns two or
three arguments depending on the provided output variables. If the third argument
P is provided, the permutation matrix is returned.

-->A = testmatrix("hilb" ,2)
A =

4. - 6.
- 6. 12.

-->[L,U] = lu(A)
U =
- 6. 12.

0. 2.
L =
- 0.6666667 1.

1. 0.
-->[L,U,P] = lu(A)
P =

0. 1.
1. 0.

U =
- 6. 12.

0. 2.
L =

1. 0.
- 0.6666667 1.

Notice that the behavior of the lu function actually changes when three output
arguments are provided: the two rows of the matrix L have been swapped. More
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function opens a function definition
endfunction closes a function definition
argn number of input/output arguments in a function call
varargin variable numbers of arguments in an input argument list
varargout variable numbers of arguments in an output argument list
fun2string generates ASCII definition of a scilab function
get_function_path get source file path of a library function
getd getting all functions defined in a directory
head_comments display Scilab function header comments
listfunctions properties of all functions in the workspace
macrovar variables of function

Figure 29: Scilab functions to manage functions.

specifically, when two output arguments are provided, the decomposition A = LU is
provided (the statement A-L*U allows to check this). When three output arguments
are provided, permutations are performed so that the decomposition PA = LU is
provided (the statement P*A-L*U can be used to check this). In fact, when two
output arguments are provided, the permutations are applied on the L matrix. This
means that the lu function knows how many input and output arguments are pro-
vided to it, and changes its algorithm accordingly. We will not present in this
document how to provide this feature, i.e. a variable number of input or output
arguments. But we must keep in mind that this is possible in the Scilab language.

The commands provided by Scilab to manage functions are presented in figure 29.
In the next sections, we will present some of the most commonly used commands.

6.2 Defining a function

To define a new function, we use the function and endfunction Scilab keywords.
In the following example, we define the function myfunction, which takes the input
argument x, mutiplies it by 2, and returns the value in the output argument y.

function y = myfunction ( x )
y = 2 * x

endfunction

The statement function y = myfunction ( x ) is the header of the function
while the body of the function is made of the statement y = 2 * x. The body of a
function may contain one, two or more statements.

There are at least three possibilities to define the previous function in Scilab.

• The first solution is to type the script directly into the console in an interactive
mode. Notice that, once the ”function y = myfunction ( x )” statement
has been written and the enter key is typed in, Scilab creates a new line in
the console, waiting for the body of the function. When the ”endfunction”
statement is typed in the console, Scilab returns back to its normal edition
mode.
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• Another solution is available when the source code of the function is provided
in a file. This is the most common case, since functions are generally quite
long and complicated. We can simply copy and paste the function definition
into the console. When the function definition is short (typically, a dozen lines
of source code), this way is very convenient. With the editor, this is very easy,
thanks to the Load into Scilab feature.

• We can also use the exec function. Let us consider a Windows system where
the previous function is written in the file ”C:\myscripts\examples-functions.sce”.
The following session gives an example of the use of exec to load the previous
function.

-->exec("C:\ myscripts\examples -functions.sce")
-->function y = myfunction ( x )
--> y = 2 * x
-->endfunction

The exec function executes the content of the file as if it were written interac-
tively in the console and displays the various Scilab statements, line after line.
The file may contain a lot of source code so that the output may be very long
and useless. In these situations, we add the semicolon caracter ”;” at the end
of the line. This is what is performed by the Execute file into Scilab feature
of the editor.

-->exec("C:\ myscripts\examples -functions.sce" );

Once a function is defined, it can be used as if it was any other Scilab function.

-->exec("C:\ myscripts\examples -functions.sce");
-->y = myfunction ( 3 )
y =

6.

Notice that the previous function sets the value of the output argument y, with
the statement y=2*x. This is mandatory. In order to see it, we define in the following
script a function which sets the variable z, but not the output argument y.

function y = myfunction ( x )
z = 2 * x

endfunction

In the following session, we try to use our function with the input argument x=1.

-->myfunction ( 1 )
!--error 4

Undefined variable: y
at line 4 of function myfunction called by :
myfunction ( 1 )

Indeed, the interpreter tells us that the output variable y has not been defined.
When we make a computation, we often need more than one function in order

to perform all the steps of the algorithm. For example, consider the situation where
we need to optimize a system. In this case, we might use an algorithm provided
by Scilab, say optim for example. First, we define the cost function which is to be
optimized, according to the format expected by optim. Second, we define a driver,
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which calls the optim function with the required arguments. At least two functions
are used in this simple scheme. In practice, a complete computation often requires
a dozen of functions, or more. In this case, we may collect our functions in a library
and this is the topic of the next section.

6.3 Function libraries

A function library is a collection of functions defined in the Scilab language and
stored in a set of files.

When a set of functions is simple and does not contain any help or any source
code in a compiled language like C/C++ or Fortran, a library is a very efficient
way to proceed. Instead, when we design a Scilab component with unit tests, help
pages and demonstration scripts, we develop a module. Developing a module is both
easy and efficient, but requires a more advanced knowledge of Scilab. Moreover,
modules are based on function libraries, so that understanding the former allows to
master the latter. Modules will not be described in this document. Still, in many
practical situations, function libraries allow to efficiently manage simple collections
of functions and this is why we describe this system here.

In this section, we describe a very simple library and show how to load it auto-
matically at Scilab startup.

Let us make a short outline of the process of creating and using a library. We
assume that we are given a set of .sci files containing functions.

1. We create a binary version of the scripts containing the functions. The genlib
function generates binary versions of the scripts, as well as additional indexing
files.

2. We load the library into Scilab. The lib function allows to load a library
stored in a particular directory.

Before analyzing an example, let us consider some general rules which must be
followed when we design a function library. These rules will then be reviewed in the
next example.

The file names containing function definitions should end with the .sci exten-
sion. This is not mandatory, but helps in identifying the Scilab scripts on a hard
drive.

Several functions may be stored in each .sci file, but only the first one will be
available from outside the file. Indeed, the first function of the file is considered to be
the only public function, while the other functions are (implicitly) private functions.

The name of the .sci file must be the same as the name of the first function in
the file. For example, if the function is to be named myfun, then the file containing
this function must be myfun.sci. This is mandatory in order to make the genlib

function work properly.
The functions which allow to manage libraries are presented in figure 30.
We shall now give a small example of a particular library and give some details

about how to actually proceed.
Assume that we use a Windows system and that the samplelib directory con-

tains two files:
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genlib build library from functions in a given directory
lib library definition

Figure 30: Scilab commands to manage functions.

• C:/samplelib/function1.sci:

function y = function1 ( x )
y = 1 * function1_support ( x )

endfunction
function y = function1_support ( x )

y = 3 * x
endfunction

• C:/samplelib/function2.sci:

function y = function2 ( x )
y = 2 * x

endfunction

In the following session, we generate the binary files with the genlib function, which
takes as its first argument a string associated with the library name, and takes as its
second argument the name of the directory containing the files. Notice that only the
functions function1 and function2 are publicly available: the function1_support
function can be used inside the library, but cannot be used outside.

-->genlib("mylibrary","C:/ samplelib")
-->mylibrary
mylibrary =

Functions files location : C:\ samplelib \.
function1 function2

The genlib function generates the following files in the directory ”C:/samplelib”:

• function1.bin: the binary version of the function1.sci script,

• function2.bin: the binary version of the function2.sci script,

• lib: a binary version of the library,

• names: a text file containing the list of functions in the library.

The binary files *.bin and the lib file are cross-platform in the sense that they
work equally well under Windows, Linux or Mac.

Once the genlib function has been executed, the two functions are immediately
available, as detailed in the following example.

-->function1 (3)
ans =

9.
-->function2 (3)
ans =

6.
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In practical situations, though, we would not generate the library everytime it is
needed. Once the library is ready, we would like to load the library directly. This
is done with the lib function, which takes as its first argument the name of the
directory containing the library and returns the library, as in the following session.

-->mylibrary = lib("C:\ samplelib \")
ans =

Functions files location : C:\ samplelib \.
function1 function2

If there are many libraries, it might be inconvenient to load manually all libraries
at startup. In practice, the lib statement can be written once for all, in Scilab
startup file, so that the library is immediately available at startup. The startup
directory associated with a particular Scilab installation is stored in the variable
SCIHOME, as presented in the following session, for example on Windows.

-->SCIHOME
SCIHOME =
C:\Users\username\AppData\Roaming\Scilab\scilab -5.2.0

In the directory associated with the SCIHOME variable, the startup file is .scilab.
The startup file is automatically read by Scilab at startup. It must be a regular Scilab
script (it can contain valid comments). To make our library available at startup, we
simply write the following lines in our .scilab file.

// Load my favorite library.
mylibrary = lib("C:/ samplelib/")

With this startup file, the functions defined in the library are available directly
at Scilab startup.

6.4 Managing output arguments

In this section, we present the various ways to manage output arguments. A function
may have zero or more input and/or output arguments. In the most simple case,
the number of input and output arguments is pre-defined and using such a function
is easy. But, as we are going to see, even such a simple function can be called in
various ways.

Assume that the function simplef is defined with 2 input arguments and 2
output arguments, as following.

function [y1 , y2] = simplef ( x1, x2 )
y1 = 2 * x1
y2 = 3 * x2

endfunction

In fact, the number of output arguments of such a function can be 0, 1 or 2.
When there is no output argument, the value of the first output argument in stored
in the ans variable. We may also set the variable y1 only. Finally, we may use all
the output arguments, as expected. The following session presents all these calling
sequences.

-->simplef ( 1 , 2 )
ans =

2.
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whereami display current instruction calling tree
where get current instruction calling tree

Figure 31: Scilab commands associated with the call stack.

-->y1 = simplef ( 1 , 2 )
y1 =

2.
-->[y1,y2] = simplef ( 1 , 2 )
y2 =

6.
y1 =

2.

We have seen that the most basic way of defining functions already allows to
manage a variable number of output arguments. There is an even more flexible way
of managing a variable number of input and output arguments, based on the argn,
varargin and varargout variables. This more advanced topic will not be detailed
in this document.

6.5 Levels in the call stack

Obviously, function calls can be nested, i.e. a function f can call a function g, which
in turn calls a function h and so forth. When Scilab starts, the variables which are
defined are at the global scope. When we are in a function which is called from the
global scope, we are one level down in the call stack. When nested function calls
occur, the current level in the call stack is equal to the number of previously nested
calls. The functions presented in figure 31 allows to inquire about the state of the
call stack.

In the following session, we define 3 functions which are calling one another and
we use the function whereami to display the current instruction calling tree.

function y = fmain ( x )
y = 2 * flevel1 ( x )

endfunction
function y = flevel1 ( x )

y = 2 * flevel2 ( x )
endfunction
function y = flevel2 ( x )

y = 2 * x
whereami ()

endfunction

When we call the function fmain, the following output is produced. As we can
see, the 3 levels in the call stack are displayed, associated with the corresponding
function.

-->fmain (1)
whereami called at line 3 of macro flevel2
flevel2 called at line 2 of macro flevel1
flevel1 called at line 2 of macro fmain
ans =
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8.

In the previous example, the various calling levels are the following:

• level 0 : the global level,

• level -1 : the body of the fmain function,

• level -2 : the body of the flevel1 function,

• level -3 : the body of the flevel2 function.

These calling levels are displayed in the prompt of the console when we interactively
debug a function with the pause statement or with breakpoints.

6.6 The return statement

Inside the body of a function, the return statement allows to immediately return,
i.e. it immediately quits the current function. This statement can be used in cases
where the remaining of the algorithm is not necessary.

The following function computes the sum of integers from istart to iend. In
regular situations, it uses the sum function to perform its job. But if the istart

variable is negative or if the istart<=iend condition is not satisfied, the output
variable y is set to 0 and the function immediately returns.

function y = mysum ( istart , iend )
if ( istart < 0 ) then

y = 0
return

end
if ( iend < istart ) then

y = 0
return

end
y = sum ( istart : iend )

endfunction

The following session allows to check that the return statement is correctly used
by the mysum function.

-->mysum ( 1 , 5 )
ans =

15.
-->mysum ( -1 , 5 )
ans =

0.
-->mysum ( 2 , 1 )
ans =

0.

Some developers state that using several return statements in a function is
generally a bad practice. Indeed, we must take into account the increased difficulty
of debugging such a function, because the algorithm may suddenly quit the body of
the function. The user may get confused about what exactly caused the function to
return.
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pause wait for interactive user input
resume resume execution and copy some local variables
abort interrupt evaluation

Figure 32: Scilab functions to debug manually a function.

This is why, in practice, the return statement should be used with care, and
certainly not in every function. The rule to follow is that the function should return
only at its very last line. Still, in particular situations, using return can actually
greatly simplify the algorithm, while avoiding return would require writing a lot of
unnecessary source code.

6.7 Debugging functions with pause

In this section, we present simple debugging methods which allow to fix most simple
bugs in a convenient and efficient way. More specifically, we present the pause,
resume and abort statements, which are presented in figure 32.

A Scilab session usually consists in the definition of new algorithms by the cre-
ation of new functions. It often happens that a syntax error or an error in the
algorithm produces a wrong result.

Consider the problem computation of the sum of then integers from istart to
iend. Again, this simple example is chosen for demonstration purposes, since the
sum function performs it directly.

The following function mysum contains a bug: the second argument ”foo” passed
to the sum function has no meaning in this context.

function y = mysum ( istart , iend )
y = sum ( iend : istart , "foo" )

endfunction

The following session shows what happens when we use the mysum function.

-->mysum ( 1 , 10 )
!--error 44

Wrong argument 2.
at line 2 of function mysum called by :
mysum ( 1 , 10 )

In order to interactively find the problem, we place a pause statement inside the
body of the function.

function y = mysum ( istart , iend )
pause
y = sum ( iend : istart , "foo" )

endfunction

We now call the function mysum again with the same input arguments.

-->mysum ( 1 , 10 )
Type ’resume ’ or ’abort ’ to return to standard level prompt.
-1->
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We are now interactively located in the body of the mysum function. The prompt
”-1->” indicates that the current call stack is at level -1. We can check the value of
the variables istart and iend by simply typing their names in the console.

-1->istart
istart =

1.
-1->iend
iend =

10.

In order to progress in our function, we can copy and paste the statements and see
what happens interactively, as in the following session.

-1->y = sum ( iend : istart , "foo" )
y = sum ( iend : istart , "foo" )

!--error 44
Wrong argument 2.

We can see that the call to the sum function does not behave how we might expect.
The ”foo” input argument is definitely a bug: we remove it.

-1->y = sum ( iend : istart )
y =

0.

After the first revision, the call to the sum function is now syntactically correct. But
the result is still wrong, since the expected result in this case is 55. We see that
the istart and iend variables have been swapped. We correct the function call and
check that the fixed version behaves as expected

-1->y = sum ( istart : iend )
y =

55.

The result is now correct. In order to get back to the zero level, we now use the
abort statement, which interrupts the sequence and immediately returns to the
global level.

-1->abort
-->

The ”-->” prompt confirms that we are now back at the zero level in the call stack.
We fix the function definition, which becomes:

function y = mysum ( istart , iend )
pause
y = sum ( istart : iend )

endfunction

In order to check our bugfix, we call the function again.

-->mysum ( 1 , 10 )
Type ’resume ’ or ’abort ’ to return to standard level prompt.
-1->

We are now confident about our code, so that we use the resume statement, which
lets Scilab execute the code as usual.
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-->mysum ( 1 , 10 )
-1->resume
ans =

55.

The result is correct. All we have to do is to remove the pause statement from the
function definition.

function y = mysum ( istart , iend )
y = sum ( istart : iend )

endfunction

In this section, we have seen that, used in combination, the pause, resume and
abort statements are a very effective way to interactively debug a function. In fact,
our example is very simple and the method we presented may appear to be too
simple to be convenient. This is not the case. In practice, the pause statement has
proven to be a very fast way to find and fix bugs, even in very complex situations.

7 Plotting

Producing plots and graphics is a very common task for analysing data and creating
reports. Scilab offers many ways to create and customize various types of plots and
charts. In this section, we present how to create 2D plots and contour plots. Then
we customize the title and the legend of our graphics. We finally export the plots
so that we can use it in a report.

7.1 Overview

Scilab can produce many types of 2D and 3D plots. It can create x-y plots with
the plot function, contour plots with the contour function, 3D plots with the surf

function, histograms with the histplot function and many other types of plots.
The most commonly used plot functions are presented in figure 33.

In order to get an example of a 3D plot, we can simply type the statement surf()
in the Scilab console.

-->surf()

During the creation of a plot, we use several functions in order to create the data
or to configure the plot. The functions which are presented in figure 34 will be used
in the examples of this section.

7.2 2D plot

In this section, we present how to produce a simple x-y plot. We emphasize the use
of vectorized functions, which allow to produce matrices of data in one function call.

We begin by defining the function which is to be plotted. The function myquadratic

squares the input argument x with the ”̂ ” operator.

function f = myquadratic ( x )
f = x^2

endfunction
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plot 2D plot
surf 3D plot
contour contour plot
pie pie chart
histplot histogram
bar bar chart
barh horizontal bar chart
hist3d 3D histogram
polarplot plot polar coordinates
Matplot 2D plot of a matrix using colors
Sgrayplot smooth 2D plot of a surface using colors
grayplot 2D plot of a surface using colors

Figure 33: Scilab plot functions

linspace linearly spaced vector
feval evaluates a function on a grid
legend configure the legend of the current plot
title configure the title of the current plot
xtitle configure the title and the legends of the current plot

Figure 34: Scilab functions used when creating a plot.

We can use the linspace function in order to produce 50 values in the interval
[1, 10].

xdata = linspace ( 1 , 10 , 50 );

The xdata variable now contains a row vector with 50 entries, where the first value
is equal to 1 and the last value is equal to 10. We can pass it to the myquadratic

function and get the function value at the given points.

ydata = myquadratic ( xdata );

This produces the row vector ydata, which contains 50 entries. We finally use the
plot function so that the data is displayed as a x-y plot.

plot ( xdata , ydata )

Figure 35 presents the associated x-y plot.
Notice that we could have produced the same plot without generating the inter-

mediate array ydata. Indeed, the second input argument of the plot function can
be a function, as in the following session.

plot ( xdata , myquadratic )

When the number of points to manage is large, using directly the function allow to
save significant amount of memory space, since it avoids to generate the intermediate
vector ydata.
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Figure 35: A simple x-y plot.

7.3 Contour plots

In this section, we present the contour plots of a multivariate function and make
use of the contour function. This type of graphics is often used in the context of
numerical optimization as they allow to draw functions of two variables in a way
that makes apparent the location of the optimum.

Assume that we are given function f with n variables f(x) = f(x1, . . . , xn) and
x ∈ Rn. For a given α ∈ R, the equation

f(x) = α, (2)

defines a surface in the (n+ 1)-dimensional space Rn+1.
When n = 2, the points z = f(x1, x2) represent a surface in the three-dimensional

space (x1, x2, z) ∈ R3. This allows to draw contour plots of the cost function, as
we are going to see. For n > 3, though, these plots are not available. One possible
solution in this case is to select two significant parameters and to draw a contour
plot with these parameters varying (only).

The Scilab function contour allows to plot contours of a function f . The contour
function has the following syntax

contour(x,y,z,nz)

where

• x (resp. y) is a row vector of x (resp. y) values with size n1 (resp. n2),

• z is a real matrix of size (n1,n2), containing the values of the function or a
Scilab function which defines the surface z=f(x,y),

• nz the level values or the number of levels.
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Figure 36: Contour plot of the function f(x1, x2) = x2
1 + x2

2.

In the following Scilab session, we use a simple form of the contour function,
where the function myquadratic is passed as an input argument. The myquadratic

function takes two input arguments x1 and x2 and returns f(x1, x2) = x2
1 + x2

2.
The linspace function is used to generate vectors of data so that the function is
analyzed in the range [−1, 1]2.

function f = myquadratic2arg ( x1 , x2 )
f = x1**2 + x2**2;

endfunction
xdata = linspace ( -1 , 1 , 100 );
ydata = linspace ( -1 , 1 , 100 );
contour ( xdata , ydata , myquadratic2arg , 10)

This produces the contour plot presented in figure 36.
In practice, it may happen that our function has the header z = myfunction

( x ), where the input variable x is a row vector. The problem is that there is only
one single input argument, instead of the two arguments required by the contour

function. There are two possibilities to solve this little problem:

• provide the data to the contour function by making two nested loops,

• provide the data to the contour function by using feval,

• define a new function which calls the first one.

These three solutions are presented in this section. The first goal is to let the reader
choose the method which best fits the situation. The second goal is to show that
performances issues can be avoided if a consistent use of the functions provided by
Scilab is done.

In the following Scilab naive session, we define the quadratic function myquadratic1arg,
which takes one vector as its single input argument. Then we perform two nested
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Figure 37: Contour plot of the function f(x1, x2) = x2
1+x2

2 – The levels are explicitly
configured.

loops to compute the zdata matrix, which contains the z values. The z values are
computed for all the combinations of points (x(i), y(j)) ∈ R2, for i = 1, 2, . . . , nx

and j = 1, 2, . . . , ny, where nx and ny are the number of points in the x and y co-
ordinates. In the end, we call the contour function, with the list of required levels
(instead of the previous number of levels). This allows to get exactly the levels we
want, instead of letting Scilab compute the levels automatically.

function f = myquadratic1arg ( x )
f = x(1)**2 + x(2)**2;

endfunction
xdata = linspace ( -1 , 1 , 100 );
ydata = linspace ( -1 , 1 , 100 );
// Caution ! Two nested loop , this is bad.
for i = 1: length(xdata)

for j = 1: length(ydata)
x = [xdata(i) ydata(j)].’;
zdata ( i , j ) = myquadratic1arg ( x );

end
end
contour ( xdata , ydata , zdata , [0.1 0.3 0.5 0.7])

The contour plot is presented in figure 37.
The previous script perfectly works. Still, it is not efficient because it uses two

nested loops and this is to avoid in Scilab for performance reasons. Another issue is
that we had to store the zdata matrix, which might consume a lot of memory space
when the number of points is large. This is why this method is to avoid, since it is
a bad use of the features provided by Scilab.

In the following script, we use the feval function, which evaluates a function
on a grid of values and returns the computed data. The generated grid is made
of all the combinations of points (x(i), y(j)) ∈ R2. We assume here that there
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is no possibility to modify the function myquadratic1arg, which takes one input
argument. Therefore, we create an intermediate function myquadratic3, which takes
2 input arguments. Once done, we pass the myquadratic3 argument to the feval

function and generate the zdata matrix.

function f = myquadratic1arg ( x )
f = x(1)**2 + x(2)**2;

endfunction
function f = myquadratic3 ( x1 , x2 )

f = myquadratic1arg ( [x1 x2] )
endfunction
xdata = linspace ( -1 , 1 , 100 );
ydata = linspace ( -1 , 1 , 100 );
zdata = feval ( xdata , ydata , myquadratic3 );
contour ( xdata , ydata , zdata , [0.1 0.3 0.5 0.7])

The previous script produces, of course, exactly the same plot as previously. This
method is also to avoid when possible, since it requires to store the zdata matrix,
which has size 100× 100.

Finally, there is a third way of creating the plot. In the following Scilab session,
we use the same intermediate function myquadratic3 as previously, but we pass it
directly to the contour function.

function f = myquadratic1arg ( x )
f = x(1)**2 + x(2)**2;

endfunction
function f = myquadratic3 ( x1 , x2 )

f = myquadratic1arg ( [x1 x2] )
endfunction
xdata = linspace ( -1 , 1 , 100 );
ydata = linspace ( -1 , 1 , 100 );
contour ( xdata , ydata , myquadratic3 , [0.1 0.3 0.5 0.7])

The previous script produces, of course, exactly the same plot as previously. The
major advantage is that we did not produce the zdata matrix.

We have briefly outlined how to produce simple 2D plots. We are now interested
in the configuration of the plot, so that the titles, axis and legends corresponds to
our data.

7.4 Titles, axes and legends

In this section, we present the Scilab graphics features which allow to configure the
title, axes and legends of an x-y plot.

In the following example, we define a quadratic function and plot it with the
plot function.

function f = myquadratic ( x )
f = x.^2

endfunction
xdata = linspace ( 1 , 10 , 50 );
ydata = myquadratic ( xdata );
plot ( xdata , ydata )

We have now the plot which is presented in figure 35.
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Figure 38: The x-y plot of a quadratic function – This is the same plot as in figure 35,
with title and x-y axes configured.

Scilab graphics system is based on graphics handles. The graphics handles pro-
vide an object-oriented access to the fields of a graphics entity. The graphics layout
is decomposed into sub-objects such as the line associated with the curve, the x and
y axes, the title, the legends, and so forth. Each object can be in turn decomposed
into other objects if required. Each graphics object is associated with a collection
of properties, such as the width or color of the line of the curve, for example. These
properties can be queried and configured simply by getting or setting their values,
like any other Scilab variables. Managing handles is easy and very efficient.

But most basic plot configurations can be done by simple function calls and, in
this section, we will focus in these basic features.

In the following script, we use the title function in order to configure the title
of our plot.

title ( "My title" );

We may want to configure the axes of our plot as well. For this purpose, we use
the xtitle function in the following script.

xtitle ( "My title" , "X axis" , "Y axis" );

Figure 38 presents the produced plot.
It may happen that we want to compare two sets of data in the same 2D plot,

that is, one set of x data and two sets of y data. In the following script, we define
the two functions f(x) = x2 and f(x) = 2x2 and plot the data on the same x-y plot.
We additionally use the ”+-” and ”o-” options of the plot function, so that we can
distinguish the two curves f(x) = x2 and f(x) = 2x2.

function f = myquadratic ( x )
f = x^2

endfunction
function f = myquadratic2 ( x )

72



96 10

40

X axis
8

20

7

Y
 a

xi
s

54321

60

80

100

120

140

0

160

180

200

My title

x^2
2x^2

Figure 39: The x-y plot of two quadratic functions – We have configured the legend
so that we can distinguish the two functions f(x) = x2 and f(x) = 2x2.

f = 2 * x^2
endfunction
xdata = linspace ( 1 , 10 , 50 );
ydata = myquadratic ( xdata );
plot ( xdata , ydata , "+-" )
ydata2 = myquadratic2 ( xdata );
plot ( xdata , ydata2 , "o-" )
xtitle ( "My title" , "X axis" , "Y axis" );

Moreover, we must configure a legend so that we can know what curve is as-
sociated with f(x) = x2 and what curve is associated with f(x) = 2x2. For this
purpose, we use the legend function in order to print the legend associated with
each curve.

legend ( "x^2" , "2x^2" );

Figure 39 presents the produced x-y plot.
We now know how to create a graphics plot and how to configure it. If the plot

is sufficiently interesting, it may be worth to put it into a report. To do so, we can
export the plot into a file, which is the subject of the next section.

7.5 Export

In this section, we present ways of exporting plots into files, either interactively or
automatically with Scilab functions.

Scilab can export any graphics into the vectorial and bitmap formats presented
in figure 40. Once a plot is produced, we can export its content into a file, by using
interactively the File > Export to... menu of the graphics window. We can then set
the name of the file and its type.
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Vectorial
xs2png export into PNG
xs2pdf export into PDF
xs2svg export into SVG
xs2eps export into Encapsulated Postscript
xs2ps export into Postscript
xs2emf export into EMF (only for Windows)
Bitmap
xs2fig export into FIG
xs2gif export into GIF
xs2jpg export into JPG
xs2bmp export into BMP
xs2ppm export into PPM

Figure 40: Export functions.

We can alternatively use the xs2* functions, presented in figure 40. All these
functions are based on the same calling sequence:

xs2png ( window_number , filename )

where window_number is the number of the graphics window and filename is the
name of the file to export. For example, the following session exports the plot which
is in the graphics window number 0, which is the default graphics window, into the
file foo.png.

xs2png ( 0 , "foo.png" )

If we want to produce higher quality documents, the vectorial formats are to be
prefered. For example, LATEX documents may use Scilab plots exported into PDF
files to improve their readability, whatever the size of the document.

8 Notes and references

There are a number of topics which have not been presented in this document. We
hope that the current document is a good starting point for using Scilab so that
learning about these specific topics should not be a problem. We have already men-
tioned a number of other sources of documentation for this purpose at the begining
of this document.

French readers may be interested by [5], where a good introduction is given about
how to create and interface to an existing library, how to use Scilab to compute the
solution of an Ordinary Differential Equation, how to use Scicos and many other
subjects. The same content is presented in English in [3]. English readers should be
interested by [4], which gives a deeper overview of Scicos. These books are of great
interest, but are rather obsolete since they were written mainly for older version of
Scilab.

Further reading may be obtained from the Scilab web cite [6], in the documen-
tation section.
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10 Answers to exercises

10.1 Answers for section 1.7

Answer to Exercise 1.1 (Installing Scilab) Let us install the current version of Scilab on your
system: at the time where this document is written, this is Scilab v5.2. Installing Scilab is very
easy, since binaries are provided. Figure 41 present the early steps required to install Scilab v5.1.1
under Windows.

Answer to Exercise 1.2 (Inline help: derivative ) The derivative function allows to compute
the numerical derivative of a function. The purpose of this exercise is to find the corresponding
help page, by various means. We open the help browser from the console, in the ? > Help Browser
menu. We now select the search pane on the left, and type derivative, then press the <Enter>
key. All the pages containing the word derivative are displayed. The first one is the help page we
are searching for. We can also use the help provided on Scilab web site

http://www.scilab.org/product/man

We use the find tool of our favorite web browser and search for the word derivative. We successively
find the functions: diff, bsplin3val, derivative, derivat and dlgamma. The searched page is
the following:

http://www.scilab.org/product/man/derivative.html

We finally use the console to find the help.

help derivative

Figure 42 presents the help page for the derivative.

10.2 Answers for section 2.6

Answer to Exercise 2.1 (The console) Type the following statement in the console.

atoms

Now type on the <Tab> key. What happens? We see that all functions which name begins with
the letters ”atoms” are displayed, as presented in figure 43. Now type the ”I” letter, and type again
on <Tab>. What happens ? We see that all functions which name begins with the letters ”atomsI”
are displayed, as presented in figure 44.

Answer to Exercise 2.2 (Using exec) The SCI variable contains the name of the directory
of the current Scilab installation. The statement SCI+"/modules" creates a string which is the
concatenation of the Scilab directory name and the ”/modules” string, as shown in the following
session.

-->SCI+"/modules"
ans =
C:/ PROGRA ~1/ SCILAB ~1.0-B/modules

Therefore, when we perform the ls(SCI+"/modules") statement, Scilab displays the list of files in
the modules subdirectory of Scilab.

-->ls(SCI+"/modules")
ans =

!xpad !
! !
!xcos !
! !
!windows_tools !
! !
[...]
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Figure 41: First steps during the installation of Scilab v5.1.1 under Windows.
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Figure 42: Help page for the derivative function.

Figure 43: Using the completion to browse the ATOMS functions.

Figure 44: Using the completion to browse the ATOMS functions.
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Figure 45: The demo contourf.dem.sce.

Executing the demonstration script contourf.dem.sce produces the graphic presented in figure 45.
The difference between the two statements

exec(SCI+"/modules/graphics/demos/2 d_3d_plots/contourf.dem.sce")
exec(SCI+"/modules/graphics/demos/2 d_3d_plots/contourf.dem.sce");

is that the second ends with a semicolon ”;”. We use this operator so that Scilab does not display
the content of the file when the script is executed, which is convenient when the script contains
many lines.

10.3 Answers for section 3.13

Answer to Exercise 3.1 (Precedence of operators) The order of the operations when they are
applied to a mathematical expression is called the precedence. For example, when the expression
2 × 3 + 4, it is equivalent to the expression (2 × 3) + 4. The following session shows that the
precedence of Scilab operators is the same as the usual mathematical operators.

-->2 * 3 + 4
ans =

10.
-->2 + 3 * 4
ans =

14.
-->2 / 3 + 4
ans =

4.6666667
-->2 + 3 / 4
ans =

2.75

Answer to Exercise 3.2 (Parentheses) When the precedence of the operators does not allow
to compute the result we want, parentheses can be used to force the order of the operations. In
Scilab, we can use the usual round brackets ”(” and ”)”.
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-->2 * (3 + 4)
ans =

14.
-->(2 + 3) * 4
ans =

20.
-->(2 + 3) / 4
ans =

1.25
-->3 / (2 + 4)
ans =

0.5

Answer to Exercise 3.3 (Exponents) When we want to define constants with exponents, as
the constant 1.23456789 × 1010, we use the ”d” letter to define the exponent, as in the following
session.

- - >1.23456789 d10
ans =

1.235D+10

We can alternatively use the ”e” letter, as in the following session which computes the constants
1.23456789× 1010 and 1.23456789× 10−5.

- - >1.23456789 e10
ans =

1.235D+10
- - >1.23456789e-5
ans =

0.0000123

Answer to Exercise 3.4 (Functions) The sqrt behaves exactly as mathematically expected for
positive arguments.

-->sqrt (4)
ans =

2.
-->sqrt (9)
ans =

3.

For negative arguments x, Scilab returns y as the complex solution of the equation x2 = y.

-->sqrt(-1)
ans =

i
-->sqrt(-2)
ans =

1.4142136i

The exp function is the exponential function, where the base e is Euler’s constant. The log is the
natural logarithm, which is the inverse function of the exponential function.

-->exp(1)
ans =

2.7182818
-->log(exp (2))
ans =
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2.
-->exp(log (2))
ans =

2.

The log10 function is the base-10 logarithm. Notice that if x is an integer, then log10(x) is the
number of decimal digits of x.

-->10^2
ans =

100.
-->log10 (10^2)
ans =

2.
-->10^log10 (2)
ans =

2.

The sign function returns the sign of its argument, and returns zero when x is zero.

-->sign (2)
ans =

1.
-->sign(-2)
ans =
- 1.

-->sign (0)
ans =

0.

Answer to Exercise 3.5 (Trigonometry) The following session is a sample use of the cos and
sin functions.

-->cos(0)
ans =

1.
-->sin(0)
ans =

0.

Because of the limited precision of floating point numbers, the result of a trigonometry function
(as any other function) is subject to rounding. In the following session, the mathematical identity
sin(π) = 0 is approximated at best, given the machine precision associated with double variables.

-->cos(%pi)
ans =
- 1.

-->sin(%pi)
ans =

1.225D-16
-->cos(%pi/4) - sin(%pi/4)
ans =

1.110D-16
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10.4 Answers for section 4.18

Answer to Exercise 4.1 (Plus one) Let us create the vector (x1 + 1, x2 + 1, x3 + 1, x4 + 1)
with the following x. The following session performs the computation and uses the usual addition
operator ”+”. In this case, the scalar 1 is added to each element of the vector x.

-->x = 1:4;
-->y = x + 1
y =

2. 3. 4. 5.

Answer to Exercise 4.2 (Vectorized multiplication) Let us create the vector (x1y1, x2y2, x3y3, x4y4)
with the following x and y. The following session performs the computation and uses the elemen-
twise multiplication operation ”.*”.

-->x = 1:4;
-->y = 5:8;
-->z = x .* y
z =

5. 12. 21. 32.

Answer to Exercise 4.3 (Vectorized invert) Let us create the vector
(

1
x1
, 1

x2
, 1

x3
, 1

x4

)
. The

following session performs the computation and uses the elementwise division operation ”./”.

-->x = 1:4;
-->y = 1 ./ x
y =

1. 0.5 0.3333333 0.25

The following session does not compute what we want, but, instead, compute the solution y of the
equation xy = 1.

-->y = 1 / x // This is not what we want here !
y =

0.0333333
0.0666667
0.1
0.1333333

Answer to Exercise 4.4 (Vectorized division) Let us create the vector
(

x1
y1
, x2

y2
, x3

y3
, x4

y4

)
. The

following session performs the computation and uses the elementwise division operation ”./”.

-->x = 12*(6:9);
-->y = 1:4;
-->z = x ./ y
z =

72. 42. 32. 27.

Answer to Exercise 4.5 (Vectorized squaring) Let us create the vector
(
x2

1, x
2
2, x

2
3, x

2
4

)
with

x = 1, 2, 3, 4. The following session performs the computation and uses the elementwise squaring
operation ”.̂ ”.

-->x = 1:4;
-->y = x.^2
y =

1. 4. 9. 16.
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Answer to Exercise 4.6 (Vectorized sinus) Let us create the vector (sin(x1), sin(x2), . . . , sin(x10))
with x ∈ [0, π]. The following session performs the computation and uses the linspace function.

-->x = linspace(0,%pi ,10);
-->y = sin(x)
y =

column 1 to 6
0. 0.3420201 0.6427876 0.8660254 0.9848078 0.9848078

column 7 to 10
0.8660254 0.6427876 0.3420201 1.225D-16

Answer to Exercise 4.7 (Vectorized function) Let us compute the y = f(x) values of the
function f defined by the equation

f(x) = log10 (r/10x + 10x) (3)

with r = 2.220.10−16 for x ∈ [−16, 0]. The following session performs the computation and uses
the elementwise division ”./” operator.

r = 2.220D-16;
x = linspace (-16,0,10);
y = log10(r./10.^x + 10.^x);

This function appears in the computation of the optimal step to be used in a numerical deriva-
tive. It shows that the optimal step to use with a forward order one finite difference is equal to
h=sqrt(%eps).
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