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Obervations

The set PDn ⊂ Sn of the n × n SPD matrices possesses a cone structure

The Identity matrix Id plays a centrale role : Id is a central ray (Taragaza
(90’))

Angle between matrices reveals as a central tool

Questions

How to characterize the conditioning of the matrices in PDn

How to build (inverse) preconditioners in PDn
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It is natural to use the cosine to measure the angle between two matrices

cos(A,B) =
< A,B >F

‖A‖F‖B‖F

where < A,B >F = Tr(BT A) and ‖.‖F is the Frobenius norm. We have the
simple identities

cos(A, Id) =
Tr(A)√
n‖A‖F

cos(A, Id) cos(A−1, Id) =
Tr(A)Tr(A−1)
n‖A‖F‖A−1‖F

cos(A,A−1) = n
‖A‖F‖A−1‖F

The Frobenius condition number of A, κ(A)F = ‖A‖F‖A−1‖F is then related to
the cosine of the angle that A and A−1 make with the central ray matrix Id ,
and also to the angle between A and A−1.
Of course we would like to avoid to handle quantities with A−1 and then
produce estimates of the condition number using A only
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Properties

Identities and Properties

κF (A) expressed with distance between A and A−1

κ(A)F = n + 1
2

(
‖A− A−1‖2

F − (‖A‖F − ‖A−1‖F )2
)

= n + 1
2 D(A,A−1).

1 +
1

2n
D(A,A−1) ≤ κ2(A) ≤ n +

1

2
D(A,A−1)

1

κ2(A)
≤ cos(A,A−1) ≤ cos(A, Id) cos(A−1, Id)
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Properties (segue)

Properties

1

n
≤ cos(A, Id)

cos(A−1, Id)
≤ n

κF (A) ≥ max(n,

√
n

cos2(A, Id)
)

(Wolfowicz & Styan, 80’) with
m = tr(A)/n, p =

√
n − 1, s2 = ‖A‖2

F/n −m2,

κF (A) ≥ Max

(
n,

√
n

cos2(A, Id)
,

(
1 +

2s

m − s
p

))

Rmk : Statistical interpretation with M = m Id , spectral mean value matrix of
A and s2 = ‖A−M‖2

F/n is the variance, s
p

is the unbiased standard deviation.
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Figure : Comparison of different bounds for the Frobeniuis condition number of the
500 × 500 matrices B = eeT + λI (left) and of B = RRT + λI (right) vs λ in a loglog
scale.
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Choice of the merit function
Properties

Approximation of the inverse using the Cosine

Let Xk be a sequence of matrices, then

‖Id − Xk A‖2
F = (‖Id‖F − ‖Xk A‖F )2 + 2(1− cos(Id ,Xk A))‖Id‖F‖Xk A‖F

Then is Xk , is a sequence of matrices converging to A−1 assuming that
‖Xk A‖F =

√
n = ‖Id‖F , we have

‖Id − Xk A‖2
F = 2n(1− cos(Id ,Xk A))

IDEA : build Xk as minimizing sequence of F (X ) = 1− cos(Id ,XA)
Rmk : we could consider also F1(X ) = 1− cos(Id ,AX ).
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As seen above, these sets will play an important role

S = {X ∈Mn(IR)/‖XA‖F =
√

n},T = {X ∈Mn(IR)/tr(XA) ≥ 0}

F (X ) = 0 =⇒ X = ξA−1, ξ > 0

F (X ) = 0 and X ∈ S =⇒ X = A−1

Important remark : F (X ) is invariant by positive scaling, say

F (αX ) = F (X )

This will give the boundness of approximating sequences of matrices when
working in S
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Choice of the merit function
Properties

Basic properties of F and S

∇F (X ) = 1
‖Id‖F‖XA‖F

(
< XA, Id >
‖XA‖2

F

XA− Id

)
AT

< ∇F (X ),X >= 0, ∀X ∈ S
√

n
‖A‖F

≤ ‖X‖F ≤
√

n‖A−1‖F ,X ∈ S
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Gradient Method
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Negative gradient direction

Iterations
X (k+1) = X (k) − αk∇F (X (k)),

Steepest descent : optimal αk that optimizes F (X (k) + αDk ), is

αk =

(
〈X (k)A, I 〉〈X (k)A,Dk A〉 − n 〈Dk A, I 〉

)
(
〈Dk A, I 〉〈X (k)A,Dk A〉 − 〈X (k)A, I 〉〈Dk A,Dk A〉

) .
Since ‖I‖F =

√
n,

X (k+1) = X (k) − αk√
n ‖X (k)A‖F

(
〈X (k)A, I 〉
‖X (k)A‖2

F

X (k)A− I

)
A,

imposing the condition ‖X (k)A‖F =
√

n,

X (k+1) = X (k) − αk

n

(
〈X (k)A, I 〉

n
X (k)A− I

)
A,
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Algorithm 1 : CauchyCos (Steepest descent approach on F (X ) = 1− cos(XA, I ))

1: Given X0 ∈ PSD
2: for k = 0, 1, · · · until a stopping criterion is satisfied, do
3: Set wk = 〈X (k)A, I 〉
4: Set ∇F (X (k)) = 1

n

(
wk
n X (k)A− I

)
A

5: Set αk =

∣∣∣∣ n 〈∇F (X (k))A, I 〉 − wk〈X (k)A,∇F (X (k))A〉
〈∇F (X (k))A, I 〉〈X (k)A,∇F (X (k))A〉 − wk‖∇F (X (k))A‖2

F

∣∣∣∣
6: Set Z (k+1) = X (k) − αk∇F (X (k))

7: Set X (k+1) = s
√

n Z (k+1)

‖Z (k+1)A‖F

, where s = 1 if trace(Z (k+1)A) > 0, s = −1 else

8: end for
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Lemma

If X (0)A = AX (0), then X (k)A = AX (k), for all k ≥ 0 in the CauchyCos
Algorithm.

Lemma

If X (0)A = AX (0), then the sequences {X (k)}, {Z (k)}, and {Z (k)A} generated
by the CauchyCos Algorithm are uniformly bounded away from zero.

Theorem

The sequence {X (k)} generated by the CauchyCos Algorithm converges to A−1.
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To avoid oscillation of the steepest descent : right preconditioning

D̂k ≡ D̂(X (k)) = −1

n

(
〈X (k)A, I 〉

n
X (k)A− I

)
, (1)

Rmk : MINRES can be seen as a steepest descent inverse-right-preconditioned
by (AT )−1.
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Algorithm 2 : MinCos (simplified gradient approach on F (X ) = 1− cos(XA, I ))

1: Given X0 ∈ PSD
2: for k = 0, 1, · · · until a stopping criterion is satisfied, do
3: Set wk = 〈X (k)A, I 〉
4: Set D̂k = −1

n

(
wk
n X (k)A− I

)
5: Set αk =

∣∣∣∣ n 〈D̂k A, I 〉 − wk〈X (k)A, D̂k A〉
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F

∣∣∣∣
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√
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An important issue is the building of sparse inverse preconditioners.

To produce iterates that belong in S, we apply a sparsification (e.g. by
thresholding the coefficients) to Z (k+1), before the rescaling, say

Algorithm 3 : Sparsified iterates

1: Set Z (k+1) = X (k) + αk D̂k

2: Sparsify Z (k+1) as Z(k+1) = F(Z (k+1))

3: Set X (k+1) = s
√

n Z(k+1)

‖Z(k+1)A‖F

The sparsification wil be realized by using a threshold tolerance, combined with
a fixed bound on the maximum number of nonzero elements to be kept at each
column (or row) to limit the fill-in.
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Algorithm 5 : Sparsified iterates

1: Set Z (k+1) = X (k) + αk D̂k
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Algorithm 6 : Sparse MinCos

1: Given X0 ∈ PSD
2: for k = 0, 1, · · · until a stopping criterion is satisfied, do
3: Set wk = 〈X (k)A, I 〉
4: Set D̂k = −1

n

(
wk
n X (k)A− I

)
5: Set αk =

∣∣∣∣ n 〈D̂k A, I 〉 − wk〈X (k)A, D̂k A〉
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F

∣∣∣∣
6: SetZ (k+1) = X (k) + αk D̂k
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8: Set X (k+1) = s
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9: end for
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Numerical Results

The examples

from the Matlab gallery : Poisson, Lehmer, Wathen, Moler, and minij.
Notice that the Poisson matrix, referred in Matlab as (Poisson, N) is the
N2 × N2 finite differences 2D discretization matrix of the negative
Laplacian on ]0, 1[2 with homogeneous Dirichlet boundary conditions.

Poisson 3D (that depends on the parameter N), is the N3 × N3 finite
differences 3D discretization matrix of the negative Laplacian on the unit
cube with homogeneous Dirichlet boundary conditions.

from the Matrix Market : nos1, nos2, nos5, and nos6.

The methods

minimizing F (X ) : CauchyCos (Steepest), MinCos (right Prec. Steepest)

minimizing Φ(X ) = 1
2‖I − XA‖2

F : CauchyFro (Steepest), MinRes (right.
Prec Steepest)

Stopping criteria Min(Φ(X (k)),F (X (k))) ≤ ε
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Matrix A Size (n × n) κ(A) A

Poisson (50) n=2500 1.05e+03 sparse
Poisson (100) n=1000 6.01e+03 sparse
Poisson (150) n=22500 1.34e+04 sparse
Poisson (200) n=40000 2.38e+04 sparse

Poisson 3D (10) n=1000 79.13 sparse
Poisson 3D (15) n=3375 171.66 sparse
Poisson 3D (30) n=27000 388.81 sparse
Poisson 3D (50) n=125000 1.05e+03 sparse

Lehmer (100) n=100 1.03e+04 dense
Lehmer (200) n=200 4.2e+04 dense
Lehmer (300) n=300 9.5e+04 dense

minij (100) n=100 1.63e+04 dense
minij (200) n=200 6.51e+04 dense

moler (100) n=100 3.84e+16 dense
moler (200) n=200 3.55e+16 dense

nos1 n=237 2.53e+07 sparse
nos2 n=957 6.34e+09 sparse
nos5 n=468 2.91e+04 sparse
nos6 n=675 8.0e+07 sparse

Table : Considered test matrices and their characteristics.J-P. CHEHAB Conditioning and Preconditioning in the Cone of SPD matrices
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Matrix Size (n × n) CauchyCos CauchyFro MinRes MinCos
Poisson 2D (50) n=2500 88 132 7 6
Poisson 3D (10) n=1000 9 12 3 2
Poisson 3D (15) n=3375 10 14 3 2
Lehmer (10) n=10 888 1141 21 15
Lehmer (20) n=20 9987 49901 123 51
Minij (20) n=20 31271 63459 209 45
Minij (30) n=30 153456 629787 553 102
Moler (100) n=100 7 83 3 3
Moler (200) n=200 77 15243 19 12
Wathen (10) n=341 10751 17729 68 57
Wathen (20) n=1281 495 1112 22 16

Table : Number of iterations required for all considered methods when ε = 0.01.
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Matrix Size (n × n) CauchyCos CauchyFro MinRes MinCos
Poisson 2D (100) n=1000 7 7
Poisson 2D (200) n=40000 7 7
Poisson 3D (30) n=27000 3 3
Poisson 3D (50) n=125000 3 3
Lehmer (50) n=50 987 293
Lehmer (70) n=70 1399 423
Lehmer (100) n=100 3905 1178
Lehmer (200) n=200 16189 4684
Minij (100) n=100 6771 1259
Minij (200) n=200 26961 5057
Moler (300) n=300 105 22
Moler (500) n=500 381 48
Moler (1000) n=1000 1297 152
Wathen (30) n=2821 24 17
Wathen (50) n=7701 20 15

Table : Number of iterations required for all considered methods when ε = 0.01.
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Figure : Convergence history for CauchyFro and CauchyCos (left), and MinRes and
MinCos (right) for F (X ) (up), when applied to the Wathen matrix for n = 20 and
ε = 0.01.
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Sparse approximation

The sparsification is based on a threshold tolerance with a limited fill-in (lfil)
on the matrix Z (k+1), at each iteration, before the scaling step to guarantee
that the iterate X (k+1) ∈ S ∩ T .

thr as the percentage of coefficients less than the maximum value of the
modulus of all the coefficients in a column

for each i-th column we select at most lfil off-diagonal coefficients among
the ones that are larger in magnitude than thr × ‖(Z (k+1))i‖∞, where
(Z (k+1))i represents the i-th column of Z (k+1).
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Matrix Method κ(X (k)A)/κ(A) [λmin, λmax ] of (X (k)A) Iter % fill-in
nos1 (lfil = 10) MinCos 0.0835 [2.44e-06,2.3272] 20 3.71
nos1(lfil = 10) MinRes [-98.66,5.40]

nos6 (lfil = 10) MinCos 0.4218 [5.07e-06,3.1039] 20 0.45
nos6 (lfil = 20) MinCos 0.2003 [8.51e-06,3.0702] 20 0.82
nos6(lfil = 10) MinRes [ -0.7351,2.6001]
nos6(lfil = 20) MinRes [ -0.2256,2.2467]

nos5(lfil = 5) MinCos 0.068 [0.002,1.36] 10 1.18
nos5(lfil = 10) MinCos 0.0755 [00.0024,1.3103] 10 2.47
nos5(lfil = 5) MinRes [-20.31,2.16]
nos5(lfil = 10) MinRes 0.1669 [0.0021,1.7868] 10 2.36

nos2(lfil = 5) MinCos 0.1289 [5.2e-09,2.73] 10 0.52
nos2(lfil = 10) MinCos 0.0891 [7.95e-09,2.2873] 10 0.80
nos2(lfil = 20) MinCos 0.0700 [9.7e-09,1.9718] 10 1.14
nos2(lfil = 5) MinRes [−0.3326, 2.4869]
nos2(lfil = 10) MinRes 0.0970 [4.21e-09,1.5414] 10 0.93
nos2(lfil = 20) MinRes 0.0861 [4.21e-09,1.1638] 10 1.14

Table : Performance of MinRes and MinCos when applied to the Matrix Market matrices nos1, nos2,
nos5, and nos6, for ε = 0.01, thr = 0.01, and different values of lfil .
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Matrix A Size (n × n) κ(X (k)A)/κ(A) [λmin, λmax ] of (X (k)A) iter % fil-in

wathen (30) n=2821 0.0447 [0.0109, 1.3889] 20 0.73
wathen (50) n=7701 0.0461 [0.0366, 1.4012] 20 0.27
wathen (70) n=14981 0.0457 [0.0086, 1.3894] 20 0.14
wathen (100) n=30401 0.0467 [0.0289, 1.4121] 20 6.8436e-02

Table : Performance of MinCos applied to the Wathen matrix for different values of n and a maximum
of 20 iterations, when ε = 0.01, thr = 0.04, and lfil = 20.
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Figure : Convergence history of the CG method applied to a linear system with the
Wathen matrix, for n = 50, 20 iterations, ε = 0.01, thr = 0.01, and lfil = 20, using
the preconditioned generated by the MinCos Algorithm and without preconditioning.
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Figure : Eigenvalues distribution of A (down) and of X (k)A (up) after 20 iterations of
the MinCos Algorithm when applied to the Wathen matrix for n = 50, ε = 0.01,
thr = 0.01, and lfil = 20.
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The angle between a Matrix A and the identity in C ∩ S is a way to study
the condition number of A

The approximations to the inverse are built in a nonlinear set and take
advantage of induced properties

The gradient method is nothing else but a Forward Euler’s scheme applied
to a gradient flow

Gradient flows and Backward Euler’s method to compute minimizers of a
functional using Lojasewicz inequality (M. Pierre & B. Merlet for linear
spaces (2010), B. Merlet & T.N. Nguyen for manifolds, 2013)
Literature : gradient methods on manifolds (Projected Gardient methods
along geodesiscs, A. Lichnewsky (1979)), Optimization Algorithms on
Matrix Manifolds (Mahony et al, AMS 2007)
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