Université de Picardie Jules Verne

Cours de I’Ecole Doctorale/Doctoral School’s Lectures
Calculs Numériques/Numerical Computations
2019-2020

Solving Boundary value problem
Consider the Boundary values problem

—u”(z) = f(z), z €
u(0) = u(1

)

A nice way to build a finite differences scheme for solving this problem is the following:
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e Consider N regularly spaced point in [0, 1], x; = i¢h (also called the grid-points), with
h = ﬁ Assume that the equation holds for every points of [0,1], particularly at
x;,i=1,---,N. We can write

—u’(z;) = f(z;), i=1,---,N.

e Of course, we must approach the quantities —u”(z;). A way to do that is to use Taylor’s
expansion:
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Summing these two expression, one gets after the usual simplifications
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Replacing u” (z;) by this expression in the equation, we obtain

2u(w;) — u(wiy1) — uli—1)

The lower order term O(h?) is of course never known.
e Now, we can describe the approximation method: we define U; =~ u(z;) as

2u; — Uil — Uj—1
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and ug = u(0) =0, un+1 = u(l) =0.
e This last system of equation is equivalent to

AU = F



with
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e We can build the matrix A in Scilab as follows n=5;

A = 27eye(n,n)?diag(ones(n?1,1),1)?diag(ones(n?1,1),71);

Exercice 1 (Simple Poisson Problem)
1. We take f(z) = n?sin(7x), so the corresponding solution to the poisson problem is u(x) =

sin(rz). Compute the numerical approximations with the finite difference scheme for
(n =10, n = 50, n = 100). Plot on the same graphic the error at the grid points.

. Same questions with f(z) = 2572 sin(57z). What can you say ?

. We now consider a nonregular data.

_J 1 =€0,1/2,
(a) We take now f(z) = { 0 zell/21]
(b) Plot the solution. What do you observe 7

Exercice 2 (Wave and damped wave equation)
Consider the wave equation

d%u ou  0%*u

ﬁ+ua—a7—0 xE]O 1], t €)0,7T), (3)
u0(0,1) = 0, u(1,t) = 0 €)0,7), (4)
u(z,0) = uo(x) z €]0,1], (5)
u(z,0) = u(z) z €]0,1[. (6)

We admit that the problem possesses a unique solution. To approach the solution numer-
ically, we display a finite difference scheme in both space and time: we look to numerical
approximations of uf ~ u(wx;, ty), with ¢, = EAt. At first we discretize the problem in
space to obtain a (second order) differential system
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Then we approach each term at the discrete times t; by finite differences, we obtain the
numerical scheme
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(a) We take in this question v = 0.

i. We start from wup(x) = sin(7wz). Simulate the equation and make an animation.
What do you observe ?



ii. We look to the quantity
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Plot E(U*) for each k. What can you say ?

iii. The physical problem corresponds to a model of vibration of a string (of a violin
for instance). Do the numerical results fit with the physical observations 7

(b) We now take into account a damping term with v = 0.

i. Make the simulation for different values of v. What do you observe ?
ii. Does it coincide now with that you observe in the real world 7



