# La méthode de Newton en analyse numérique

### J-P. CHEHAB1

<sup>1</sup>LAMFA, UMR 7352, Université de Picardie Jules Verne, Amiens, France (jean-paul.chehab@u-picardie.fr)

Journée Mathématique d'Amiens, le 25 juin 2014

- Motivation
  - Babyloniens
  - Méthode de type corde
- Isaac Newton, sa méthode
  - Motivation
  - Sécante
- Newton-Raphson
  - Newton inexacte
  - Quasi Newton
  - Méthode de type sécante
  - Méthodes de Broyden
- 4 Newton et dynamique
  - Flot de Newton
  - Optimisation continue
- Quelques applications
  - Fonctions de matrices
  - Equations différentielles
- 6 Conclusion



La résolution numérique d'une équation non linéaire en particulier la recherche de racines

$$F(x) = 0$$
 ou en termes de point fixe  $G(x) = x$ 

a toujours occupé les mathématiciens. D'abord dédiées au calcul de racines de polynômes, les algorithmes numériques se sont adressés par la suite à la résolution numérique de phénomènes naturels, décrits par des modèles non-linéaires (météo, mécanique des fluides, chimie, ...)

La résolution numérique d'une équation non linéaire en particulier la recherche de racines

$$F(x) = 0$$
 ou en termes de point fixe  $G(x) = x$ 

a toujours occupé les mathématiciens. D'abord dédiées au calcul de racines de polynômes, les algorithmes numériques se sont adressés par la suite à la résolution numérique de phénomènes naturels, décrits par des modèles non-linéaires (météo, mécanique des fluides, chimie, ...)

- Discrétisation (temps, espace) produit une suite de systèmes non linéaires de grande dimension
- La résolution de chaque système se doit d'être efficace (rapide, fiable), les méthodes utilisées sont en général de type (quasi)-Newton, point fixe, optimisation non monotone ...

La résolution numérique d'une équation non linéaire en particulier la recherche de racines

$$F(x) = 0$$
 ou en termes de point fixe  $G(x) = x$ 

a toujours occupé les mathématiciens. D'abord dédiées au calcul de racines de polynômes, les algorithmes numériques se sont adressés par la suite à la résolution numérique de phénomènes naturels, décrits par des modèles non-linéaires (météo, mécanique des fluides, chimie, ...)

- Discrétisation (temps, espace) produit une suite de systèmes non linéaires de grande dimension
- La résolution de chaque système se doit d'être efficace (rapide, fiable), les méthodes utilisées sont en général de type (quasi)-Newton, point fixe, optimisation non monotone ...

La méthode de Newton occupe une place particulière : prototype de convergence superlinéaire et on la retrouve sous différentes formes dans de nombreux algorithmes numériques.

• Résoudre  $F(x) = x^2 - a = 0$  par  $x_{k+1} = \frac{1}{2} \left( x_k + \frac{a}{x_k} \right)$  géométriquement, cela revient à rendre carré des rectangles d'aire a (on les prend de côtés  $x_k$  et  $\frac{a}{X_k}$  respectivement).

Conclusion

- Résoudre  $F(x) = x^2 a = 0$  par  $x_{k+1} = \frac{1}{2} \left( x_k + \frac{a}{x_k} \right)$  géométriquement, cela revient à rendre carré des rectangles d'aire a (on les prend de côtés  $x_k$  et  $\frac{a}{x_k}$  respectivement).
- La suite converge vers  $\sqrt{a}$  pour tout  $x_0 > 0$ . Mieux : convergence très rapide (quadratique) au vois. de la limite,  $|x_{k+1} \sqrt{a}| \le C |x_k \sqrt{a}|^2$

- Résoudre  $F(x) = x^2 a = 0$  par  $x_{k+1} = \frac{1}{2} \left( x_k + \frac{a}{x_k} \right)$  géométriquement, cela revient à rendre carré des rectangles d'aire a (on les prend de côtés  $x_k$  et  $\frac{a}{x_k}$  respectivement).
- La suite converge vers  $\sqrt{a}$  pour tout  $x_0 > 0$ . Mieux : convergence très rapide (quadratique) au vois. de la limite,  $|x_{k+1} \sqrt{a}| \le C |x_k \sqrt{a}|^2$
- IMPORTANT : la convergence est linéaire au début, quadratique ensuite

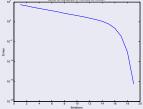


Figure : Historique de la convergence, algo babylonien

- Résoudre  $F(x) = x^2 a = 0$  par  $x_{k+1} = \frac{1}{2} \left( x_k + \frac{a}{x_k} \right)$  géométriquement, cela revient à rendre carré des rectangles d'aire a (on les prend de côtés  $x_k$  et  $\frac{a}{x_k}$  respectivement).
- La suite converge vers  $\sqrt{a}$  pour tout  $x_0 > 0$ . Mieux : convergence très rapide (quadratique) au vois. de la limite,  $|x_{k+1} \sqrt{a}| \le C |x_k \sqrt{a}|^2$
- IMPORTANT : la convergence est linéaire au début, quadratique ensuite

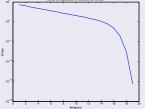


Figure : Historique de la convergence, algo babylonien

Intéressant : fournit des approximations fractionnaires. ⇒ Maths érables [>

#### Partons des itérations de Picard

# équivalence des problèmes

$$f(x) = 0 \iff x = x - \alpha f(x), \alpha \neq 0$$

### vers le bon design de la méthode

Méthode de la corde

$$x_{k+1} = x_k - \alpha f(x_k)$$

Méthode de la corde généralisée

$$x_{k+1} = x_k - \alpha_k f(x_k)$$

géométriquement :  $x_{k+1}$  abscisse intersection axe 0x avec droite de pente  $\frac{1}{\alpha_k}$ , passant par  $(x_k, f(x_k))$ .

Comment choisir  $\alpha_k$  pour avoir de "bonnes" propriétés de convergence (en particulier un grande vitesse de convergence)



### Definition

(Vitesse de convergence) Une suite  $x^{(k)}$  converge vers  $\xi$  linéairement si

$$\exists C \in [0, 1[, \exists k_0 \in \mathbb{N} / \lim_{k \to +\infty} \frac{|x^{(k+1)} - \xi|}{|x^{(k)} - \xi|} \le C$$

Une suite  $x^{(k)}$  converge vers  $\xi$  à l'ordre p > 1 si

$$\exists C > 0, \exists k_0 \in \mathbb{N} / \lim_{k \to +\infty} \frac{|x^{(k+1)} - \xi|}{|x^{(k)} - \xi|^p} \le C, \ \forall k \ge k_0$$

C est le facteur de convergence.

## Point fixe et vitesse de convergence

Soit  $\xi$  point fixe isolé de f, de classe  $\mathcal{C}^{m+1}$ . on suppose que

$$f'(\xi)=\cdots=f^{(m)}(\xi)=0$$

Alors pour  $x_0$  assez proche de  $\xi$ , la suite  $x_{k+1} = f(x_k)$  converge vers  $\xi$ , à l'ordre m+1. On dit que f est la fonction d'itération



Figure: Portrait d'Isaac Newton



Figure: Portraits d'Isaac Newton par Marcel Gotlib

Méthode de Newton (1669), in The method of fluxions and infinite series

Conclusion

Initialisation 
$$x_0$$
 donné

Pour 
$$k = 0, \cdots$$

$$x^{(k+1)} = x^{(k)} - \frac{1}{f'(x^{(k)})} f(x^{(k)})$$

#### **Theorem**

Soit f une fonction de classe  $\mathcal{C}^2$  sur un intervalle I. On suppose que f admet un unique zéro  $\xi$  dans I et que f' $(\xi) \neq 0$  alors il existe un réel  $\eta > 0$  tel que si  $x^{(0)} \in \Omega = ]\xi - \eta, \xi + \eta[$ 

- La suite  $x^{(k)}$  définie par  $x^{(k+1)} = x^{(k)} \frac{f(x^{(k)})}{f'(x^{(k)})}$  reste dans  $\Omega$  et converge vers  $\xi$ .
- La convergence est quadratique

# ⇒Mathématiques érables [>

## ⇒Mathématiques érables [>

Finalement la méthode de Newton est une méthode de point fixe qui consiste à fabriquer canoniquement fonction d'itération  $x\mapsto x-\frac{f(x)}{f'(x)}$  assez plate au voisinage de la racine.

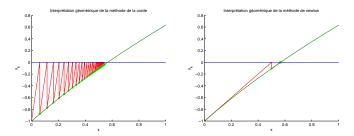


Figure : Méthode de la corde et de Newton

Le calcul d'une dérivée peut être compliqué et coûteux, en volumes de calculs.

## Remplacer la dérivé par la sécante

$$f'(x^{(k)}) \simeq \frac{f(x^{(k)}) - f(x^{(k-1)})}{x^{(k)} - x^{(k-1)}}$$

on définit la méthode de la sécante comme suit

#### Méthode de la sécante

Initialisation  $x_0$  et  $x_1$  donnés Pour  $k = 0, \cdots$ 

poser 
$$x^{(k+1)} = x^{(k)} - \frac{x^{(k)} - x^{(k-1)}}{f(x^{(k)}) - f(x^{(k-1)})} f(x^{(k)})$$

Convergence locale superlinéaire, vitesse en nombre d'or  $\phi=rac{1+\sqrt{5}}{2}$ 

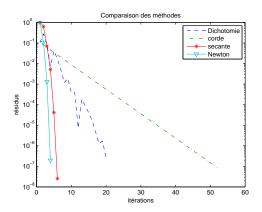


Figure : Méthodes de la corde, de dichotomie, de Newton et de la sécante

Soit  $F: \mathbb{R}^n \to \mathbb{R}^n$ . On cherche à approcher  $x^*$ , racine isolée de F.

$$F(x^*) = 0 = F(x + (x^* - x)) = F(x) + DF(x) \circ (x^* - x) + i(||x^* - x||)$$

où DF(x) désigne la matrice jacobienne de F prise en x. Si bien que

$$x^* \simeq x - DF(x)^{-1}F(x)$$

On peut alors définir les itérations par

$$x_{k+1} = x_k - DF(x_k)^{-1}F(x_k).$$

En pratique on décompose en deux parties :

- Résoudre le système linéaire  $DF(x_k)\delta_k = F(x_k)$
- Poser  $x_{k+1} = x_k \delta_k$ .

### **Theorem**

Version  $C^2$  Soit  $F: \mathbb{R}^n \to \mathbb{R}^n$ , de classe  $C^2$ . Soit  $x^*$  un zéro isolé de F, soit tel que

$$\exists B(x^*,r) \ / F(x^*) = 0 \ \text{et} \ F(x) \neq 0, \forall x \in B(x^*,r), x \neq x^*.$$

On suppose enfin que  $DF(x^*)$  est inversible.

Alors, il existe une boule fermée  $\mathcal B$  centrée en  $x^*$  telle que  $\forall x_0 \in \mathcal B$ , la suite  $x_k$  est bien définie, demeure dans  $\mathcal B$  et converge vers  $x^*$ , le seul zéro de F dans  $\mathcal B$ . On a de plus

$$\parallel x_k - x^* \parallel \leq \beta^k \parallel x_0 - x^* \parallel$$

avec  $\beta \in ]0,1[$ .



# Version $C^1$ avec convexité

#### Lemma

Soit  $C_0$  une région convexe de  $\mathbb{R}^n$ . On suppose que

- DF(x) existe pour tout x dans  $C_0$
- II existe  $\gamma > 0$  telle que

$$||DF(x) - DF(y)|| \le \gamma ||x - y||, \ \forall x, y \in C_0$$

Alors, pour tout  $x, yC_0$ :

$$||F(x) - F(y) - DF(Y) \circ (x - y)|| \le \frac{\gamma}{2} ||x - y||^2$$

#### Theorem

Soit  $C \subset \mathbb{R}^n$  ouvert et  $F: C \to \mathbb{R}^n$ , une fonction continue sur C, différentiable pour tout  $x \in C_0$  convexe, avec  $\bar{C}_0 \subseteq C$  On pose  $B(x,r) = \{x/ || x - x_0 || < r\}$ ,  $h = \alpha\beta\gamma < 1$ ,  $r = \alpha1 - h$ ). On fait les hypothèses suivantes

- DF(x) est inversible
- DF est lipschitzienne de rapport L.
- $\| (DF(x_0))^{-1}F(x_0) \| \le \alpha$

Alors, il existe r > 0 tel que  $\forall x^{(0)} \in B(x, r)$ , la suite  $x_k$  reste dans la boule B(x, r) et converge vers x, à une vitesse quadratique :

$$||x_k - x|| \le \alpha \frac{h^{2^k - 1}}{1 - h^{2^k}}, \forall k \in \mathbb{N}.$$

La méthode de Newton-Raphson demande à chaque itération k de

- Calculer exactement la jacobienne  $DF(x_k)$
- Résoudre un système linéaire avec  $Df(x_k)\delta_k = F(x_k)$

### Alléger Newton?

- En résolvant les systèmes  $Df(x_k)\delta_k = F(x_k)$  de manière approchée -> Newton inexacte
- en remplaçant  $DF(x_k)$  par un préconditionneur -> Quasi-Newton

Rappel : loin de la solution : convergence linéaire + calcul jacobienne et système linéaire associé coûteux

#### Newton inexacte

$$\begin{array}{ll} \text{pour } k=0,\cdots \\ \text{Déterminer } \delta_k \text{ tel que } & \|DF(x_k)\delta_k-F(x_k)\| \leq r_k\|F(x_k)\| \\ \text{Poser} & x_{k+1}=x_k-\delta_k \end{array}$$

### Theorem

## Convergence

- Si r<sub>k</sub> est fixé, on obtient une convergence locale linéaire
- si  $r_k \rightarrow 0$ , on obtient une convergence locale superlinéaire
- si  $r_k = \mathcal{O}(\|F(x_k)\|)$ , on obtient une convergence locale quadratique.



Idée pratique : approcher  $DF(x_k)$  par une matrice  $B_k$  plus facile à construire et telle que les systèmes linéaires associés se résolvent raisonnablement.

### Quasi-Newton

pour  $k = 0, \cdots$ 

Résoudre  $B_k \delta_k = F(x_k)$ 

Poser  $x_{k+1} = x_k - \delta_k$ 

Questions : conditions de convergence

#### Theorem

Dennis-Moré Soit  $F: \mathbb{R}^n \to \mathbb{R}^n$ , continue et différentiable sur D, ouvert, convexe, et  $x^*$  une racine de F. On suppose que DF(x) est continue en  $x^*$  et que  $DF(x^*)$  est non singulière. Soit  $B_k$  une suite de matrices inversibles, on suppose que pour  $x_0$  dans D, la suite  $x_{k+1} = x_k - B^{-1}F(x_k)$  demeure dans D et converge vers  $x^*$  Alors  $x_k$  converge Q superlinéairement vers  $x^*$  si et seulement si

$$\lim_{k \to +\infty} \frac{\parallel (B_k - DF(x^*))(x_{k+1} - x_k) \parallel}{\parallel x_{k+1} - x_k \parallel} = 0.$$

# Comment choisir les $B_k$ ? Relations de type sécante

On pose 
$$s_k = x_{k+1} - x_k$$
,  $y_k = F(x_{k+1}) - F(x_k)$ 

Idée : construire  $B_k$  vérifiant une ou plusieurs relations de sécante

$$B(x_{k-1} - x_k) + F(x_k) = F(x_{k-1})$$
  
 $B(x_{k-2} - x_k) + F(x_k) = F(x_{k-2})$   
...

Cela définit donc les relations

$$Bs_{k-j}=y_{k-j},\ j=1,\cdots,n$$

d'où

$$B = (y_{k-n} \cdots y_{k-1})(s_{k-n} \cdots s_{k-1})^{-1}$$

Problème : coûteux et instable. On se restreint à la première relation

$$B_k(x_k - x_{k-1}) = F(x_k) - F(x_{k-1})$$



Méthodes de type sécante avec  $B_k$  diagonale :  $B_k = \alpha_k Id$ 

- $y = x_k x_{k-1}$  on obtient la méthode de Barzilai Borwein (Raydan)
- $y = F(x_k)$ : méthode d'Altman (généralisations non linéaires de la plus profonde descente)

$$\alpha_k = -\frac{\langle \Delta^m x_{k-1}, y \rangle}{\langle \Delta^{m+1} x_{k-1}, y \rangle}$$

- **0**  $m=1,\ y=\Delta^{m+1}x_{k-1}:$  méthode de Lemaréchal  $(n=1\equiv$  Steffensen)
- **2** m=2 et  $y=\Delta^{m+1}x_{k-1}$ , généralisations de Marder Weitzner (Brezinski-C)

#### Theorem

L'unique matrice minimisant  $\|B - B_k\|$  avec la contrainte  $Bs_k = y_k$  est donnée par

$$B_{k+1} = B_k + \frac{y_k - B_k s_k}{(s_k)^t s_k} (s_k)^t$$

et l'algorithme de Broyden s'écrit

Résoudre 
$$B_k \delta_k = F(x_k)$$

Poser 
$$x_{k+1} = x_k - \delta_k$$

On peut définir par récurrence la suite des inverses de  $B_k$ 

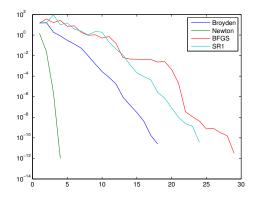
$$B_{k+1}^{-1} = B_k^{-1} + \frac{s_k - B_k^{-1} y_k}{(s_k)^t (B_k^{-1} y_k)} (s_k)^t B_k^{-1}$$

On obtient alors la "mauvaise" méthode de Broyden (bad Broyden), car instable numériquement.



# Equation de Burgers visqueuse 1d

$$\begin{aligned} &-\nu\frac{\partial^2 u}{\partial x^2}+u\frac{\partial u}{\partial x}=f \quad x\in ]0,1[\\ &u(0)=u(1)=0 \end{aligned}$$



### Flot de gradient

$$\min_{x \in \mathbb{R}^n} F(x)$$
, avec  $F : \mathbb{R}^n \to \mathbb{R}$ 

Conclusion

Relations d'optimalité du premier ordre (hyp différentiabilité)  $\nabla F(x) = 0$ . Les minima sont points critiques de

$$\frac{dx}{dt} = -\nabla F(x)$$

qui est un flot de gradient. On montre facilement que

$$\frac{dF(x)}{dt}$$
 +  $\langle \nabla F, \nabla F \rangle = 0$ 

F(x) décroit donc le long des orbites.

flot préconditioné par  $(\nabla^2 F(x))^{-1}$ 

$$\frac{dx}{dt} = -(\nabla^2 F(x))^{-1} \nabla F(x)$$

Conclusion

On montre facilement que

$$\frac{1}{2}\frac{d \parallel \nabla F(x) \parallel^2}{dt} + \parallel \nabla F(x) \parallel^2 = 0$$

du coup  $\| \nabla F(x(t)) \| = e^{-t} \| \nabla F(x(0)) \|$ .

### Flot de gradient. Version discrète

Discrétisation par Euler explicite avec pas de temps variable

Conclusion

$$x_{k+1} = x_k - \Delta t_k \nabla F(x_k)$$

on retrouve toutes les méthodes de gradient à un pas. La propriété générique de stabilité assure que pour  $\Delta t_k$  assez petit, le schéma est stable.

### Flot de gradient. Version discrète

Discrétisation par Euler explicite avec pas de temps variable

Conclusion

$$x_{k+1} = x_k - \Delta t_k \nabla F(x_k)$$

on retrouve toutes les méthodes de gradient à un pas. La propriété générique de stabilité assure que pour  $\Delta t_k$  assez petit, le schéma est stable.

# flot préconditioné par $(\nabla^2 F(x))^{-1}$ . Version discrète

Discrétisation par Euler explicite avec pas de temps variable

$$x_{k+1} = x_k - \Delta t_k (\nabla^2 F(x_k))^{-1} \nabla F(x_k)$$

et pour  $\Delta t_k = 1$ , on retombe sur Newton Raphson

$$x_{k+1} = x_k - (\nabla^2 F(x_k))^{-1} \nabla F(x_k)$$



Flot de Newton d'ordre 2 (H. Attouch et al, JMPA, 2002).

Conclusion

 $\Phi: H \to {\rm I\!R}$  de classe  $\mathcal{C}^2$ , H, Hilbert réel

$$\ddot{x(t)} + \alpha \dot{x(t)} + \beta \nabla^2 \Phi(x(t)) \dot{x(t)} + \nabla \Phi(x(t)) = 0$$

Les trajectoires convergent vers un minimiseur de  $\Phi$ , on peut générer par discrétisation des méthodes numériques adaptées. Etude via le système d'ordre 1 équivalent

$$\begin{cases} x(t) + c\nabla\Phi(x(t)) + ax(t) + by(t) = 0\\ y(t) + ax(t) + by(t) = 0 \end{cases}$$

Flot de Newton d'ordre 2 (H. Attouch et al, JMPA, 2002).

Conclusion

 $\Phi: H \to {\rm I\!R}$  de classe  $\mathcal{C}^2$ ,  $\overset{\cdot}{H}$ , Hilbert réel

$$\ddot{x(t)} + \alpha \dot{x(t)} + \beta \nabla^2 \Phi(x(t)) \dot{x(t)} + \nabla \Phi(x(t)) = 0$$

Les trajectoires convergent vers un minimiseur de  $\Phi$ , on peut générer par discrétisation des méthodes numériques adaptées. Etude via le système d'ordre 1 équivalent

$$\begin{cases} x(t) + c\nabla\Phi(x(t)) + ax(t) + by(t) = 0\\ y(t) + ax(t) + by(t) = 0 \end{cases}$$

Etude des modèles continus qui président aux méthodes de résolution des systèmes linéaires (Bhaia-Kaszkurewicz, C-Laminie)

### Méthode numérique avec préconditionnement implicite

Flot de Newton 
$$\frac{dx}{dt} = -(\nabla F(x))^{-1} F(x)$$

Flot de Newton couplé 
$$\frac{dx}{dt} = -z$$
 
$$(\nabla F(x))z = F(x)$$

Conclusion

Flot de Newton relaxé 
$$\frac{dx}{dt} = -z$$
 
$$\epsilon \frac{dz}{dt} = F(x) - \nabla F(x)z$$

#### Theorem

Si F est  $C^2$  dans un vois. de la solution  $x^*$  of F(x) = 0, alors  $(x^*, 0)$  est asymptiquement stable  $\forall \epsilon > 0$ .

1- W opt. méthode 1 
$$\epsilon \frac{dz}{dt} = F(x^k) - \frac{F(x^k + \tau z) - F(x^k)}{\tau}$$
 calculer  $z^k$  approx. de 1'état stationnaire de 
$$z(0) = z^{k-1}.$$
 2- W opt. méthode 2 calculer  $x^{k+1}$  depuis  $x^k$  par  $x^{k+1} = x^k + \alpha_k z_k$ 

Conclusion

Étape 1- avec minimisation du type Cauchy Étape 2 - avec la méthode spectrale globalisée (Raydan) calculer  $x^{k+1}$  depuis  $x^k$  Applications : racines matrice, NSE

# Equations de Navier-Stokes 2D incompressibles (C-Raydan (ETNA, 2009)

Variables primitives

$$-\frac{1}{\mathrm{Re}}\Delta U + (U \cdot \nabla U) + \nabla P = f \text{ in } \Omega = ]0,1[^2,$$

$$\nabla \cdot U = 0, \text{ dans } \Omega = ]0,1[^2,$$

$$U = g, \text{ sur } \partial \Omega.$$
(1)

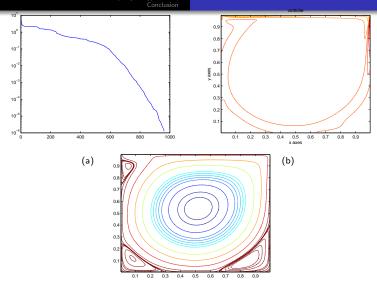
Here U = (u, v) est le champ de vitesse, P la pression

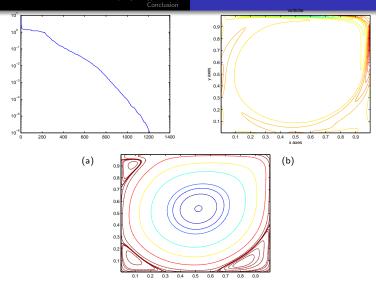
• formulation  $\omega - \psi$ 

$$\begin{split} &-\frac{1}{Re}\Delta\omega+\frac{\partial\psi}{\partial y}\frac{\partial\omega}{\partial x}-\frac{\partial\psi}{\partial x}\frac{\partial\omega}{\partial y}=0 &&\text{in }\Omega=]0,1[^2\\ \Delta\psi=\omega &&\text{in }\Omega=]0,1[^2\\ \psi=0 &&\text{on }\partial\Omega \end{split}$$

ici 
$$\omega = \frac{\partial u}{\partial v} - \frac{\partial v}{\partial x}$$
 et  $u = \frac{\partial \psi}{\partial v}$ ,  $v = -\frac{\partial \psi}{\partial x}$  donc  $\Delta \psi = \omega$ .

Newton pour NSE : C.-H. Bruneau-C. Jouron (JCP, 89'), Ghia-Ghia (JCP, 1982,  $\omega-\psi$ )





$$ullet$$
 Inverse d'une matrice  $X_{k+1}=2X_k-X_kAX_k$  avec  $X_0=rac{A}{\parallel A\parallel_F^2}$ 

ou bien Euler explicite à 
$$\frac{dX}{dt} = X(I - AX)$$
, avec  $\Delta t = 1$ .

$$ullet$$
 Inverse d'une matrice  $X_{k+1}=2X_k-X_kAX_k$  avec  $X_0=rac{A}{\parallel A\parallel_F^2}$ 

ou bien Euler explicite à 
$$\frac{dX}{dt} = X(I - AX)$$
, avec  $\Delta t = 1$ .

• Racine carrée d'une matrice

Résoudre en 
$$S_k: X_k S_k + S_k X_k = -(X_k^2 - A)$$
, puis poser  $X_{k+1} = X_k + S_k$ .

$$ullet$$
 Inverse d'une matrice  $X_{k+1}=2X_k-X_kAX_k$  avec  $X_0=rac{A}{\parallel A\parallel_F^2}$ 

Sommaire

ou bien Euler explicite à 
$$\frac{dX}{dt}=X(I-AX), \text{ avec } \Delta t=1.$$

• Racine carrée d'une matrice

Résoudre en 
$$S_k: X_k S_k + S_k X_k = -(X_k^2 - A)$$
, puis poser  $X_{k+1} = X_k + S_k$ .

• Signe d'une matrice 
$$S = signe(A) = A(A^2)^{-1/2}$$

Newton-Schultz 
$$X_{k+1} = \frac{1}{2}X_k(3I - X_k^2)$$

• Inverse d'une matrice 
$$X_{k+1} = 2X_k - X_k A X_k$$
 avec  $X_0 = \frac{A}{\parallel A \parallel_F^2}$ 

ou bien Euler explicite à 
$$\frac{dX}{dt} = X(I - AX)$$
, avec  $\Delta t = 1$ .

Racine carrée d'une matrice

Résoudre en 
$$S_k: X_k S_k + S_k X_k = -(X_k^2 - A)$$
, puis poser  $X_{k+1} = X_k + S_k$ .

• Signe d'une matrice  $S = signe(A) = A(A^2)^{-1/2}$ 

Newton-Schultz 
$$X_{k+1} = \frac{1}{2}X_k(3I - X_k^2)$$

• Riccati matricielle  $C + XA + A^TX - XBX = 0$ , méthode de Kleinman (1968)

Etant donné 
$$X_0 \in \mathbb{R}^{n \times n}$$
  
tel que  $X_0 = X_0^T$  et  $A - BX_0$  stable

Pour 
$$k = 0, \cdots$$

Poser 
$$A_k = A - BX_k$$

Résoudre 
$$\mathcal{A}_k^{\mathsf{T}} X_{k+1} + X_{k+1} \mathcal{A}_k = -C - X_k \mathsf{B} X_k$$

version Newton inexacte : F. Feitzinger, T. Hylla and E. W. Sachs, SIAM

### Pararéel : méthode de tir multiple (Gander-Vandewalle 2007)

Pour résoudre le problème de Cauchy

$$\dot{u}(t) = f(u), [0, T] = \bigcup_{n=0}^{N-1} [T_n, T_{n+1}], u(0) = u_0$$
 se réécrit

$$\begin{cases} \dot{u}_{0}(t) = f(u_{0}), & u_{0}(0) = \mathbf{U}_{0} & (0, T_{1}) \\ \dot{u}_{1}(t) = f(u_{1}), & u_{1}(T_{1}) = \mathbf{U}_{1} & (T_{1}, T_{2}) \\ \vdots & \vdots & \vdots & \vdots \\ \dot{u}_{N-1}(t) = f(u_{N-1}), & u_{N-1}(T_{N-1}) = \mathbf{U}_{N-1} & (T_{N-1}, T_{N}) \end{cases}$$

avec  $\mathbf{U}_0 - u_0 = 0$ ,  $\mathbf{U}_1 - u_0(T_1, U_0) = 0$ ,  $\cdots$ ,  $\mathbf{U}_N - u_{N-1}(T, U_{N-1}) = 0$  C'est un système de N+1 équations à N+1 inconnues  $(\mathbf{U}_0, \mathbf{U}_1, \cdots \mathbf{U}_N)^T$  sous la forme F(U) = 0 qu'on résout par Newton

$$U^{k+1} = U^k - J_F^{-1} F(U^k)$$

### suite

$$\begin{cases} U_0^{k+1} &= u_0 \\ U_{n+1}^k + 1 &= u_n(T_{n+1}, U_n^k) + \frac{\partial u_n}{\partial U_n}(T_{n+1}, U_n^k)(U_n^{k+1} - U_n^k) \\ &= F(T_{n+1}, T_n, U_n^k) + \underbrace{G(T_{n+1}, T_n, U_n^{k+1}) - G(T_{n+1}, T_n, U_n^k)}_{A \cap A_n \cap A$$

## Newton presque partout

- Robustesse et convergence superlinéaire (protopype)
- Newton: "méthode mère", à l'origine de nombreux développements algorithmiques

### Dans d'autres domaines

• En dynamique complexe, les itérations

$$z\mapsto z-\frac{P(z)}{P'(z)}$$

où P polynôme

- Polynômes (factorisation, méthode de Bairstow), calcul des racines
- En algèbre (cf. A. Chambert-Loir)

