SÉPARATION DES ÉCHELLES ET SCHÉMAS NUMÉRIQUES POUR LES PROBLÈMES D'ÉVOLUTION

Jean-Paul Chehab

LAMFA, Université de Picardie Jules Verne, Amiens

Séminaire à l'UAG. Pointe-à-Pitre

Jeudi 28 janvier 2010

- 1. Motivations
- 2. Séparation des échelles
- 3. Equations paraboliques
- 4. Equations d'ondes
- 5. Perspectives

I. Motivations

- Modélisation des interactions grandes-petites structures
 - Modéliser l'interaction grandes structures-petites structures dans un écoulement par une loi exacte ou approchée (Foias-Manley-Temam '85, Marion-Temam '88): systèmes dissipatifs

$$\frac{du}{dt} + Au + B(u) = f; u(0) = u_0.$$
 dans H , de Hilbert

Décomposition
$$u=p+q=P_nu+(I-P_n)u=P_nu+Q_nu$$
. Sous certaines conditions $\|q\|<<\|p\|$ et $\|\frac{dq}{dt}\|<<\|\frac{dp}{dt}\|$

- ▶ Loi d'interaction entre p et $q: q = \phi(p)$ (pour t grand) ? graphe de ϕ : variété inertielle, approximation de l'attracteur.
- Construire des schémas numériques adaptés aux caractéristiques fines du problème. Traitement numérique différent pour p et q.
- Stabiliser les schémas explicites sans trop endommager la dynamique orignale

Les fréquences élevées gouvernent la stabilité des schémas

- Méthodes multiniveaux adaptatives en Fourier (Jauberteau, Dubois)
- ► Fourier et Tchebytcheff (Costa, Dettori, Gottlieb, Temam) Dans le cadre spectral

$$u \simeq \sum_{i=1}^{N} u_i \omega_i + \sum_{i=N+1}^{2N} u_i \omega_i = Y + Z$$

En différences finies ou en éléments finis : il faut forcer la décomposition

- ► Eléments finis (Marion-Temam, Pascal, Marion-Xu, Calgaro-Laminie, Laminie-Zahrouni)
- Ondelettes (Goubet, Debussche-laminie-Zahrouni)
- ▶ Différences finies (Chen, C, Goyon, Pouit, Poullet, Tachim, Temam)

Sur NSE périodique : gain en temps de calcul et meilleur stabilité en temps (Dubois-Jauberteau-Temam, Debussche, Burie-Marion) Suivant une approche analogue : Calgaro-Laminie (EF), Pouit (DF), Laminie-Zahrouni (EF-Ondelettes)

II. Séparation des échelles On cherche à décomposer la solution u en

$$u = \bar{u} ' + ' \tilde{u}$$

avec

- $||u|| \simeq ||\bar{u}||$
- ightharpoons \bar{u} est une représentation basses fréquences de u
- les hautes fréquences de u sont portées par \tilde{u}

SÉPARATION NON LOCALE EN ESPACE

Il s'agit des décompositions de type spectrales (Fourier, polynômes orthogonaux)

SÉPARATION LOCALE EN ESPACE

La décomposition en fréquences est réalisée en utilisant plusieurs grilles : \bar{u} est représentée par les grilles grossières, \tilde{u} par celles complémentaires. Des changement de variables localisés générent différentes échelles en espace. Les méthodes hiérarchiques (Bases hiérarchiques, ondelettes, inconnues incrémentales ...) entrent dans ce cadre.

Polynômes orthogonaux

Famille de fonctions p_k telles que : $\int_I p_k p_\ell \omega dx = 0$ si $k \neq \ell$

CLÉS

Presented Amplitudes Résultat d'approximation $u \simeq \sum_{k=1}^{N} \hat{u}_k p_k$, p_k , base hilbertienne de

$$L^2(I)$$
, $|I| < +\infty$

$$u_N = \sum_{k=1}^{N} \hat{u}_k p_k = \sum_{k=1}^{N/2} \hat{u}_k p_k + \sum_{k=N/2+1}^{N} \hat{u}_k p_k$$

d'où la séparation en espace (||Z|| << ||Y||).

▶ Toutes les racines des p_k sont simples et toutes dans $I \Longrightarrow$ quand $k \nearrow p_k$ oscille de plus en plus dans I, d'où la séparation en fréquences.

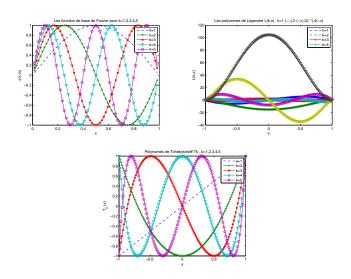


FIGURE: Les différentes bases de polynômes orthogonaux

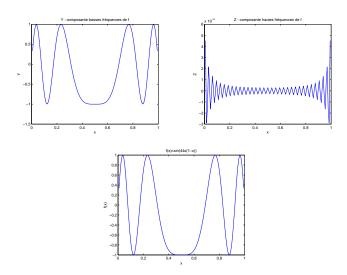


FIGURE: Composantes Y, Z et signal original, $f(x) = \sin(44x(1-x))$

MÉTHODES HIÉRARCHIQUES

CLÉS

► Considérer une famille d'espaces (de grilles) d'approximation

$$V_0 \subset V_1 \subset V_2 \cdots \subset V_J$$

Ecrire
$$(J=1)$$

$$V_J = V_0 + V_1 \setminus V_0$$

On obtient une séparation des fréquences car V_0 ne capte que les petites oscillations.

 \triangleright Définir Y comme l'approximation de u dans V_0 et Z comme erreur d'interpolation dans $V_1 \setminus V_0$ Puisque $u \simeq Y$, Z est une correction en espace.

Approche utilisée en éléments finis (Bases hiérarchiques), en ondelettes, en différences finies (inconnues incrémentales)

Principe Avec 2 grilles $G_{2h} \subset G_h$:

- ▶ Hiérarchisation : $U = (Y, U_f)^t$; $Y \in G_{2h}$, $U_f \in G_h \setminus G_{2h}$
- ▶ Chgt de variables $Z = U_f R \circ Y$: inconnue incrémentale

où
$$R:G_{2h} o G_h\setminus G_{2h}$$
 schéma d'interpolation d'ordre p $\Longrightarrow Z=\mathcal{O}(h^p)$

Sur plusieurs niveaux $G_{2^dh} \subset \cdots G_{2h} \subset G_h$:

$$\begin{pmatrix} y \\ u_{f_1} \\ \vdots \\ u_{f_d} \end{pmatrix} = S \begin{pmatrix} y \\ z_1 \\ \vdots \\ z_d \end{pmatrix}, S : \text{Matrice de transfert}$$

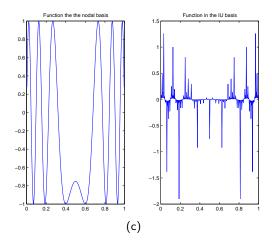


FIGURE: $f(x) = \sin(72x(1-x))$

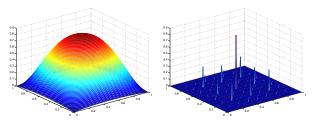
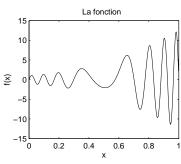
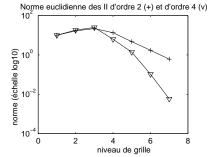


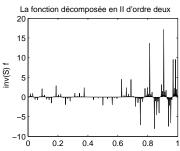
FIGURE:
$$f(x, y) = \sin(16x(1-x)y(1-y))$$

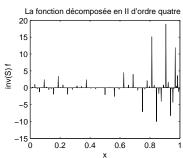
QUELLE INTERPOLATION CHOISIR?

- ▶ Indépendante du pb : interpolation du pt mileu (ordre 2)
 - Décomposition grandes-petites structures (grille unif)
 - Préconditionnement cond $(S^TAS) = \mathcal{O}(((\log_2(h))^2))$ au lieu de $cond(A) = \mathcal{O}(1/h^2)$ (Chen-Temam)
 - Schémas compacts d'interpolation (Lele '92, C '98) (p > 2)
 - Dégénère pour la convect-diff. qd nb de Peclet augmente
- ▶ Dépendante du problème : précond. dépendant de l'équation, induit par l'équation (C '96, C-Miranville '97)
 - ▶ Discrétisation (DF) opérateur ordre pair + hiérarchisation → schéma d'interpolation caché
 - Préconditionneur induit par la discrétisation (avec C.L. !)
 - Décomposition grandes-petites structures convection-diff, grilles plus générales (Chebyshev)
 - Préconditionnement efficace









Compression d'ordre 2 et d'ordre 4

III. Equations paraboliques

MOTIVATION

schémas en temps explicites très stables pour les équations paraboliques.

Pb simple : intégrer numériquement l'équation de la chaleur.

$$\frac{du}{dt} - \Delta u = f$$

En Fourier:

$$\frac{d\hat{u}_k}{dt} + k^2 \hat{u}_k = \hat{f}_k, \quad k = 1, \cdots, N$$

Condition Stabilité Euler explicite : $0 < \Delta t < 2/N^2$.

Idée : augmenter la stabilité par "translation" des plus grands modes.

Correction implicite (Costa (97); Costa-Dettori-Gottlieb-Temam (2001))

$$\frac{d\hat{u}_k}{dt} + \beta \Delta t \frac{d\hat{u}_k}{dt} = -k^2 \hat{u}_k + \hat{f}_k$$

Euler explicite

$$\hat{u}_{k}^{n+1} = \hat{u}_{k}^{n} - \frac{\Delta t}{1 + \beta \Delta t} (k^{2} \hat{u}_{k}^{n} - \hat{f}_{k})$$

Cond. Stab. $0 < \Delta t < \frac{2}{N^2 - 2\beta}$:

Problème: Stabilité augmentée mais perte de précision (diminution de la viscosité).

Solution \hat{u}_k (\hat{f}_k) est "petit" qd k >> 1: stabilité augmentée au prix d'une "petite" inconsistence en temps.

Compromis: appliquer la stabilisation aux modes élevés seulement.

Version multiniveaux:

$$\begin{split} N_0 &= 0 < 1 \leq N_1 < N_2 \cdots < N_m < N_{m+1} = N \\ \text{Poser } \beta_0 &= 0 \\ \text{Pour } j &= 0 : m \\ \hat{u}_k^{n+1} &= \hat{u}_k^n - \frac{\Delta t}{1 + \beta_j \Delta t} \left(k^2 \hat{u}_k^n - \hat{f}_k \right), k = N_j : N_{j+1} \\ \hat{u}^{n+1} &= \hat{u}^n - \Delta t G(D \hat{u}^n - \hat{f}^n) \text{ méthode MP } ! \\ D &= diag(1, 2, 4, \cdots, k^2, \cdots, N^2) \text{ ; } G = diag(1, \frac{1}{1 + \beta_1 \Delta t}, \cdots, \frac{1}{1 + \beta_m \Delta t}). \end{split}$$

Remarque: avec AB2 (C- Costa); solutions stationnaires préservées!

Problème: avec d'autres discrétisations?

Recette : décomposer les inconnues en grandes et petites structures, ces dernières portant les modes élevés.

CADRE GÉNÉRAL (PBS PARABOLIQUES)

Décomposer X en d+1 tableaux vec chgt. variables linéaire S ; $X=S\hat{X}$ (S FFT, precond. hiérarchique, ondelettes \cdots)

$$X^{n+1} = X^n - \Delta t (AX^n - F(X^n)) \hat{X}^{n+1} = \hat{X}^n - \Delta t . Id. S^{-1} (AS\hat{X}^n - F(S\hat{X}^n)) ; X = S \begin{pmatrix} y \\ z_1 \\ . \\ z_d \end{pmatrix}$$

$$\rightarrow \hat{X}^{n+1} = \hat{X}^n - \Delta t .G. S^{-1} \left(AS\hat{X}^n - F(S\hat{X}^n) \right)$$

Remarque : K précond. de $\hat{A} = S^{-1}AS \to \operatorname{approx}$. du θ -schéma

$$\hat{X}^{n+1} = \hat{X}^n - \Delta t \left(Id + \theta \Delta tK \right)^{-1} \hat{A} \hat{X}^{n+1}$$

 $G=(Id+\theta\Delta tK)^{-1}$: Averbuch, Cohen et Israeli (98) Schéma ordre 1! ordre 2: extrapolation Richardson (ACI, Ribot)

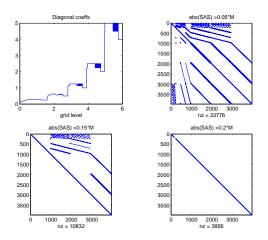


FIGURE: La matrice de discrétisation de $-\Delta$ dans la base des IU

Algorithme en Fourier

Pour
$$k=1,\cdots N_1$$
 (grille grossière)
$$\hat{u}_k^{n+1}=\hat{u}_k^n-\Delta t\left(k^2\hat{u}_k^n-\hat{f}_k^n\right)$$

$$\beta_\ell=\frac{2}{N_m^2}$$

$$\text{Pour } \mathbf{k}=N_\ell+1\cdots N_{\ell+1} \quad \hat{u}_k^{n+1}=\hat{u}_k^n-\frac{\Delta t}{1+\beta_\ell\Delta t}\left(k^2\hat{u}_k^n-\hat{f}_k^n\right)$$

EXTRAPOLATION

$$\begin{array}{l} u^{k+1} = u^k + \Delta t F(u^k) = G_{\Delta t}(u^k). \text{ La suite est régularisée par } \\ v_1 = G_{\Delta t}(u^k), \\ v_{2,0} = G_{\Delta t/2}(u^k), \\ v_{2,1} = G_{\Delta t/2}(v_{2,0}), \\ u^{k+1} = 2v_{2,1} - v_1. \end{array}$$

20 / 41

EQUATIONS DE BURGERS

- Burgers 1d
- Burgers 2d

$$\begin{split} u_t - \frac{1}{\mathrm{Re}} \Delta u + u \ u_x + v \ u_y &= f_1 \ \mathrm{dans} \ \Omega \\ v_t - \frac{1}{\mathrm{Re}} \Delta v + u \ v_x + v \ v_y &= f_2 \ \mathrm{dans} \ \Omega \\ u(.,t) &= g_1, v(.,t) = g_2 \ \mathrm{sur} \ \partial \Omega, \ t > 0 \\ u(x,y,0) &= u_0(x,y), \ v(x,y,0) = v_0(x,y) \end{split}$$

$$U^{n+1} = U^n - \Delta t G_1(\frac{1}{\text{Re}}AU^n + NL_1(U^n, V^n) - f_1)$$

$$V^{n+1} = V^n - \Delta t G_2(\frac{1}{\text{Re}}AV^n + NL_2(U^n, V^n) - f_2),$$

◆ロ → ← (回) ← (重) ← (重) への(で)

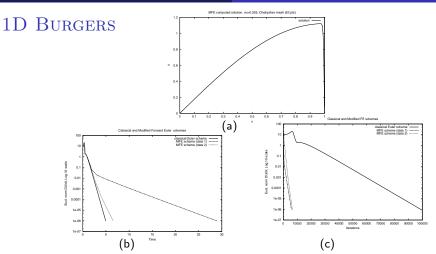
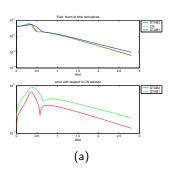


FIGURE:
$$\nu = 5.10^{-3}, \Delta t_{class} = 5.10^{-5},$$
 $\Delta_{MP1} = 1.10^{-3}, \Delta t_{MP2} = 5.10^{-3}, N = 63,$ grille de type Tchebytcheff



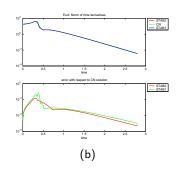


FIGURE: $\nu = 5.10^{-3}$, $\Delta t = 5.10^{-3}$, N=7, d=5 (nt=255), grille de type Tchebytcheff (a) IU2 (b) IU4

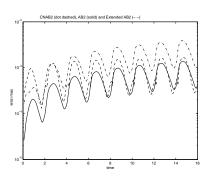


FIGURE: Erreur AB2, MPAB2, CNAB2 , ordre discr.=4, IU4 $\Delta t = 9.10^{-4}$, AB2 and $\Delta t = 2.10^{-3}$, MPAB2, CNBA2

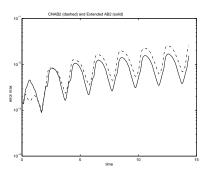


FIGURE: Erreur MPAB2, CNAB2, ordre discr.=4, IU4 $\Delta t = 6.10^{-3}$

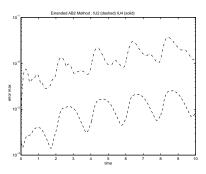
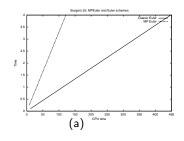


FIGURE: MPFE, avec IU2 et IU4, $\Delta t = 2.10^{-3}$

Burgers 2D



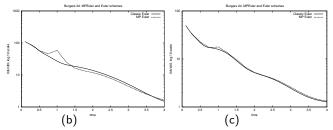
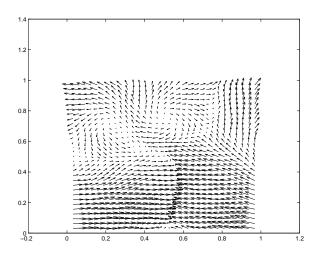


FIGURE: Burgers 2d

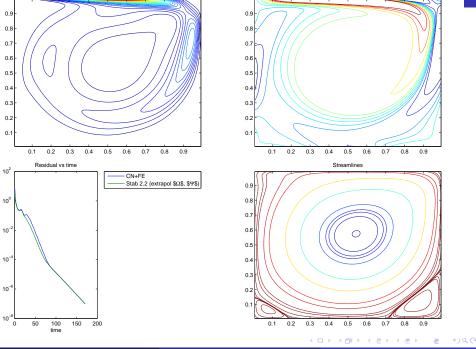


Champ de vitesse de la solution, t=4

Equations de Navier Stokes en $\omega - \psi$

On pose
$$\omega = \operatorname{curl}(\mathbf{u})$$
, $u = \frac{\partial u}{\partial y}$, $v = -\frac{\partial v}{\partial x}$
$$\frac{\partial \omega}{\partial t} - \frac{1}{Re}\Delta\omega + \frac{\partial \psi}{\partial y}\frac{\partial \omega}{\partial x} - \frac{\partial \psi}{\partial x}\frac{\partial \omega}{\partial y} = 0,$$

$$\Delta\psi = \omega$$



Equation de Kuramoto-Sivashinski (CCLZ '09)

Propagation d'un front de flamme

$$\begin{array}{ll} u_t + u_{xxxx} + u_{xx} + uu_x = 0, & x \in [0,L], t > 0 \\ u^{(m)}(0) = u^{(m)}(L), u(x,0) = u_0(x). \end{array}$$

Schéma d'Euler semi-implicite en Y et en Z

$$\begin{array}{ll} \text{Poser} & (Y^n,Z^n)^T = S^{-1}U^n \\ \text{Faire} & (nly,nlz)^T = S^{-1}N^{(h)}(U^n) \\ \text{Calculer} & Y^{n+1} = (Id_1-k_n\ L_{11}^{(h)})^{-1}\left(Y^n+k_n\ (L_{12}^{(h)}Z^n+nly)\right) \\ \text{Calculer} & Z^{n+1} = (Id_2-k_n\ L_{22}^{(h)})^{-1}\left(Z^n+k_n\ (L_{21}^{(h)}Y^{n+1}+nlz)\right) \end{array}$$

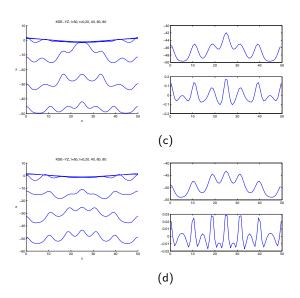


FIGURE: L=50 front de flamme avec IU d'ordre 2 et 4 (CS 6)

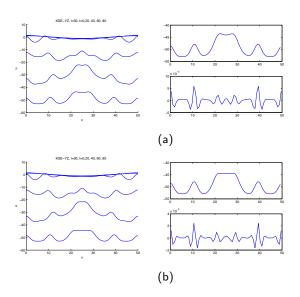


FIGURE: L = 50 front de flamme avec IU d'ordre 6 et 8 (CS 6)

IV. Equations d'ondes

Prototypes: KdV, NLS, Benjamin-Ono, d'Alembert ... Question : la démarche précédent s'adapte-t-elle ici ?

DIFFICULTÉS

- Invariants : pas de régularisation, pas d'amortissement
- phénomènes très localisés (ne marchera pas pour explosion en temps fini car $\hat{\delta} = 1$)
- Outil pour maillage adaptatif?

KDV

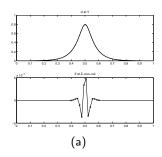
$$\begin{cases} u_t + \partial_x \left(\mu u_{xx} + \frac{1}{p+1} u^{p+1} \right) &= 0 & x \in , \ t > 0, \\ u(0,x) &= u_0(x) & x \in , \end{cases}$$
 (1)

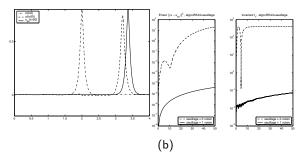
avec $\mu > 0$ et p > 1

Propriétés

- ▶ Invariants : $I_{-1} = \int u(x,t)dx$, $I_0 = \int u^2 dx$, $I_1(u) = \int u^2 dx$ $\int_0^\ell (u^{p+2} - \frac{(p+1)(p+2)\mu}{2} u_x^2) dx$
- ▶ Solitons : avec $u_0(x) = A \ sech^{2/p}(K(x-x^0))$ on a $u(t,x) = A \operatorname{sech}^{2/p}(K(x-x^0-Ct)), x \in t > 0$, avec la vitesse C de propagation du soliton :

$$C = \frac{2A^p}{(p+1)(p+2)} \quad \text{et} \quad K = \frac{p}{2}\sqrt{C\mu}.$$





SCHÉMAS DÉVELOPPÉS (CCLZ '09)

- ightharpoonup Crank-Nicolson en Y-Z: ne marche que si les pt fixes sont bien résolus
- Schéma de Runge-Kutta (RK43) et seuillage

On pose
$$Z^n=0$$
 si $\|Z_j^{(i)}\|<\epsilon$ pb de stabilité !

Schéma RK43 type multiniveaux GNL la décomposition en grandes/petites échelles variable au cours du temps + seuillage. Le système seuillé est résolu en entier. Stabilité OK mais mauvaise conservation du troisième invariant.

Les propriétés de régularisation semblent nécéssaires pour développer ce type d'algorithmes

EQUATIONS FAIBLEMENT AMORTIES

Pour KdV et NLS, O. Goubet ('96), J.-M. Ghidaglia ('88) ont montré des propriétés de régularisation asymptotique.

Pour ces équations, il existe un attacteur faible (fort en fait, J. Ball) : si l'EDP est posée dans $H^1(\mathbb{T}_x)$ avec un terme de forçage dans $L^2(\mathbb{T}_x)$, l'attracteur $\mathcal{A} \subset H^2(\mathbb{T}_x)$.

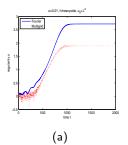
Cette régularisation n'a pas lieu instantanément (comme dans le cas parabolique), elle est bien asymptotique.

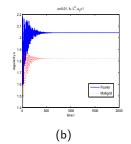
QUESTIONS

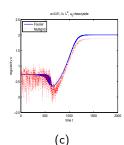
- mesurer numériquement la régularité
- décomposer en grandes/petites échelles et observer les comportement
- développer une stratégie multiniveaux

Schrödinger faiblement amorti (Abounouh-Al Moatassime-C-Dumont-Goubet '08)

$$\begin{split} u_t + \alpha u + i \left(u_{xx} + |u|^2 u \right) &= f, \ u(x,t) \in \mathbb{R}_t \times \mathbb{T}_x \\ u \in H^s \iff \sum_{k=1} 4^{ks} ||z_k||_{L^2}^2, <+\infty \text{ (Base hiérarchique)} \\ u \in H^s \iff \sum_{N=1}^{+\infty} N^{2s-1} ||u_N - u_{N/2}||_{L^2}^2 < +\infty \text{ (Fourier)} \end{split}$$







KDV FAIBLEMENT AMORTI (ABOUNOUH-AL Moatassime-Calgaro-C '08)

$$u_t + \alpha u + u_{xxx} + uu_x = f, \ u(x,t) \in \mathbb{R}_t \times \mathbb{T}_x$$

Dynamique non triviale pour les grands temps (Cabral-Rosa '04)

- observation d'une régularisation numérique
- apparition de solutions périodiques en temps
- Schéma en temps spécifique : décomposition de u = v + w avec w régulier, v moins régulier, $\lim_{t \to +\infty} v(t) = 0$

V. Conclusions et perspectives

- Utilisation de plusieurs échelles pour généraliser des schémas
- Stabilisation fine pour les pbs paraboliques
- ▶ l'approche 'GNL' ne semble pas convenir aux équations de KdV.
- Equations faiblement amorties : intermédiaire entre dissipatif et conservatif (M. Abounouh, H. Al Moatassime, C. Calgaro)?
- Equations d'ondes hydrodynamiques dissipatives (G. Sadaka)
- Construire des amortissements multiniveaux fins pour la stabilisation (G. Sadaka, L. Ignat (Bucarest, Projet CNRS Math-Mode))