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Introduction

Korteweg-de Vries equation (KdV)

Model of one-way propagation of small amplitude and long-wavelength wave.

ut + ux + uxxx + upux = 0.

(p = 1: KdV;p ≥ 2: GKdV))

Benjamin-Bona-Mahony equation (BBM)

Regularized version of KdV equation

ut + ux − utxx + uux = 0.

Problem

Modelling natural phenomena needs to take into account damping effects
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Damped KdV equations

ut + α1ux + α2uxxx + α3uux + α4L[u] = 0 (or f (x))

u(x , 0) = u0(x), x ∈ Ω, α ∈ [0, 2], and t > 0

Operator L[u] is a damping operator when
∫

Ω
L[u]udx ≥ 0 (it makes decrease

the L2 norm in time since 1
2
d‖u‖2
dt

+
∫

Ω
L[u]udx = 0).

Damping KdV models: L[u] = |D|αu, where |D| =
√
−∆, α ∈ [0, 2].

Modeling

Ott-Sudan (1970): L = γ · Id , α = 0 and Ω = R (Landau damping for ion
acoustic wave)

Dutykh (2007): L = −γ · ∂2
x , α = 2 (dissipative Tsunami)

We look to the behavior of the solutions for t large. When L = |D|α, α > 0
parabolic-like behavior.
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Weak damping

When L = γId and Ω = T : WEAK DAMPING

Asymptotic behavior

Goubet (2000, 2002) and Ghidaglia (1988, 1994): L = γ · Id , α = 0.
Regularity of the global attractor, Asymptotic smoothing.
Finite dimensional attractor which is in a more regular space than the
initial data: this is the asymptotic regularization property

Rosa-Cabral (2004, numerical study) : L = γ · Id , α = 0 and Ω = T
Periodic solutions in times

Vento (2008): mathematical analysis with α ∈ [0, 2] and Ω = R
(Cauchy Pb and asymptotic behavior)
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Building an "economical" damping

The derivation of KdV equation is valid to capture low frequencial
phenomena

(think in frequencies !!)
Idea : build the damping as a high-pass filter

The previous dampings are no high-pass filters when α ≥ 0.

We need even weaker damping models and define a "very weak" damping
(say α < 0 ?)
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Problem

Let L be a weak damping operator i.e.

0 ≤
∫

L[u]udx ≤ c‖u‖2L2

and consider the equation

ut + uxxx + L[u] + uux = f , x ∈ T, t > 0 (1)

u(x , 0) = u0(x) (2)

Do still have we the phenomena proven/ pointed out by Ghidaglia, Goubet
Rosa, Cabral for even more weak dampings ?

∃c > 0 s.t. (L[u], u)L2 ≤ c|u|2L2 and 6 ∃d > 0(L[u], u)L2 ≥ d |u|2L2
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Construction and Property
Damping Properties

The model (damping in frequencies)

Let u ∈ L2(T), and consider its Fourier expansion, we have:

u(x , t) =
∑
k∈Z

ûk(t)e i
2πkx

L .

The damping

We define the nonlocal damping in space (or dissipative) term as :

Lγu =
∑
k∈Z

γk ûk(t)e i
2πkx

L γk = γ−k , ∀k ∈ Z, γk ≥ 0

associated to the energy space Hγ = {u ∈ L2/
∑
k∈Z

γk |ûk |2 < +∞} with

|u|2γ =
∑

k∈Z γk |ûk |
2 =

∫
Lγ(u)udx

Remark: if γk =

∣∣∣∣2πkL
∣∣∣∣α then Lγ [u] = |D|αu
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2 =

∫
Lγ(u)udx

Remark: if γk =

∣∣∣∣2πkL
∣∣∣∣α then Lγ [u] = |D|αu

J-P. CHEHAB (very) weakly damped KdV equations



Motivation
A model of Damped KdV Equations

Numerical Schemes : Definition and Properties
Numerical Results

Conclusion and Outlook
Annex

Construction and Property
Damping Properties

Special attention to the case

lim
k→+∞

γk = 0

The damping is then weaker than when γk = γ =⇒ high-pass-like filter.

Approach

Analysis

Cauchy problem (Garnier (KdV, ArXiV 2015), C-Garnier Mammeri (BBM,
DCDS-B, 2015))

Numerics and focus on :

Test different damping in band of frequency

Rate of damping

Long time behavior, time regularization (Sobolev).

computation of Steady state and periodic solution

Hierarchy of dampings, inverse problem

Prevent Blow up for GKdV
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Construction and Property
Damping Properties

Damping

When the KdV equation is nor forced nor damped, it possesses an infinite
number of invariants, the first ones being

The mass : I0(u) = ū(t) =

∫ L

0
u(x , t)dx =

∫ L

0
u0(x)dx

The L2 norm : I1(u) =

∫ L

0
(u(x , t))2dx =

∫ L

0
(u0(x)2dx

The Energy : I2(u) =

∫ L

0

(
∂u(x , t)

∂x

)2

dx − 1
6

∫ L

0
(u(x , t))3dx

We’ll look to the time behavior of |u|2 and |u|γ as t → +∞.

J-P. CHEHAB (very) weakly damped KdV equations



Motivation
A model of Damped KdV Equations

Numerical Schemes : Definition and Properties
Numerical Results

Conclusion and Outlook
Annex

Construction and Property
Damping Properties

Which damping ?
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Figure : Various frequency damping profiles
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Construction and Property
Damping Properties

It is necessary to have γk > 0: indeed

lemma

Let u, v ∈ L∞(T). Assume that û2k+1 = v̂2k+1 = 0. Then

ûv2k+1 = 0, k ∈ Z.

It follows by induction that if û2k+1 = 0, then ûp
2k+1 = 0.

So if û02k+1 = 0 and γ2k = 0 (comb-like filter) then the solution is not damped
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Construction and Property
Damping Properties

Damping Properties

Proposition : (The linear Homogeneous equation)

ut + Lγ [u] = 0

Assume that γk > 0,∀k ∈ Z and that u0 ∈ Hβ/γ . Then : |u|2β 6 e−1

2t |u0|2β
γ

More generally, assume that γk ∈ [0, 1], ∀k ∈ Z and that u0 ∈ H 1
γs
.

Then, for every s > 0, |u|2L2 6 min
(
e−s

( s

2t

)s
|u0|21

γs
, |u0|2L2

)

Proposition

Assume that there exist α, β and C, three strictly positive real numbers s.t.

i. |(û0)k |2 ≤ Cγ2δ
k , with δ = α + β.

ii.
∑
k∈Z

γ2β
k < +∞

Then |u|2L2 ≤ Ce−1 (α
t
)2α∑

k∈Z

γ2β
k = O

(
1
t2α

)
.
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Construction and Property
Damping Properties

Proposition : (The nonlinear Homogeneous equation)

Assume that ū(0) = 0 and γk > 0

i. lim
t→+∞

|u|L2 = 0.

ii. In addition, if ū(0) = 0 and if ∃c > 0 such that γk ≥ c > 0, ∀k ∈ Z then
|u|L2 ≤ κe−ct |u|2L.

Remark When γk > 0, lim
k→+∞

γk = 0, orbit converge to 0 in L2, but it can be at

an arbitrary slow rate, it depends on how γk converge to 0 as k goes to infinity.
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Construction and Property
Damping Properties

Damping Properties

The Energy Ratio Function

Let G(u, t) 7→ G(u, t) =
|u|γ
|u|L2

=

√∑
k∈Z γk |ûk |

2∑
k∈Z |ûk |

2

so 1
2
d‖u‖2
dt

+ G(u, t)2‖u‖2 = 0

Proposition : (The nonlinear forced equation)

Assume that f belongs to H 1
γ

⋂
L2 Then

|u(t)|2L2 ≤ e
−

∫ t

0
G 2(s)ds

|u0|2L2 +

∫ t

0
e
−

∫ t

s

G 2(τ)dτ
|f |21

γ
ds.

If f = 0 then |u(t)|2L2 = e
−2

∫ t

0
G 2(s)ds

|u0|2L2 . It follows that
lim

t→+∞
|u|L2 = 0 ⇐⇒ G /∈ L2

t (0,+∞).
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Space semi-discretization
Time semidiscretization
L2 stability and damping properties of the schemes

Spatial and time discretization

Pseudospectral (Fourier)

Let Ω = [0, L], N ∈ N∗ we consider the expansion of L-periodic function u as

uN(x) =

N/2∑
k=−N/2+1

ûke
i 2kπx

L , with ûk =
2
L

∫ L

0
u(x)e−i 2kπx

L dx

Then

(uN)x =

N/2∑
k=−N/2+1

(
i
2kπ
L

)
ûke

i 2kπx
L , (uN)xxx =

N/2∑
k=−N/2+1

(
i
2kπ
L

)3

ûke
i 2kπx

L

Lγ [u] =

N/2∑
k=−N/2+1

γk ûke
2iπkx

L
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Space semi-discretization
Time semidiscretization
L2 stability and damping properties of the schemes

Time marching schemes

i. Backward Euler’s

ii. Crank Nicolson

iii. Sanz-Serna

iv. Lie Splitting and Strang Splitting

v. RK34 (inverse problem)

Stability properties and accuracy (C.-Sadaka, CPAA 2013)
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Space semi-discretization
Time semidiscretization
L2 stability and damping properties of the schemes

Time marching schemes

i. Backward Euler’s

ûn+1
k − ûn

k

∆t
+

(
i
2πk
L

)3

· ûn+1
k + γk · ûn+1

k +
1
2
·
(
i
2πk
L

)
· ̂(un+1)2

k = f̂k

ii. Crank Nicolson

u(n+1) − u(n)

∆t
+Lγ

u(n+1) + u(n)

2
+L3 u

(n+1) + u(n)

2
+L

(
(u(n+1))2 + (u(n))2

4

)
= f

iii. Sanz Serna

u(n+1) − u(n)

∆t
+Lγ

u(n+1) + u(n)

2
+L3 u

(n+1) + u(n)

2
+
1
2
L
(
u(n+1) + u(n)

2

)2

= f
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Space semi-discretization
Time semidiscretization
L2 stability and damping properties of the schemes

Time marching schemes (cont.)

iv. Strang Splitting 1

u(n+1/3) − u(n)

∆t/2 + Lγu
(n+1/3) = 0,

u(n+2/3) − u(n+1/3)

∆t
+ L3u(n+2/3) + 1

2L(u(n+2/3))2 = f ,

u(n+1) − u(n+2/3)

∆t/2 + Lγu
(n+1) = 0,

v. Strang Splitting 2

u(n+1/3) = e
−∆t

2 Lγu(n)

u(n+2/3) − u(n+1/3)

∆t
+
L3
(
u(n+1/3) + u(n+2/3)

)
2 +

L(u(n+1/3) + u(n+2/3))2

8 = f ,

u(n+1) = e
−∆t

2 Lγu(n+2/3)

We establish L2 unconditional stability for i , iii , iv and damping properties for
i , iv ; ii , iii , v are second order accurate, i , iii are first order accurate (in time).
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Space semi-discretization
Time semidiscretization
L2 stability and damping properties of the schemes

Theorem

(Backward Euler)

|u(n+1)|22 + |u(n+1) − u(n)|2 + ∆t(
∑
k∈Z

γk |û(n+1)
k |2 ≤ |u(n)|22 + ∆t

∑
k∈Z

1
γk
|f̂k |2

In addition if f = 0, then lim
n→+∞

|u(n)|L2 = 0. We have

|u(n)|2L2 ≤

(
n∏

j=1

1
1 + 2∆t(G (j))2

)
|u0|2L2 .

(Sanz-Serna) |u(n+1)|L2 + ∆t
4 |u

(n+1) + u(n)|2γ ≤ |u(n)|2L2 + ∆t|f |21
γ
.

(Splitting 2) Unconditional L2 stability. Moreover, if f = 0,
lim

n→+∞
|u(n)|L2 = 0. If u(0) ∈ L2(T) ∩ H 1

γ
then

|u(n)| ≤ e−1

N∆t
|u(0)| 1

γ
.
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Homogeneous Equation
Non Homogeneous Equation
Comparison of various dampings
A posteriori Reconstruction of the damping
Preventing the Blow up

Initial data

u0(x) = S1 = 3csech(
√

c
2 (x − pL))2, with c = 1, p = 0.4 is the soliton

u0(x) = S2 = χ0.4L<x<0.6L corresponds to the crennel
u0(x) = S3 = sin(2πx

L
)is the sine data

u0(x) = S4 = 50χx>π sin(4x)(this is the initial data to compute time-periodic
solutions for L = 2π (inspired by that used by Cabral-Rosa))

Unless specified, for all the numerical simulations, we work with L = 100,
N = 29 and ∆t = 0.0005.

Damping profiles

γk = 1, γk = χk1≤|k|≤k2 , γk =
1

(1 + |k|)α , α = 1/4, 1, 2 · · ·
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Figure : Comparison of the rate of the accuracy of the schemes for γk = 1, ∀k (left)
and for γk = 1

1 + |k| (right).
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Figure : u0(x) = S3, γk = 1, ∀k, f (x) = 0
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NonHomogeneous equation : Steady states
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Periodic solutions

0 1 2 3 4 5 6

0

50

100
solution at T = 811

x
0 100 200 300 400 500 600 700 800

10
2

10
3

10
4

log
10

(||du/dt||
2

L
2) at T = 811; dt=0.005

t

−6500 −6000 −5500 −5000 −4500 −4000 −3500 −3000 −2500
4500

5000

5500

6000

6500

7000

real(û
2
)

re
a
l(
û

3
)

Phase portrait when 500≤ t ≤ 811

−4000 −3000 −2000 −1000 0 1000 2000 3000
−4000

−2000

0

2000

4000

real(û
5
)

re
a
l(
û

6
)

Phase portrait when 500≤ t ≤ 811

−3 −2 −1 0 1 2 3
−0.2

−0.1

0

0.1

0.2

real(û
128

)

re
a
l(
û

1
2
9
)

Phase portrait when 500≤ t ≤ 811

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1

0

1

2
x 10

−3

real(û
200

)

re
a
l(
û

2
0
1
)

Phase portrait when 500≤ t ≤ 811

Figure : Periodic solution for γk = 2.7, f = 500 sin(x),
L = 2π,u0(x) = 50χx>πsin(4x)
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NonHomogeneous equation : Sobolev regularization

(According to Mallat) u ∈ L2 belongs to Hs , s > 0 iff

+∞∑
N=1

N2s−1||u − uN ||2L2 < +∞, uN =
∑
|k|>N

û(k)ek(x). (3)

u −−− > UN , UN −−− > UN/2 :
∑N/2

k=1 k
2s−1

(∑N
`=k |û`|

2
)
< +∞

Numerical Sobolev exponent: computed by considering the tail of the spectral
energy of the solution.

N∑
`=k

|û`|2 '
C

k2s , for k � 1,

vk = ln
N∑
`=k

|û`|2 ' ln(C)− 2s ln k, for k � 1.

compute s by a linear regression min
s,κ

N∑
k=N−m

(vk − (κ− 2s ln(k))2.
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Comparison of various dampings

For Lγu =
∑
k∈Z

γk ûk(t)e
2iπx
L , a Fourier-like approximation is used in space

For Lu = ν

∫ t

0

ut√
t − s

(see Chen-Dumont-Dupaigne-Goubet) we use the

approx ν

√
3

2∆t

n∑
j=0

gn+1−ju
j where gj are Gear’s coefficients (Dubois 01),

the space approximation is done by Fourier.

For Lu = χ[a,b]u (see Laurent, Rosier, Zhang ..), we use compact schemes
in finite differences to reach a spectral-like accuracy (Lele 92)

To make an hierarchy between these dampings for the long time behavior, we
compare the associated function G(t).
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we can range the operators in the following way, by decreasing damping rate

1 L(u) = ν

∫ t

0

ut√
t − s

ds

2 L(u) = −µ∂2
x u

3 L(u) = γu

4 L(u) = γuχ[a,b]

5 L(u) = Lγ(u) =
∑
k∈Z

γk ûke
2ikπx

L , with γk = 1
1 + |k|
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the damping operators Lγ and χ[a,b] on [0, L] with L = 20.
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L = 500.
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Damping reconstruction by solving an inverse problem

Integrate numerically 1
2
d |u|2
dt

+ G 2(t)|u|2 = 0,on[tn, tn+1] and get

G 2(tn+1) ' |u(tn)|2 − |u(tn+1)|2
∆t
2 (|u(tn+1)|2 + |u(tn)|2)

≡ Γ2
n

Case of the local damping in space L = χ[a,b]. Let xi be the (regularly spaced)
grid points and `i the vector defined by

`i =

{
1 if xi ∈ [a, b],
0 otherwise.

The computed values of G 2(tn) at discrete times tn are the numbers

G 2(tn) =

N∑
i=1

`i (u
n
i )2h

N∑
i=1

(un
i )2h

Idea: fitting of G with Γ.
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Integrate numerically 1
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dt

+ G 2(t)|u|2 = 0,on[tn, tn+1] and get

G 2(tn+1) ' |u(tn)|2 − |u(tn+1)|2
∆t
2 (|u(tn+1)|2 + |u(tn)|2)

≡ Γ2
n

Case of the local damping in space L = χ[a,b]. Let xi be the (regularly spaced)
grid points and `i the vector defined by
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{
1 if xi ∈ [a, b],
0 otherwise.

The computed values of G 2(tn) at discrete times tn are the numbers

G 2(tn) =

N∑
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`i (u
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i )2h

N∑
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Idea: fitting of G with Γ.
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real numbers γi solution of the constraint least square problem

Inf `i≥0

M∑
m=0


N∑
i=1

`i (u
n
i )2

∑N
i=1(un

i )2 − Γ2(tn)


2

.

This minimization problem will be solved numerically using the Matlabr
function fmincon.
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L = χ[0.4L,0.6L].
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Figure : Γ2(t) (left), comparison of the original and the rebuilt coefficients
L = χ[0.4L,0.6L] (right)
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Prevent the Blow up

Facts : For GKdV and p ≥ 4, one can find inital data u0 which blows up in
finite time (in H1 norm):

Property

Blow-up of ‖ux‖L2 in finite time for p ≥ 4 and γ a small constant (Bona et al.,
96; Martel and Merle, 02).

For a given blowing data u0, it is possible to find γ∗ such that the solution of
the damped GKdV equation

ut − uxxx + γu + upux = 0,

u(x , 0) = u0(x)

doesn’t bow up for any γ ≥ γ∗.

Goal

find such γ∗

more generally find very weak dampings defined with a sequence γk
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Scheme

Sanz-Serna scheme

ûn+1(k)− ûn(k)

∆t
+
(
ik − ik3 + γk

) ûn+1(k) + ûn(k)

2

+
ik

p + 1
F

[(
ûn+1(k) + ûn(k)

2

)p+1
]

= 0.

Initial datum

We take a perturbed soliton with c = 1.5 and d = 0.2L

u(x , t) = 1.01
(

(p + 1)(p + 2)(c − 1)

2

) 1
p

cosh−
2
p

(
±
√

p(c − 1)

4
(x − d)

)
.
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The optimal damping
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Figure : Initialization
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Figure : Dichotomy
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Simulations
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Figure : At left, solution at different times t = 0, 2, 4, 4.9925 and 5.3303. At right,
H1-norm and L2-norm evolution without damping and a perturbed soliton as initial
datum. Here p = 5.
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Figure : At left, solution at different times t = 0, 2, 5, 10, 11 and 11.3253. At right,
H1-norm and L2-norm evolution with γk = 0.0025 and a perturbed soliton as initial
datum. Here p = 5.
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Figure : At left, solution at different times t = 0, 2, 5, 10, 15 and 20. At right,
H1-norm and L2-norm evolution with γk = 0.0027 and a perturbed soliton as initial
datum. Here p = 5.
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Figure : Example of a build damping. Here the initial datum is the perturbed soliton.
Here p = 5.
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Figure : At left, solution at different times t = 0, 2, 5, 10, 15 and 20. At right,
H1-norm and L2-norm evolution with γ = γ1 and a perturbed soliton as initial datum.
Here p = 5.
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Figure : At left, solution at different times t = 0, 2, 5, 7 and 7.928. At right,
H1-norm and L2-norm evolution with γ = γ2 and a perturbed soliton as initial datum.
Here p = 5.
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This work

Damping in energy norms

Sobolev regularization effect even when γk → 0

Nontrivial dynamics for large t (as in the case γk = γ)

Hierarchy of damping models and a posteriori reconstruction of the
damping operator
(same can be done with BBM equations)
Frequential approach

Good for band limited frequencies problems.
Allows to build cheap and efficient dampings.
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Next

Damping with Lγ in orthogonal polynomial (or Hilbert) basis

Lγ(u) =
∞∑
k=0

γk ûkpk(x)

and u(x , t) =
∞∑
k=0

ûkpk(x) with ûk =
(u, pk)ω
(pk , pk)ω

Equations as ∂u
∂t

+ Lγu + F (u) = 0 with Re(F (u), u)ω = 0 and Lγ defined
as above. Example NLS : i(ut + αu) + uxx + |u|2u = f (asymptotic
regularization Ghidaglia (88), Goubet (96))

Coupling Least square constraint evolution with Regularization for solving
ill-conditioned inverse problems

Use a similar approach for other equations (NLS, KP, ...).
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Well-posedness

damped KdV equation (dKdV)

ut + ux + uxxx + upux + Lγ(u) = 0, ∀x ∈ R and ∀t > 0, p ≥ 1,

u(x , 0) = u0(x), ∀x ∈ R.

Damping

Lγ is defined by :
L̂γ(u)(ξ) := γ(ξ)û(ξ).

û is the Fourier transform of u.

γ(ξ) > 0, ∀ξ ∈ R.
The following condition is verified∫

R
u(x)Lγ(u)dµ(x) =

∫
R
γ(ξ)|û(ξ)|2 ≥ 0.
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Notations

Multiply dKdV in L2 by u, we obtain 1
2

d
dt
‖u‖2L2 + |u|2γ = 0.

Space of study

Hγs (R) :=

{
u ∈ L2(R);

∫
R
γ(ξ)s |û(ξ)|2dξ < +∞

}
,

equipped with the norm

|u|γs :=

√∫
R
γ(ξ)s |û(ξ)|2.

Reminder

u(x) =

∫
R
û(ξ)e iξxdξ.

‖u‖2L2 =

∫
R
|û(ξ)|2dξ.
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Local and global well-posedness of the KdV equation

Cauchy problem considered

ut + ux + uxxx + upux + Lγ(u) = 0, x ∈ R, t ∈ [0,T ] (4)

u(x , t = 0) = u0(x). (5)

Lemma

Assume that s, r ∈ R+. Then there exists a constant Cr > 0, depending only
on r , such that ∀u ∈ Hγs (R) and ∀t > 0 we have

|Stu|2γs+r ≤
Cr

tr
|u|2γs .
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Theorem

Assume that there exists r ∈]0, 2[ and for all ξ ∈ R, γ(ξ) ≥ ξ
2
r . We also

assume that
∫
R

1
γ(ξ)s

< +∞ and there exists a constant C > 0 such that
∀ξ, η ∈ R and s ∈ R+ we have√

γ(ξ)s ≤ C
(√

γ(ξ − η)s +
√
γ(η)s

)
.

Then there exists a unique solution in C ([−T ,T ],Hγs (R)) of the Cauchy
problem (4)-(5).

remark

Actually we can prove the local well-posedness in Hs(R) for every γ using a
parabolic regularisation

ut + ux + uxxx + upux + Lγ(u)− εuxx = 0.

Using the lemma with γ(ξ) = ξ2, the same computations as the previous
theorem and the limit ε→ 0 give the result (Bona and Smith, 75).

J-P. CHEHAB (very) weakly damped KdV equations



Motivation
A model of Damped KdV Equations

Numerical Schemes : Definition and Properties
Numerical Results

Conclusion and Outlook
Annex

Theorem

If p < 4, for all γ, the unique solution is global in time, valued in H1(R).
Else (p ≥ 4), there exists a constant θ > 0 such that if γ(ξ) ≥ θ, ∀ξ ∈ R then
the unique solution is global in time, valued in H2(R).
(Bona et al., 96).
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Theorem

If p < 4, for all γ, the unique solution is global in time, valued in H1(R).
Else (p ≥ 4), there exists a constant θ > 0 such that if γ(ξ) ≥ θ, ∀ξ ∈ R then
the unique solution is global in time, valued in H2(R).
(Bona et al., 96).
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Theorem

If p < 4, for all γ, the unique solution is global in time, valued in H1(R).
Else (p ≥ 4), there exists a constant θ > 0 such that if γ(ξ) ≥ θ, ∀ξ ∈ R then
the unique solution is global in time, valued in H2(R).
(Bona et al., 96).

Remark

This result is also true on the torus T(0, L) on which we switch now.
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