Université de Picardie Jules Verne Master 2 AAM Calcul Scientifique 2019-2020

Méthodes de calculs de l'inverse d'une matrice et applications

Exercice 1 (Cayley Hamilton et applications)

- 1. Soit A une matrice $n \times n$ inversible. On note $P(x) = \sum_{i=0}^{n} a_i x^i$ son polynôme caractéristique.
 - (a) Montrer que nécessairement on a $a_0 \neq 0$.
 - (b) En déduire que

$$Id = A\left(\frac{1}{a_0}\sum_{i=1}^n a_i A^{i-1}\right) = \left(\frac{1}{a_0}\sum_{i=1}^n a_i A^{i-1}\right) A.$$

Ind. On pourra utiliser le théorème de Caley-Hamilton

(c) En déduire que

$$A^{-1} = \frac{1}{a_0} \sum_{i=1}^{n} a_i A^{i-1}.$$

- (d) Pour approcher A^{-1} on calcule la matrice $A^* = \operatorname{Argmin}_{a_j} \|(\sum_{i=0}^m a_i A^j) A Id\|_F^2$.
 - i. Que vaut A^* lorsque m = n?
 - ii. Calculer explicitement les $a_j, j = 0, \dots, m$.
 - iii. Ecrire un programme Scilab
- 2. Méthode de Fadeev Leverrier. Soit A une matrice inversible. On considère la suite

$$B^{(0)} = Id; \alpha_k = Trace(AB^{(k)})/k, \ B^{(k+1)} = \alpha_k Id - AB^{(k)}$$

Alors si $\alpha_n \neq 0$,

$$A^{-1} = \frac{1}{\alpha_n} B_{n-1}$$

Programmer cette méthode.

Exercice 2 (Formule de Sherman-Morisson)

- 1. Soit B une matrice $N \times N$ telle que ||B|| < 1, où ||.|| est une norme matricielle subordonnée.
 - (a) Montrer que Id B est inversible, ici Id désigne la matrice identité $N \times N$.
 - (b) Montrer que

$$(Id - B)^{-1} = Id + B(Id - B)^{-1}$$

et en déduire que

$$\frac{1}{1 + ||B||} \le ||(Id - B)^{-1}|| \le \frac{1}{1 - ||B||}$$

- 2. Soient \tilde{U} et \tilde{V} deux matrices inversibles $N \times N$ telles que $Id + \tilde{U}\tilde{V}$ soit inversible.
 - (a) Montrer que

$$(Id + \tilde{U}\tilde{V})^{-1} = Id - \tilde{U}(Id + \tilde{V}\tilde{U})^{-1}\tilde{V}$$

(b) Soit A une matrice inversible $N \times N$. On pose $U = A\tilde{U}$ et $\tilde{V} = BV$. Montrer alors que

$$(A + UBV)^{-1} = A^{-1} - A^{-1}U(Id + BVA^{-1}U)^{-1}BVA^{-1}$$

Exercice 3 (Approximation de l'inverse d'une matrice et méthodes itératives)

- 1. Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice inversible $n \times n$.
 - (a) On décompose A sous la forme A = M N avec M inversible.
 - i. Etablir l'identité

$$A^{-1} = (M^{-1}N)A^{-1} + M^{-1}.$$

ii. On construit la suite de matrices $(C^{(k)})_{k\geq 0}$ de $\mathcal{M}_n(\mathbb{R})$, par la relation de récurrence

$$C^{(k+1)} = (M^{-1}N)C^{(k)} + M^{-1}, C^{(0)}$$
donnée dans $\mathcal{M}_n(\mathbb{R})$.

Montrer que

$$C^{(k+1)} - A^{-1} = (M^{-1}N)(C^{(k)} - A^{-1}),$$

et en déduire que $C^{(k)}$ converge vers A^{-1} si et seulement si $\rho(M^{-1}N) < 1$.

iii. Etablir l'inégalité

$$||C^{(k)} - A^{-1}|| \le ||M^{-1}N||^k ||C^{(0)} - A^{-1}||,$$

où ||.|| désigne la norme matricielle subordonnée à la norme vectorielle |.| (non précisée ici).

(b) On considère à présent la suite de matrices $(X^{(k)})_{k>0}$ de $\mathcal{M}_n(\mathbb{R})$ définie par la relation

$$X^{(k+1)} = 2X^{(k)} - X^{(k)}AX^{(k)}, X^{(0)}$$
donnée dans $\mathcal{M}_n(\mathbb{R})$

- i. On suppose désormais que $AX^{(0)}=X^{(0)}A$, montrer que $AX^{(k)}=X^{(k)}A,\,\forall k\geq 0.$
- ii. On pose $R^{(k)} = Id AX^{(k)}, \, k \geq 0.$ Montrer que

$$R^{(k+1)} = (R^{(k)})^2, \forall k \ge 0,$$

puis que

$$R^{(k)} = (R^{(0)})^{2^k},$$

et en déduire une condition suffisante pour que $\lim_{k\to+\infty} R^{(k)} = 0$.

iii. En remarquant que $A^{-1} - X^{(k)} = A^{-1} R^{(k)},$ montrer que

$$||A^{-1} - X^{(k)}|| \le ||A^{-1}|| ||R^{(0)}||^{2^k}.$$

2. On se propose maintenant de résoudre numériquement dans \mathbb{R}^n le système linéaire Ax = b, où $b \in \mathbb{R}^n$ est donné. A cet effet, on considère la méthode itérative

$$x^{(k+1)} = x^{(k)} + \alpha_k B_k (b - Ax^{(k)}), k \ge 0.$$

Ici $x^{(0)}$ est donné dans \mathbb{R}^n ; α_k est une suite de réels strictement positifs et B_k est une suite de matrices $n \times n$.

(a) Pour simplifier, on suppose d'abord que $B_k = B, \forall k \geq 0$. On veut calculer α_k à chaque itération de sorte à minimiser la quantité $\|b - Ax^{(k)}\|_2$ où $\|.\|_2$ désigne la norme euclidienne dans \mathbb{R}^n . On pose $r_k = b - Ax^{(k)}$. Exprimer $r^{(k+1)}$ en fonction de $r^{(k)}$ puis montrer que

$$\|r^{(k+1)}\|_2^2 = \|r^{(k)}\|_2^2 - 2\alpha_k < ABr^{(k)}, r^{(k)} > +\alpha_k^2 \|ABr^{(k)}\|_2^2$$

(b) En déduire que la valeur minimale de ce polynôme de degré 2 en α_k est obtenue pour

$$\alpha_k = \frac{\langle ABr^{(k)}, r^{(k)} \rangle}{\|ABr^{(k)}\|_2^2} \text{ et en déduire que } \|r^{(k+1)}\|_2^2 = \|r^{(k)}\|_2^2 - \frac{(\langle ABr^{(k)}, r^{(k)} \rangle)^2}{\|ABr^{(k)}\|_2^2}.$$

- (c) Que vaut $r^{(k+1)}$ si $B = A^{-1}$? On fait varier B à chaque itération, c'est à dire que l'on remplace B par B_k . Ecrire l'algorithme avec paramètre optimal.
- 3. Etude sommaire du comportement asymptotique.
 - (a) On suppose que la suite $B^{(k)}$ converge vers A^{-1} . Donner une expression de $\frac{\|r^{(k+1)}\|_2^2}{\|r^{(k)}\|_2^2}$.
 - (b) Que vaut $\lim_{k\to+\infty} \frac{\|r^{(k+1)}\|_2}{\|r^{(k)}\|_2}$?
 - (c) D'après vous, laquelle des suites B_k construites au 1-a) et au 1-b) permet de converger le plus rapidement ?
- 4. Programmer les méthodes en Scilab.

Exercice 4 (Méthode itérative pour le calcul de l'inverse d'une matrice)

1. Pour $M \in \mathcal{M}_n(\mathbb{R})$, on note

$$||M||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n M_{ij}^2} = \sqrt{trace(M^T M)},$$

la norme de Frobenius de M. Soit A une matrice de inversible de $\mathcal{M}_n(\mathbb{R})$ et W une matrice symétrique définie positive. On introduit

$$F_W: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathbb{R}^+$$

 $M \longmapsto F_W(M) = \sqrt{trace(I - MA)^T W(I - MA)}.$

On dira que F_W est une fonctionnelle quadratique.

(a) On rappelle que toute matrice symétrique définie positive W admet une racine carrée S vérifiant donc $W = S^2$, avec S symétrique et définie positive. Montrer que

$$F_W(M) = ||S(I - MA)||_F^2 \ge 0$$

- (b) En déduire que $F_W(M) = 0 \iff M = A^{-1}$.
- 2. On désire maintenant calculer A^{-1} en résolvant numériquement $F_W(M) = 0$ et à cet effet on met en œuvre une méthode de gradient. On rappelle que ces méthodes permettent de calculer le minimum de fonctionnelles quadratiques.

(a) Soit $\lambda \in \mathbb{R}$ et $D \in \mathcal{M}_n(\mathbb{R})$. Etablir l'identité

$$F_W(M + \lambda D) = F_W(M) - 2\lambda trace((I - MA)^T W D A) + \lambda^2 trace((DA)^T W D A)$$

On admettra que le gradient de F_W en M est

$$\nabla F_W(M) = -(I - MA)AW.$$

(b) On définit maintenant la méthode de gradient comme suit

$$M^{(0)}$$
 donnée dans $\mathcal{M}_n(\mathbb{R})$
pour k=0...
 $M^{(k+1)} = M^{(k)} + \lambda_k (I - M^{(k)}A)WA$.

A partir de maintenant et jusqu'à la fin du problème, on prendra W=I pour simplifier.

i. On pose $R^{(k)} = I - M^{(k)}A$, pour tout $k \in \mathbb{N}$. Montrer que

$$R^{(k+1)} = R^{(k)} - \lambda_k R^{(k)} A A.$$

ii. En déduire que

$$||R^{(k+1)}||_F^2 = ||R^{(k)}||_F^2 - 2\lambda_k trace(R^{(k)T}R^{(k)}AA) + \lambda_k^2 trace(AAR^{(k)T}R^{(k)}AA).$$

iii. On calcule λ_k de sorte à minimiser $\|R^{(k+1)}\|_F^2.$ Montrer que

$$\lambda_k = \frac{trace(R^{(k)T}R^{(k)}AA)}{trace(AAR^{(k)T}R^{(k)}AA)},$$

et en déduire une relation entre $\|R^{(k+1)}\|_F^2$ et $\|R^{(k)}\|_F^2.$