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Solving Boundary value problem
Consider the Boundary values problem

−u”(x) = f(x), x ∈]0, 1[, (1)

u(0) = u(1) = 0. (2)

A nice way to build a finite differences scheme for solving this problem is the following:

• Consider N regularly spaced point in [0, 1], xi = ih (also called the grid-points), with

h = 1
N + 1. Assume that the equation holds for every points of [0, 1], particularly at

xi, i = 1, · · · , N . We can write

−u”(xi) = f(xi), i = 1, · · · , N.

• Of course, we must approach the quantities −u”(xi). A way to do that is to use Taylor’s
expansion:

u(xi+1) = u(xi + h) = u(xi) + hu′(xi) + h2

2!
u”(xi) + h3

3!
u(3)(xi) + h4

4!
u(4)(ξ1),

u(xi−1) = u(xi − h) = u(xi)− hu′(xi) + h2

2!
u”(xi)− h3

3!
u(3)(xi) + h4

4!
u(4)(ξ2),

Summing these two expression, one gets after the usual simplifications

2u(xi)− u(xi+1)− u(xi−1)

h2
= −u”(xi) +

1

4!
(u(4)(ξ1) + u(4)(ξ2)) = −u”(xi) +O(h2)

Replacing u”(xi) by this expression in the equation, we obtain

2u(xi)− u(xi+1)− u(xi−1)

h2
= f(xi) +O(h2)

The lower order term O(h2) is of course never known.

• Now, we can describe the approximation method: we define Ui ≈ u(xi) as

2ui − ui+1 − ui−1
h2

= f(xi), i = 1, · · · , N

and u0 = u(0) = 0, uN+1 = u(1) = 0.

• This last system of equation is equivalent to

AU = F
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with

A =


2 −1 0 · · · 0
−1 2 −1

0
. . .

. . .
. . .

0 −1 2

 , U =


u(x1)

...

u(xN )

 and F =


f(x1)

...

f(xN )


• We can build the matrix A in Scilab as follows n=5;

A = 2?eye(n,n)?diag(ones(n?1,1),1)?diag(ones(n?1,1),?1);

Exercice 1 (Simple Poisson Problem)
1. We take f(x) = π2 sin(πx), so the corresponding solution to the poisson problem is u(x) =

sin(πx). Compute the numerical approximations with the finite difference scheme for
(n = 10, n = 50, n = 100). Plot on the same graphic the error at the grid points.

2. Same questions with f(x) = 25π2 sin(5πx). What can you say ?

3. We now consider a nonregular data.

(a) We take now f(x) =

{
1 x ∈]0, 1/2[ ,
0 x ∈ [1/2, 1[,

.

(b) Plot the solution. What do you observe ?

Exercice 2 (Wave and damped wave equation)
Consider the wave equation

∂2u

∂t2
+ ν

∂u

∂t
− ∂2u

∂x2
= 0 x ∈]0, 1[, t ∈)0, T ), (3)

u0(0, t) = 0, u(1, t) = 0 t ∈)0, T ), (4)

u(x, 0) = u0(x) x ∈]0, 1[, (5)

ut(x, 0) = u1(x) x ∈]0, 1[. (6)

We admit that the problem possesses a unique solution. To approach the solution numer-
ically, we display a finite difference scheme in both space and time: we look to numerical
approximations of uki ≈ u(xi, tk), with tk = k∆t. At first we discretize the problem in
space to obtain a (second order) differential system

d2U

dt2
+ ν

du

dt
AU = 0

Then we approach each term at the discrete times tk by finite differences, we obtain the
numerical scheme

Uk+1 − 2Uk + Uk−1

∆t2
+ ν

Uk+1 − Uk−1

2∆t

1

2

(
AUk+1 +AUk−1

)
= 0

(a) We take in this question ν = 0.

i. We start from u0(x) = sin(πx). Simulate the equation and make an animation.
What do you observe ?
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ii. We look to the quantity

E(Uk+1) =
‖Uk+1 − Uk‖2

2∆t
+

1

4

(
< AUk+1, Uk+1 > + < AUk, Uk >

)
Plot E(Uk) for each k. What can you say ?

iii. The physical problem corresponds to a model of vibration of a string (of a violin
for instance). Do the numerical results fit with the physical observations ?

(b) We now take into account a damping term with ν = 0.

i. Make the simulation for different values of ν. What do you observe ?

ii. Does it coincide now with that you observe in the real world ?
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