
Université de Picardie Jules Verne
Cours de l’Ecole Doctorale/Doctoral School’s Lectures
Calculs Numériques/Numerical Compuations
2019-2020

Plotting with Scilab

• Simple plot
x = linspace(-% pi,% pi,11); // mesh of [-pi,pi] using 11 pts.

y = cos(x)./(1+x.∧ 2); // (% pi is a scilab constant)

clf() // clear the (current) graphic window

plot(x,y,’b’)

We can modify the script by playing with the interval length and/or the discretisation
parameter and/or the color of the plot line (’b’, ’g’, ’r’, ’k’, ’c’, ’m’ stand re-
spectively for blue, green, red, black, cyan, magenta).

• More generally, The plot function can be used to draw one or several curves:
plot(x1,y1[,style1],x2,y2[,style2],)

with style is an optional string to define color, line type, or symbol. strings in scilab are
delimited by simple or double quote.
Example x = linspace(0,2% pi,31);

y1 = sin(x); y2 = cos(x);

scf(0); // select graphic window 0 to be the default graphic window

clf(); // clear the graphic window

plot(x,y1,"b-",x,y2,"r--"); // only lines

scf(1); // select graphic window 1 to be the default graphic window

clf(); // clear the graphic window

subplot(2,1,1); // split the graphic window and use subpart 1

plot(x,y1,"ro",x,y2,"bx"); // only symbols

subplot(2,1,2); // split the graphic window and use subpart 2

plot(x,y1,"r--o",x,y2,"g-x"); // both lines and symbols

• Plot3d plot3d(x,y,z,<optargs>)

Example simple plot using z=f(x,y)
t=[0:0.3:2*% pi]’;

z=sin(t)*cos(t’);

plot3d(t,t,z)

colors line types symbols
k black c cyan
b blue m magenta
r red y yellow
g green w white

- solid
-- dashed
: dotted
-. dashdot

+ + d ♦
x × v

o © s

* ∗ wedge 4

1

Matrices and arrays with Scilab
We can first define matrices and vectors from the coefficients as:

• A = [1, 2, 3; 4, 5, 6] // the character ; introduce the next row

x = [0 ; 1; 0] // a column vector

y = [exp(% pi), sin(% e)] // a row vector

We can aslo define matrices from other matrices

• B = [A ; y , 1]

C = [B, x] // C can be built directly using [[A ; y, 1],x]

Some matrix/vector constructors and operators

• linspace(a,b,n) creates a uniform mesh of [a; b] with n points
zeros(m,n) and ones(m,n) build m× n matrices of 0 and 1. eye(m,n) builds the m× n

identity like matrix.
If x is a vector A=diag(x,k) builds a diagonal like matrix by filling the k-th diagonal with
the vector x.

Basic operations and transforms on matrices

• if A is a matrix but not a vector diag(A,k) extracts the diagonal number k as a column
vector.

• A*B is the matrix product of the matrices A and B (or product between a scalar and a
vector or matrix).

• A’ performs the transposition of matrix A.

• the scalar product is x’*y, where x and y are columnvectors

• If A is a square invertible matrix you can solve the linear system Ax = b using x = A\b (a
PA = LU factorization of the matrix, followed by an estimation of its condition number,
and

finally by solving the 2 triangular systems, are done in a transparent manner).

• Pointwize product z=x.*y returns the vector z of components zi = xi ∗ yi
More generally one can consider z=x./y with zi = xi/yi; z=x.∧p returns zi = xi ∧ p.

• The same with matrices of same size A.*B

Example We want to solve the linear system Ax = b where

A =
1

h2

2 −1 0 · · · 0

−1
.

...

0
. 0

...
. −1

0 · · · 0 −1 2

.

2

where h = 1
n + 1. Here A is the discretization matrix of the negative laplacian on the unit

interval associated to homogeneous Dirichlet boundary conditions. We can define the right
hand side (r.h.s in short) randomly as b=rand(n,1) (this is a column vector).
We can solve directly the system, compute the relative residual, the value of the associated

quadratic functional J(x) = 1
2 < Ax, x > − < b, x > at the solution. We can also build the

bloc matrix (
A Id
Id A

)
.

where Id is the n× n identity matrix.

n = 7;

v = -ones(1,n-1);

A = diag(v,-1) + 2*eye(n,n) + diag(v,1)

// another solution

// A = diag(v,-1) + diag(2*ones(1,n)) + diag(v,1)

b = rand(n,1);

x = A\ b

res = norm(A*x-b)/norm(b)

E = 0.5*x’*A*x - b’*x

y = rand(n,1);

F = 0.5*y’*A*y - b’*y

E < F

B = [A , eye(n,n) ;...

eye(n,n), A]

coefficients handling : the first element of a vector x is x(1) not x(0)

Example
A = rand(3,4) // create a matrix

A(2,2) = -1 // change coef (2,2) of A

c = A(2,3) // extract coef (2,3) of A and assign it to variable c

A(2,:) // extract row 2 of A (it is assigned to ans)

A(2,:) = ones(1,4) // change row 2 of A

A(:;3) = 0 // change column 3 of A

B = A([1,3],[1 2]) // extract submat (1,3)x(1,2) and assign it to B

A([1,3],[1 2]) = [-10,-20;-30,-40] // change the same sub-matrix

Here more complete assign/extraction syntaxes:

A(rowind,colind)= RHS // assign

var = A(rownd,colind) // extract (and assign to var)

3

