
Université de Picardie Jules Verne
Cours de l’Ecole Doctorale/Doctoral School’s Lectures
Calculs Numériques/Numerical Compuations
2019-2020

Solution of nonlinear systems of equations with Scilab

1 The scalar case

1.1 Polynomials

Let us begin with the problem of finding roots of a polynomial (this is a very difficult problem
for deep reasons when the degree is larger or equal to 5).
The command roots allows to compute numerically the roots of a polynomial, as described in
the following simple example
// a real polynomial defined by its roots

p = poly([1 2 3],"x")

roots(p)

// We give directly the polynomial’s coefficients

p = [3 2 1] roots(p) // Here a polynomial with complex roots

p=poly([0,10,1+%i,1-%i],’x’);

roots(p)

// roots of the characteristic polynomial of a matrix A=rand(3,3);

p = poly(A,’x’)

roots(p)

spec(A)

To be convinced of the difficulty of finding the roots of a polynomial, we consider the famous
Wilkinson example:
n=10;

p=poly(1:n,’x’);

r=roots(p)

// Now represent the roots in the complex plane

plot(real(r),imag(r),’*’)

up to n = 20 the roots computed are very closed numerically to the ones expected. The diffi-
culty appears for larger values of n. We can illustrate this purpose by generating an animation
for n=5:5:40

p=poly(1:n,’x’);

r=roots(p)

// Now represent the roots in the complex plane

plot(real(r),imag(r),’*’)

drawnow

//pause in microsec

xpause(1000000)

end

1



A numerical method is used by Scilab (by default, the RPOLY method of Jenkins-Traub we
will not discuss here).

Another way to compute the roots is to build a matrix M whose the characteristic polyno-
mial is p and then to compute the eigenvalues of M , say the roots of p. M is said to be the
companion matrix of p and be built b in Scilab as M=companion(p).

1.2 Fixed point

We recall that a fixed point of a function g(x) is a real x that is unchanged by g so that

g(x) = x

A classical method to compute a fixed point of gis the so-called Picard method:

x(k+1) = g(x(k))

And if x(k) converges, the limit must be a fixed point of g. Of course the convergence is not
always guaranted, assumption to g have to be made.

Finding a root of f is equivalent to find a fixed point of g(x) = x+ αf(x), where α 6= 0.

Exercice: write a code in Scilab to compute the fixed point of g(x) = exp(−x) by Picard
iterates, for x ∈ [0, 1].

1.3 Newton-Like methods

Let f be a regular function and x∗ an isolated root of f . By Taylor’s formula we can write

f(x∗) = 0 = f(x+ (x∗ − x)) = f(x) + f ′(x)(x∗ − x) +O((x∗ − x)2)

hence,
x∗ ' x− f(x)/f ′(x).

So, in a neigborhood of x∗, x− f(x)/f ′(x) provides a better approximation of x∗ than x. The
idea of Newton’s method is then to loop the approximation as

x(k+1) = x(k) − f(x(k))/f ′(x(k))

of course f ′(x(k) must be different to 0. A way to ensure this condition is to assume that
f ′(x∗) 6= 0, so by continuity of f ′ this holds in a sufficiently neigborhood of x∗.

Exercice: write a code in Scilab to compute the root of x − exp(−x) by Newton’s method
for x ∈ [0, 1].

2



2 Systems of equations

2.1 Fixed point

Here we have F (x) = (F1(x), · · · , Fn(x))T and x = (x1, x2, · · · , xn)T . The Picard iterates write
exactly as in the scalar case, namely,

x(k+1) = F (x(k))

Exercice: write a code in Scilab to compute the root of

Ax+ x ∗Dx = b

with

A =
1

h2


2 −1 0 · · · 0

−1
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . −1

0 · · · 0 −1 2

 and D =
1

2h


0 1 0 · · · 0

−1
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . 1

0 · · · 0 −1 0

 .

where we have set h = 1
n+ 1. We set b = (sin(πh), sin(2πh), · · · , sin(nπh))T .

2.2 The Newton-Raphson method

We derive the Newton method for finding a root of a function F with values in IRn ina similar
way to the scalar case (n = 1).
By Taylor’s formula we can write

F (x∗) = 0 = F (x+ (x∗ − x)) = f(x) +DF (x)(x∗ − x) +O((x∗ − x)2)

so
x∗ ' x− (DF (x))−1F (x)

Here DF (x) is the Jacobian matrix of F at x and is defined by

DF (x)ij =
∂Fi(x)

∂xj

So the Newton-Raphson method is obtained by cycling the approximation as

x(k+1) = x(k) − (DF (x(k)))−1F (x(k))

Exercice: write a code in Scilab to compute the root of F (x) = Ax + x ∗ Dx − b, with A, D
and b as above.

3


