Continuum Modeling: Numerical schemes for linear & nonlinear
reaction /diffusion systems, Phase fields Models. Application to

Batteries and image processing
Part 1: Mathematical Setting

Jean-Paul CHEHAB

LAMFA UMR CNRS 7352, Univ. Picardie Jules Verne

September 11-12th 2017
SiMBioS, Universidade da Madeira, September 11-15, 2017 Stochastic and
Deterministic Mathematical Methods for Biological and Environmental
Systems: Theory Applications



Plan

© Introduction

an-Paul CHEHAB Continuum Modeling: Numerical schemes for linear & nonlinear reactio



Plan

© Introduction

e Basics of Elliptic and parabolic PDEs
@ Poisson problems and Boundary conditions
@ Reaction-Equation
@ Diffusion- Equation
@ Reaction-diffusion equations

Jean-Paul CHEHAB Continuum Modeli umerical schemes for linear & nonlinear reaction /diff



Plan

© Introduction

e Basics of Elliptic and parabolic PDEs
@ Poisson problems and Boundary conditions
@ Reaction-Equation
@ Diffusion- Equation
@ Reaction-diffusion equations

© Phase Fields
9 Allen-Cahn model
@ Allen-Cahn model : Gradient Flow and Minimization of an Energy
@ Cahn-Hilliard Equation

Jean-Paul CHEHAB Continuum Modeling: Numerical schemes for linear & nonlinear reaction



Plan

© Introduction

e Basics of Elliptic and parabolic PDEs
@ Poisson problems and Boundary conditions
@ Reaction-Equation
@ Diffusion- Equation
@ Reaction-diffusion equations

© Phase Fields
9 Allen-Cahn model
@ Allen-Cahn model : Gradient Flow and Minimization of an Energy
@ Cahn-Hilliard Equation

© Allen-Cahn vs Cahn Hilliard

Jean-Paul CHEHAB Continuum Modeling: Numerical schemes for linear & nonlinear reaction /diff



Plan

© Introduction

e Basics of Elliptic and parabolic PDEs
@ Poisson problems and Boundary conditions
@ Reaction-Equation
@ Diffusion- Equation
@ Reaction-diffusion equations

© Phase Fields
9 Allen-Cahn model
@ Allen-Cahn model : Gradient Flow and Minimization of an Energy
@ Cahn-Hilliard Equation

© Allen-Cahn vs Cahn Hilliard

© Annex

@ Stability of a differential system

Jean-Paul CHEHAB Continuum Modeling: Numerical schemes for linear & nonlinear reaction /diff



Introduction

Phase Fields Models : model natural phenomena

@ material science : in complex fluids and soft matter

@ Intercalation and conversion in batteries

9 Biology, Medecine, Ecology : tumor growth, polluant transport in fluids
?

Image processing : image segmentation, inpainting
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Introduction

Phase Fields Models : model natural phenomena

@ material science : in complex fluids and soft matter

@ Intercalation and conversion in batteries
9 Biology, Medecine, Ecology : tumor growth, polluant transport in fluids

9 Image processing : image segmentation, inpainting

In Mathematics (a very actual and active topic)

@ Mathematical analysis (dynamical systems, calculus of variations)
[Temam88, Elliott89, Bertozzi, Miranville, Grasselli Pierre et al|

@ Mathematical modeling

@ Numerical analysis[Elliot89,Eyre94] and [Boyer, Shen,Wise,Pierre]
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Introduction

Phase Fields Models : model natural phenomena

@ material science : in complex fluids and soft matter

@ Intercalation and conversion in batteries
9 Biology, Medecine, Ecology : tumor growth, polluant transport in fluids

9 Image processing : image segmentation, inpainting

In Mathematics (a very actual and active topic)

@ Mathematical analysis (dynamical systems, calculus of variations)
[Temam88, Elliott89, Bertozzi, Miranville, Grasselli Pierre et al|

A\

@ Mathematical modeling
@ Numerical analysis[Elliot89,Eyre94] and [Boyer, Shen,Wise,Pierre]

Goal of the lecture

| \

@ Give simple basics of mathematical and numerical approach to phase fields

@ Introduce to a friendly numerical environment that allows to produce nice
numerical simulations (help in modeling)

@ Special focus on Allen-Cahn and Cahn-Hilliard equations
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Introduction

Our approach to Allen-Cahn’s model

Two approaches can be considered for studying Allen-Cahn's equation :

Reaction-Diffusion

%—lt'—AHElZf(u):o

Reaction-diffusion approach
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Our approach to Allen-Cahn’s model

Two approaches can be considered for studying Allen-Cahn's equation :

Reaction-Diffusion

%—lt'—AHElZf(u):o

Reaction-diffusion approach

@ —Auwu = 0 : Elliptic equation

9 % — Au = 0 : parabolic
equation
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Introduction

Our approach to Allen-Cahn’s model

Two approaches can be considered for studying Allen-Cahn's equation :

Reaction-Diffusion

%ﬂ Au+ = f(u)—O

Reaction- dn‘Fusnon approach

@ —Auwu = 0 : Elliptic equation

9 % — Au = 0 : parabolic

equation

%ﬂ Au+ = f(u)—O

Reaction- leFusmn equation
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Introduction

Our approach to Allen-Cahn’s model

Two approaches can be considered for studying Allen-Cahn's equation :

Reaction-Diffusion

%ﬂ Au+ = f(u)—O

Reaction- dn‘Fusnon approach

e —Au =0 : Elliptic equation

? 8u — Au =0 : parabolic
equatlon
ou

° 5 —Aut+ 5 f(u) =0:
Reaction- leFusmn equation
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Gradient Flow

U | VE(u)=0

Gradient Flow approach
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Our approach to Allen-Cahn’s model

Two approaches can be considered for studying Allen-Cahn's equation :
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Reaction- dn‘Fusnon approach

Au+ =

e —Au =0 : Elliptic equation

? 8u — Au =0 : parabolic
equatlon
? %ﬂ Au+ = f(u) =0:

Reaction- leFusmn equation
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Gradient Flow

U | VE(u)=0

Gradient Flow approach

@ Use directly methods devoted
to such structured equations
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Two approaches can be considered for studying Allen-Cahn's equation :
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Reaction- dn‘Fusnon approach
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e —Au =0 : Elliptic equation

? 8u — Au =0 : parabolic
equatlon
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Reaction- leFusmn equation
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Gradient Flow

U | VE(u)=0

Gradient Flow approach

@ Use directly methods devoted
to such structured equations

@ E(u) is time decreasing
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Introduction

Our approach to Allen-Cahn’s model

Two approaches can be considered for studying Allen-Cahn's equation :

Reaction-Diffusion Gradient Flow

04 _ put Lr(w)—0 U | VE(u)=0
Reaction- dn‘Fusnon approach Gradient Flow approach
@ —Au =0 : Elliptic equation @ Use directly methods devoted
N 8u _ An=0 3 paEblle to such structured equations
equatlon @ E(u) is time decreasing )
? %ﬂ Au+ = f(u) =0:
Reaction- leFusmn equation

'

These two approaches coincide when —Au + elzf(u) = VE(u)
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Introduction

Notations

The gradient vector and laplacian of F : IR" —> R at x = (x1,x2, -+ ,%n) € R"
_(9F(¥) . BF(X) 9’F(x) "
VE(x) = (g )T and AF = Z o7 Tevlor €R

i

F(x+ty)=F(x)+t < VF(x),y >+ lot; < x,y >= Zx,-y,-.

i=1

In a functional space

Let Q be an open and bounded set of R". We define < u,v >= / uvdx If in a

Q
addition 0%, the boundary of Q, is smooth enough, we can define the outise
normal 7 of Q at x € 90 as the unit vector pointing outside Q and orthogonal
to the tangent plane at Q in x.

g—u Vu.ii : normal derivative of u at x The Green formula :

/ Auvdx—/Vqudx—/ @uda—/u—Avdx—F/ @vda
o0 a Q o9 an
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nd Boundary conditions

Basics of Elliptic and parabolic PDEs

Reaction-diffusion equations

Elliptic Equati

Let Q C IR", n =1, 2,3 for the applications, the spatial variables are

xi,i =1,---,n. We look to a function satisfying the PDE
9 19}
B A P Q, 1
au ,;:1 p (a ,Jaxj) x € (1)
+ Boundary Conditions  on 02 (2)

09 is the boundary of Q. The Boundary conditions are necessary to give a
mathematical sense to this problem. They traduce a physical hypothesis.
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nd Boundary conditions

Basics of Elliptic and parabolic PDEs

n-diffusion equations

Elliptic Equation

Let Q C IR", n =1, 2,3 for the applications, the spatial variables are

xi,i =1,--- ,n. We look to a function satisfying the PDE
9 19}
B A P Q, 1
au ,;:1 p (a ,Jaxj) x € (1)
+ Boundary Conditions  on 992 (2)

09 is the boundary of Q. The Boundary conditions are necessary to give a
mathematical sense to this problem. They traduce a physical hypothesis.

A\

Canonical example

When a; j(x) = di; = { é gl’se:L the above equation reads :
au—Au=f x€qQ, (3)
+ Boundary Conditions  on 992 (4)
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Poisson problems and Boundary conditions
Equatic
- Equati

diffusion equations

Basics of Elliptic and parabolic PDEs

Dirichlet Problem

au—Au=f x€eQ (5)
u=g on 90 Dirichlet Boundary conditions (6)
Here both f and g are given. The values of u are fixed on 9Q. If g =0 :

Homogeneous Dirichlet BC. This problem possesses a unique solution for every
a > 0.
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Poisson problems and Boundary conditions
action-Equat

Basics of Elliptic and parabolic PDEs

IsoValue

Figure — Isovalues of the Solution of a Poisson problem with Dirichlet BC)
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Basics of Elliptic and parabolic PDEs Poisson problems and Boundary conditions

Reaction-diffusion equations

Neumann Problem

au—Au=f x€Q, (7)
% =g on dQ Neumann Boundary conditions (8)

Here both f and g are given. The fluxes of u are fixed on 012 : 3— Vu#

where T is the external normal vector. If g = 0 : Homogeneous Neumann BC.
This problem possesses a unique solution for every o > 0.
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Poisson problems and Boundary conditions
action-Equation
Diff E

React C on equations

Basics of Elliptic and parabolic PDEs

IsoValue

Figure — Isovalues of the Solution of a Poisson problem with Neumann BC
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Basics of Elliptic and parabolic PDEs POISSSYT’FE?‘IET‘S‘:M Bty eamfiieme

equations

Mixed Dirichlet-Neumann Problem

(9)

—Au=1f x€e,
% =g on 9 Neumann Boundary Conditions (10)
u=h on 0 Dirichlet Boundary Conditions (11)

umerical schemes for linear & nonlinear reacti
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Poisson problems and Boundary conditions
action-Equation

Basics of Elliptic and parabolic PDEs

on equations

IsoValue

Figure — Isovalues of the Solution of a Poisson problem with mixed BC
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Basics of Elliptic and parabolic PDEs R g y @oiEfine

Consider the scalar ODE

du
%~ Fw) (12)
u(0) = wo (Initial Condition) (13)

It is an ODE.

Properties

@ Existence and uniqueness (under conditions on F) (without exsitence
nothing can be done ... without unicity you don't know what your are
computing...)

@ Regularity (important for justifying approximation techniques)
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Basics of Elliptic and parabolic PDEs R g y @oiEfine

Consider the scalar ODE

du
%~ Fw) (12)
u(0) = wo (Initial Condition) (13)

It is an ODE.

Properties

@ Existence and uniqueness (under conditions on F) (without exsitence
nothing can be done ... without unicity you don't know what your are
computing...)

@ Regularity (important for justifying approximation techniques)

Long time behaviour
& Steady state u*/F(u™) =0

@ Periodic solutions in time

| A\

@ Chaos
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Poisson problems and Boundary conditions

Basics of Elliptic and parabolic PDEs

diffusion equations

Stablility of Steady states (see Annex for the higher dimensional case)

@ u” is stable if for every u(0) close enough to u™*, u(t) remains close to u*
@ u” is asymptotically stable if for every u(0) close enough to u”*,

u(t) — u™ as t = +oo
@ u” is unstable in the other cases

@ Linear stability
o Write the ODE near a steady state u* : set u(t) = u* + w(t)

f(u(t)) =f(u*+w(t))= F(u*)+ f(v*)w(t)+ lower terms
by Taylor's formula

~ f'(u*)w(t)

Since % = du jtw(t) = duégt), we can write the linearized ODE at u*

990 — 1 Yo(t)

whose solution is w(t) = ef (4")tw(0).
@ Hence u* is stable if f/(u*) < 0 (asymptotically stable if f/(u*) < 0) , it is
unstable otherwise. )
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blems and Boundar
on-Equation
Diffusion- Equation
Reaction-diffusion equations

. C e " Poi
Basics of Elliptic and parabolic PDEs Reacti

Logistic equation

— = izu(l — ), (14)
u(0) = o (15)
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Boundary

Basics of Elliptic and parabolic PDEs

n-diffusion equations

Logistic equation

du 1
E = ?u(l — Ll2), (14)
u(0) = o (15)
@ Steady statesare u =0, u=1and v = -1

9 Let f(u) = Elzu(l — u?). We have f'(u) = %2(1 —3u?)

ut | F(u") Stability
12 >0 unstable
€
1 % < 0 | asymp. stable
€
-1 222 < 0 | asymp. stable
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Basics of Elliptic and parabolic PDEs Reacti

on-Equation
- Equation
Reaction-diffusion equations

Solution of logistic equation for e=1
T T T

u(t)

Figure — Evolution of the solution for different initial data for e =1
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Basics of Elliptic and parabolic PDEs

u(®
o
T
I

. I I I I
0.04 0.05 0.06 0.07 0.08 0.09 0.1
time t

Figure — Evolution of the solution for different initial data for e = 0.1
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Basics of Elliptic and parabolic PDEs

Poi
Reacti

Reaction

- Equation

Solution of logistic equation for €=0.01

onditions

iffusion equations

u(t)

I I I I
0.001 0.002 0.003 0.004

I
0.005
time t

I I
0.006 0.007

I I
0.008 0.009 0.01

Figure — Evolution of the solution for different initial data for e = 0.01
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Basics of Elliptic and parabolic PDEs

Consider now a functional ODE
du _
dt

u(

where u(x,0) is now a given function of the variable x € [0, 1]

Nl'—‘

u(l— o), (16)
;0) = wo(x) (17)

X ™
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y conditions

Basics of Elliptic and parabolic PDEs

Consider now a functional ODE
du _
dt

u(

where u(x,0) is now a given function of the variable x € [0, 1]
The solution of this equation can be expressed as

Nl'—‘

u(l— o), (16)
;0) = wo(x) (17)

X ™

UO(X)
V()2 + (1 — uo(x)?) xe >

We see that u(x, t) — sign(uo(x)) as t — 400, so exactly what was observed
in the scalar case.

u(x,t) =
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oisson problerr
eaction-Equation
Diffusion- E

Reaction-diffusion equations

Basics of Elliptic and parabolic PDEs ’;

solution u(x,t)

©
06 ¢ A

0.4 4

u(xt
°
;
.

Figure — Solution at t = 0 ¢ = 1 (random initial datum)
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oisson problerr
eaction-Equation
Diffusion- E

Reaction-diffusion equations

Basics of Elliptic and parabolic PDEs ’;

solution u(x,t)

0.6 q

0.4 4

u(xt
°
;
.

Figure — Solution at t =2 e =1
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oisson problerr
eaction-Equation
Diffusion- E

Reaction-diffusion equations

Basics of Elliptic and parabolic PDEs ’;

solution u(x,t)
I« T oNc! T [P~ ®

0.6 q

0.4 4

u(xt
°
.

Figure — Solution at t =4 e =1
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oisson problerr
eaction-Equation
Diffusion- E

Reaction-diffusion equations

Basics of Elliptic and parabolic PDEs ’;

solution u(x,t)

1« S, il T G > o

0.6 q

0.4 4

u(xt
°
|

Q

_15sd I by thecd boodl bod ded | B! baod  ddy

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Figure — Solution at t =6 e¢ =1
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oisson problerr
eaction-Equation
Diffusion- E

Reaction-diffusion equations

Basics of Elliptic and parabolic PDEs ’;

solution u(x,t)

0.6 q

0.4 4

u(xt
°
.

1 I by doad boodl doaddad L L

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Figure — Solution at t =8¢ =1
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Poisson pro nd Boundary conditions
R Ec

Diffusion- Equation

Reaction-diffusion equations

Basics of Elliptic and parabolic PDEs

The prototype is the Heat equation : it models the evolution of the distribution
of heat in a domain, with given boundary condition and external source :

ou
— —Au=f Q 1
5 — Au : (18)
(19)
+ Boundary Conditions  on 012, (20)

Jean-Paul CHEHAB Continuum Modeli umerical schemes for linear & nonlinear reaction /diff



nd Boundary

Basics of Elliptic and parabolic PDEs

tion-diffusion equations

The prototype is the Heat equation : it models the evolution of the distribution
of heat in a domain, with given boundary condition and external source :

— —Au="f Q 1
5 — Au ; (18)
(19)
+ Boundary Conditions  on 0, (20)

Mathematical Properties

@ Existence and Uniqueness
@ Regularization

@ When f is not time-dependent : when t — +00, convergence to a steady
state u™ solution of an elliptic equation

—Au="f

with proper boundary conditions

@ Stability (energy inequality)
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Basics of Elliptic and parabolic PDEs

Diffusion- Equation
Reaction-diffusion equations

u(x,t)t=0.
T

Figure — Solution at t = 0.1
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N > " Poisson problems and Bo
Basics of Elliptic and parabolic PDEs Reas it et

Diffusion- Equation

Reaction-diffusion equations

ion u(x,t)t=0.
0.8 T

0.7 % B
0.6 % B

¢

o)

()
0.5 (b B

CI;

= o

X 04 _‘P

it

e

0.3 Nl

]

1

¢

0.2 41r

4

0.1 4

0 . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure — Solution at t = 0.2
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prok
action-Equat
Diffusion- Equation
Reaction-diffusion equations

Basics of Elliptic and parabolic PDEs

Figure — Solution at t = 0.3
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Basics of Elliptic and parabolic PDEs

prok
action-Equat

Diffusion- Equation
Reaction-diffusion equations

0.7

u(x,1)t=0.00150000
! X

u(x,t

o0000e 00000

00068 00°

Figure — Solution at t = 0.4
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N > " prot
Basics of Elliptic and parabolic PDEs et et

Diffusion- Equation
Reaction-diffusion equations

fon u(x,1)t=0.00400000
0.7 T T T

u(x,t

Figure — Solution at t = 0.5
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Basics of Elliptic and parabolic PDEs B9

n problems and Bo
Reaction-Equation

Diffusion- Equation
Reaction-diffusion equations

u(x,t)t=4

u(x,t

Figure — Solution at t = 0.6
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p conditions
n-Equation

on- Equation

Reaction-diffusion equations

— — Au= F(u) Q, (21)
(22)
+ Boundary Conditions  on 0, (23)
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Basics of Elliptic and parabolic PDEs

Poisson problems and Boundary conditions
R

Equatic
Equati
Reaction-diffusion equations

We can write them into the form

ou
Fri Au= F(u) Q, (21)
(22)
+ Boundary Conditions  on 012, (23)

The source term F(u) (the reaction term) depends on u

Jean-Paul CHEHAB Continuum Modeli umerical schemes for linear & nonlinear reaction /diff



Basics of Elliptic and parabolic PDEs

ou
Fri Au= F(u) Q, (21)
(22)
+ Boundary Conditions  on 012, (23)

The source term F(u) (the reaction term) depends on u There is a competition
between the two terms —Aw and F(u). As in the nonlinear ODE case

Properties

@ Existence and uniqueness (under conditions on F) (without existence
nothing can be done ... without unicity you don't know what your are
computing...)

@ Regularity (important for justifying approximation techniques)
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Basics of Elliptic and parabolic PDEs

ou
Fri Au= F(u) Q, (21)
(22)
+ Boundary Conditions  on 012, (23)

The source term F(u) (the reaction term) depends on u There is a competition
between the two terms —Aw and F(u). As in the nonlinear ODE case

Properties

@ Existence and uniqueness (under conditions on F) (without existence
nothing can be done ... without unicity you don't know what your are
computing...)

@ Regularity (important for justifying approximation techniques)

| A\

Long time behaviour
@ Steady state u*/ — Au™ = F(u™)

@ Periodic solutions in time

@ Chaos

\
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Allen-Cahn model
Phase Fields Allen-Cahn model : Gradie nd Minimization of an En

Cahn-Hilliard Eq

By definition, a phase field model is a mathematical model for solving
interfacial problems

Main characteristics

they model the dynamical minimization of a physical free energy. According to
the conservation of mass property, we distinguish two type of equations

9 Allen-Chan, gradient flow with no mass conservation; It models phase
transition

@ Cahn-Hilliard, which is mass conservative and models phase separation

Application domains

@ material science : in complex fluids and soft matter (interfacial fluid flow,
polymer science and in industrial applications).

@ Intercalation and conversion in batteries

@ Biological Science, Medecine and ecology : tumor growth, polluant
transport in fluids

@ Image processing : inpainting, image segmentation
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Cahn model
Phase Fields A hn model : Gradient Minimization of an Energy

Cahn-Hilliard Equation

Allen-Cahn equation is a and writes as

ou 1
5 + M(—Au+ E—2f(u)) =0 (24)
ou
o= 0 (25)
u(0, x) = wo(x) (26)

@ It describes the process of phase separation in iron alloys [Allen-Cahn,
1972, 1973], including order-disorder transitions : M is the mobilty (taken

to be 1 for simplicity), F = / f(v)dyv is the free energy, u is the

(non-conserved) order parame::;r, € is the interface length.

9@ The homogenous Neumann boundary condition implies that there is not a
loss of mass outside the domain Q

@ there is a competition between the potential term and the diffusion term :
regularization in phase transition

@ Maximum principle : if |uo(x)| < B then |u(x, t)| < B, where § is the
magnitude of largest zero of f.

It is a reaction-diffusion equation!!
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Allen-Cahn model
Phase Fields Allen-Cahn model : Gradient Flow and Minimization of an Energy
Cahn-Hilliard Equation

Derivation

Minimize the Energy E(u) = 5 fn |VulPdx + L ¢ Jo F(u)dx, where F is the
potential of the free energy. The first term (D|r|chlet energy) makes the phase

transition smooth

| \

some potentials
@ Double Well potential F(u) = %(1 — ) or Ginzburg-Landau double Well
potential

@ Truncated double-well potential

) MQ——l v2Mu+ L (3M* + 1) ifu>M
Fluy={ 1wy if ue [~M, M]

3"” —L2 pomPu+ 1BM +1) ifu<—M

9 Logarithmic free energy

F(u):g(1—4—u)|n1—|—u—|—(1—u)|n1—u—%u2
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Allen-Cahn model
Phase Fields Allen-Cahn model : Gradient Flow and Minimization of an Energy
Cahn-Hilliard Equation

Gradient Flow basics :

Definition and properties

@ Energy decreasing : using the rule dEd( ) =< VE(u) > we have

%(t”) = — < VE(u), VE(u) >= —||[VE(u)|> <0
@ The steady state of the system are the critical points of E(u)

@ When E is coercive (E(u) — +o0 as ||u]| = +o0), the stable steady state
are the minima of E(u)

Allen-Cahn as a Gradient flow
We let £(u) = /HVUH e = /F(u)dx

We have VE(u) = —Au + —Zf(u) with f = F’. We recover Allen-Cahn’s
€
equation.
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Allen-Cahn model
Phase Fields Allen-Cahn model : Gradient Flow and Minimization of an Energy

Cahn-Hilliard Equation

solution u(x,t)
T

[

=4 o
o ©

u(xt
°

!
=4
o

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Figure — Solution of AC : initial data (uniform randomly in [0, 1])
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Allen-Cahn model

Phase Fields Allen-Cahn model : Gradient Flow and Minimization of an Energy
Cahn-Hilliard Equation

solution u(x,t)
0.5 T

uxt

Figure — Solution of AC at time t =
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Allen-Cahn model
Phase Fields Allen-Cahn model : Gradient Flow and Minimization of an Energy

Cahn-Hilliard Equation

solution u(x,t)

0.8

061

021

u(xt
°
T

0.1 0.5 0.6 0.7 0.8 0.9 1

Figure — Solution of AC at time t =
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Allen-Cahn model
Phase Fields Allen-Cahn model : Gradient Flow and Minimization of an Energy

Cahn-Hilliard Equation

solution u(x,t)

0.8

061

021

u(xt
°
T

0.1 0.5 0.6 0.7 0.8 0.9 1

Figure — Solution of AC at time t =
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Allen-Cahn model
Phase Fields Allen-Cahn model : Gradient Flow and Minimization of an Energy

Cahn-Hilliard Equation

solution u(x,t)

0.8

061

021

u(xt
°
T

0.1 0.5 0.6 0.7 0.8 0.9 1

Figure — Solution of AC at time t =

ean-Paul CHEHAB Continuum Modeling: Numerical schemes for linear & nonlinear reactio



en-Cahn model
Phase Fields Allen-Cahn model : Gradient Flow and Minimization of an Energy

Cahn-Hilliard Equation

MAX=1

- IsoValue

6386-1¢
26:

5263
0.210526
315789

Figure — Allen Cahn : Initial datum
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Allen-Cahn model
Phase Fields Allen-Cahn model : Gradient Flow and Minimization of an Energy

Cahn-Hilliard Equation

IsoValue

088
m0.243625

Figure — Solution at t = after phase separation
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Allen-Cahn model
Phase Fields Allen-Cahn model : Gradient Flow and Minimization of an Energy
Cahn-Hilliard Equation

A first application in image processing : the image segmentation

% po+ Ty (@t o)h-af —a-o)h-a)), xea@)
ot €
0

a9 (28)

If C is the segmenting curve, then the phase ¢ corresponds to the situations

>0 if xisinside C,
p(x)=¢ =0 ifxeC,
<0 if x is outside C,

Here ¢ > 0, F'(¢) = ¢(¢* — 1), X is a nonnegative parameter, f; is the given
image.The terms c1 and ¢ are the averages of f; in the regions (¢ > 0) and

(¢ < 0), say

o B S0 6GI(L— d(x))d
Jo(+a0))d Jo( = 60))d
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Allen-Cahn model
Phase Fields Allen-Cahn model : Gradient Flow and Minimization of an Energy

Cahn-Hilliard Equation

original image segmented image

Figure — Photograph. Segmentation At =5.e — 7, ¢ = 0.04, 7 = 1, A = 10'°
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Allen-Cahn model
Phase Fields Allen-Cahn model : Gradient Flow and Minimization of an Energy

Cahn-Hilliard Equation

original image segmented image

Figure — House. Segmentation At =5.e —7,¢=0.04, 7 =1, A = 1010

an-Paul CHEHAB Continuum Modeling: Numerical schemes for linear & nonlinear reactio



Allen-Cahn model

Phase Fields Al

Gradient Flow and Minimization of an Energy

m
Cahn-Hilliard Equation

The CH equation describes the process of phase separation, by which the two
components of a binary fluid spontaneously separate and form domains pure in
each component. It writes as

ou 1
T —A(—Au+e—2f(U)) =0, (29)
ou
5. =0, (30)
% (Au - EiZf(u)) =0, (31)
u(0, x) = uo(x) (32)
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Phase Fields 3 model : Gradient Flow and Minimization of an Energy
Cahn-Hilliard Equation

Derivation

Minimize the Energy E(u) with a conservation of the mass. Write the equation
as a gradient flow :

ou 19}

57 = L5, EW)

Where L is an operator such that [, L'(aa—uE(u))dx = 0. A simple choice is

L = DV.[¢(u)V(.)], where D is the diffusion and ¢ is the mobility, eg, when
¢=1, L =DA.

Properties

| A\

@ Conservation of the mass : T = [, u(x, t)dx = [, uo(x)dx
@ Decay of the energy in time

OE(u)
ot

_ _/ V(= Au+ = F(u))Pdx < 0
Q €
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model
Phase Fields e model : Gradient Flow and Minimization of an Energy
Cahn-Hilliard Equation

CH as coupled system

A nice way to study and to simulate CH is to decouple the equation as follows :

ou
5 Ap =0, (33)
u:—Au+El2f(u), (34)
Jdu
op _
o= 0, (36)
u(0, x) = wo(x) (37)

Application domains

material science : in complex fluids and soft matter (interfacial fluid flow,
polymer science and in industrial applications).

Biological Science and Medicine : tumor growth

Image processing : inpainting (see also hereafter)
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1 Minimization of an Ene

Phase Fields

Time Simulations

@ 2D phase separation https://www.youtube.com/watch?v=52ZDH9mzDtc

@ 3D phase separation (in a cube)
https://wuw.youtube.com/watch?v=ROd6EMoLdjQ (in a sphere)

https://www.youtube.com/watch?v=CrGatXppcrc
@ mussels pattern https://wuw.youtube.com/watch?v=u-mEjfBaYks

Jean-Paul CHEHAB Continuum Modeling: Numerical schemes for linear & nonlinear reaction /diff



https://www.youtube.com/watch?v=52ZDH9mzDtc
https://www.youtube.com/watch?v=ROd6EMoLdjQ
https://www.youtube.com/watch?v=CrGatXppcrc
https://johanvandekoppel.nl/research/the-dance-of-the-mussel/

n-Cahn model

Phase Fields

Pattern dynamics, corsening

[eps=0.001; dt=0.001] step=0; mass=0.0501199
Jsgyale

P __ A+ —
Continuum Modeling: Numerical schemes for linear & nonlinear reaction



n-Cahn model

Phase Fields

Pattern dynamics, corsening

[eps=0.001; dt=0.001] step=0.01; mass=0.0501199
Jsgyale
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n-Cahn model

Phase Fields

Pattern dynamics, corsening

[eps=0.001; dt=0.001] step=0.02; mass=0.0501199
Jsgyale
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n-Cahn model

Phase Fields

Pattern dynamics, corsening

[eps=0.001; dt=0.001] step=0.03; mass=0.0501199
Jsgyale
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n-Cahn model

Phase Fields

Pattern dynamics, corsening

[eps=0.001; dt=0.001] step=0.04; mass=0.0501199

IsoValue
[
N
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Allen-Cahn model
Phase Fields Allen- n mode G nt Minimization of an En
Cahn-Hilliard Equation

Pattern dynamics, corsening

[eps=0.001; dt=0.001] step=0.1; mass=0.0501199

A
an-Paul CHEHAB Numerical schemes for linear & nonlinear reaction



Allen-Cahn model \
Phase Fields Allen-Cahn m
Cahn-Hilliard Equatlon

Pattern dynamics, corsening

[eps=0.001; dt=0.001] step=0.201; mass=0.0501199

A+ —
Numerical schemes for linear & nonlinear reactio



Allen-Cahn model

Phase Fields

Pattern dynamics, corsening

__ __ A+ —
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Allen-Cahn model

Phase Fields

G it d Minimiza

All hn m |
Cahn-Hilliard Equation

Pattern dynamics, corsening

[eps=0.001; dt=0.001] step=0.401; mass=0.0501199

A
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Phase Fields

Gradient Flow and Minimization of an Energy

m
Cahn-Hilliard Equation

A first application in image processing : the inpainting

The inpainting is the process of reconstructing lost or deteriorated parts of
images (photos as well as videos) : the idea is to take off the detoriated part
(mask) and to recover in this region the rest of the original image. This can be
done by using several techniques, one of them being based on Cahn-Hilliard
equations.
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run : res_parrot.pdf

\H—H ( ahn model
Phase Fields -Cal no Gradient Flow and Minimization of an Energy
Cahn H|I||ard Equatlon

A Cahn-Hilliard mathematical model for the inpainting

Let g be the original image and D C Q the region of Q in which the image is
deterred. The idea is to add a penalty term that forces the image to remain
unchanged in 2\ D and to reconnect the fields of g inside D. Let A >> 1

9
a—’t’ — A(—ehu+ = f( ) +Fixawn(x)(u—g) =0, (38)
Cahn-Hilliard equat|on Fidelity term (39)
~————
ou 9 1 _
==0 £ (Au—e—zf(u)) -0, (40)
u(0,x) = uo(x) (41)

1 ifxeQ\D,
Here xo\p(x) = { 0 else '

@ The presence of the penalization term Axq\p(x)(u — g) forces the solution
to be close to g in 2\ D when A >>1
@ The Cahn-Hilliard flow has as effect to connect the fields inside D

@ here € will play the role of the "contrast”. A post-processing is possible
using a thresholding procedure.
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Phase Fields Alle n mc dient Flow and Minimi

Cahn-Hilliard Equatlon

Illustration with a simple example : the inpainting of a triangle.

Original Image

1 1
0.9 0.8
0.8 0.6
0.7 0.4
0.6 0.2
0.5 0
0.4 -0.2
03 0.4
0.2 0.6
0.1 -0.8

0 -1

0 0.2 0.4 0.6 0.8 1

Figure — Inpainting with-C-H. At = 0.001, ¢ = 0.05, N = 128 - Initial inpainted
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Phase Fields Alle n mc dient Flow and Minimization of an Ene

Cahn-Hilliard Equatlon

Illustration with a simple example : the inpainting of a triangle.

Corrected Image

1 1
0.8
0.8 06
0.7 0.4
0.6 0.2

0.5 0
0.4 02
03 -0.4
0.2 06
0.1 -08

0 1

0 0.2 0.4 0.6 0.8 1

Figure — Inpainting with-C-H. At = 0.001, ¢ = 0.05, N = 128 - Initial inpainted
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Phase Fields o Gradient Floy

and Minimization of an Ene

Cahn-Hilliard Equation

[llustration with a simple example : the inpainting of a triangle.

Post-treated Final Image

=)

Figure — Inpainting with-C-H. At = 0.001, ¢ = 0.05, N = 128 - Initial inpainted
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Phase Fields o Gradient Flow and Minimization of an Ene

Cahn-Hilliard Equation

[llustration with a simple example : the inpainting of a triangle.

Original Image

1 1
0.9 0.8
0.8 0.6
0.7 0.4
0.6 0.2
0.5 0
0.4 -0.2
0.3 0.4
0.2 0.6
0.1 -0.8

0 -1

0 0.2 0.4 0.6 0.8 1

Figure — Inpainting with-C-H. At = 0.001, ¢ = 0.05, N = 128 - Initial inpainted
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Phase Fields Allen n mc Gradient Floy

and Minimization of an Ene

Cahn-Hilliard Equation

[llustration with a simple example : the inpainting of a triangle.

Corrected Image

Figure — Inpainting with-C-H. At = 0.001, ¢ = 0.05, N = 128 - Initial inpainted
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Cahn model
Phase Fields n model : Gradient Flow and Minimization of an Ene

Cahn-Hilliard Equation

[llustration with a simple example : the inpainting of a triangle.

Post-treated Final Image

o

Figure — Inpainting with-C-H. At = 0.001, ¢ = 0.05, N = 128 - Initial inpainted
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Phase Fields Minimization of an Er

Illustration with a 3D example : the inpainting of a box

Initial damaged Image
1 ‘ 04
05 03

05 05
00

Figure — 3D Inpamtmg W|th C-H and classu:al scheme. At = 1l.e — 6, €= O 01,
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Phase Fields

Illustration with a 3D example : the inpainting of a box

Inpainted image =0.00000200

05 05 1
0 0

Flgure - Inpalntlng W|th C H. At =0.001, e =0. 05 N = 128 - Initial inpainted
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Allen-Cahn model

Phase Fields

Illustration with a 3D example : the inpainting of a box

Final Image

05
05 :

05 05 1
0 0

Flgure - Inpalntlng W|th C H. At =0.001, e =0. 05 N = 128 - Initial inpainted
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Allen-Cahn vs Cahn Hilliard

Allen-Cahn
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Allen-Cahn vs Cahn Hilliard

Allen-Cahn

Allen-Cahn

E(u) = /||Vu|| dX+—/F(u

)(
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Allen-Cahn vs Cahn Hilliard

Allen-Cahn

Allen-Cahn

E(u) = /||Vu|| dX+—/F(u

u is not conserved

du

)(

Jean-Paul CHEHAB Continuum Modeli Numerical schemes for linear & nonlinear reaction,



Allen-Cahn vs Cahn Hilliard

Allen-Cahn

Allen-Cahn

E(u) = /||Vu|| dX+—/F(u

u is not conserved

du

Double Well Potential

11

F(u) = 6—21(1 -’y

)(

f(u) = F'(u)

Jean-Paul CHEHAB
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Allen-Cahn vs Cahn Hilliard

Allen-Cahn

Cahn-Hilliard

OE(u)

%ﬂ Au+ Tf(u)—o /IV( pose iy
== —Au+ =1 (u
Allen-Cahn ot ) €

E(u) = /||Vu|\ dX+—/F(u

u is not conserved
du
— =—-VE
R (u)
Double Well Potential
11
€4

f(u) = F'(u)

X
IN
o

><

F(u) = (1 —u?)?
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Allen-Cahn vs Cahn Hilliard

Allen-Cahn

ou
-

Allen-Cahn

/||Vu|\ dx—l——/F(u

u is not conserved

du

dt
Double Well Potential
L1
4
f(u)=F'

Au+ —Zf(u) =0

E(u) =

><

= —VE(u)

F(u) = (1 —u?)?

(u)

Jean-Paul CHEHAB

Cahn-Hilliard

OE(s) _

u is locally conserved, according to

- Lt du _
Fick's second law J = vJ

—/ IV(—Au+ 2 F(u))d
Q €

X
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Allen-Cahn vs Cahn Hilliard

Allen-Cahn

Cahn-Hilliard

Jdu
Au+ f(u) =0
9t 2
OlE) —/ IV(—Au+ = F(u))Pdk <0
Allen-Cahn Q €
u is locally conserved, according to
E(u) = ||Vu|\ dx—|— = F(u X du
Fick's second law == = —VJ
uis not conserved Define the potentlacf
uw=—Au+ F'(u)
du
-~ _ _VE
4 — ~VE(W)
Double Well Potential
_ 1 1 N2
F(u) = 57— ) J
f(u) = F'(u)
~
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Allen-Cahn vs Cahn Hilliard

Allen-Cahn Cahn-Hilliard
Jdu
Au+ f(u) =0
9t 2
9F —/ IV(~Au+ L f(u)Pdk <0
Allen-Cahn Q €
u is locally conserved, according to
E(u) = ||Vu|\ dx—|— = F(u X du
Fick's second law == = —VJ

Define the potentlacf
uw=—Au+ F'(u)
% = _VE(u) Constitutive equation

Double Well Potential

u is not conserved

J=—-M(u)Vu

11 2y2
Flu)= 5-(1—
(0) = 33— ) )

f(u) = F'(u)
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Allen-Cahn vs Cahn Hilliard

Allen-Cahn Cahn-Hilliard
Jdu
Au+ f(u) =0
9t 2
9F —/ IV(~Au+ L f(u)Pdk <0
Allen-Cahn Q €
u is locally conserved, according to
E(u) = ||Vu|\ dx—|— = F(u X du
Fick's second law == = —VJ

Define the potentlacf

u is not conserved p=—Au+ F'(u)

% = _VE(u) Constitutive equation
J=—-M(u)V
Double Well Potential ()i
o 11 D02
B == a0 =ur) f(u) = F'(u) )
f(u) = F'(u)
~
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Stability of a differential system

In higher dimension we consider the differential system :

&~ F(u) (42)
u(0) = up € R" (Initial Condition) (43)

Her F : IR" — IR" is a regular function. We will assume that properties of
existence and uniqueness of the solution as well as those of regularity are
satisfied. We just here extend the analysis of stability of the steady states of
the differential system.

The linear case

Consider the case F(u) = Au— b. When A is invertible, the only steady state is
the solution of the linear system Au™ = b. We can write any vector v € IR" as
v=u"+ w. Then

dw

_:A
a

We have formally w(t) = exp(tA)w(0). Then w(t) remains bounded iff the
eigenvalues of A are of negative real part. If their real part is strictly negative,
w(t) converges to 0 as t — 400 : this is the asymptotic stability.
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Stability of a differential system

Linear stability in dimension n

Let u™ be a steady state, i.e. F(u®) = 0. As in the scalar case, we write the
system near u™ : set u(t) = u”™ + w(t)

F(u(t)) = F(u" + w(t))
= F(u™) + JF(u™)w(t) + lower terms

by Taylor's formula
——— ——

~ JF'(u*)w(t)

Here JF(u™) is the jacobian matrix of F at u*, say (JF(u™))ij = %
J

@ If none of the eigenvalues of JF(u™) is pure imaginary, then the local
stability is similar to the one in the linear case

@ We cannot conclude with the spectral argument if there is at least a
couple of pure imaginary eigenvalues.
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