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1. Introduction

Let D be a Dedekind domain with quotient field K and let

(1) f =
n∑

k=0

akXk ∈ K[X]

be a polynomial of degree n. We denote by C(f) the content of f , that is, the ideal
of D generated by the coefficients of f and by D(f) the divisor of f , that is, the
ideal generated by the values of f on D.

In this introduction we assume that f is primitive, that is, C(f) = D. When
f ∈ Z[X], it is well known that the gcd of the values of f on Z divides n!. For
Dedekind domains, this result was generalized by Pólya [8, §4] in the following way
(see also [5, II.3.3]): the ideal D(f) divides the nth factorial ideal n!D where n!D is
defined by

(2) n!D =
∏

m∈max(D), N(m)≤n

mwN(m)(n)

with

(3) N(m) = Card(D/m)

and

(4) wq(n) =
∑
l≥1

[
n

ql

]
.

Writing the ideal D(f) in the following form

(5) D(f) =
∏

m∈max(D)

mdm(f),

this divisibility relation may be written as inequalities. For each maximal ideal m
of D, one has:

(6) dm(f) ≤ wN(m)(n).
1



2 ON THE IDEAL GENERATED BY THE VALUES OF A POLYNOMIAL

The aim of this paper is to state another divisibility relation making use of the
number of coefficients of f not belonging to m instead of the degree of f . More
precisely, let

(7) µm(f) = Card {ak | ak /∈ m},

we are going to prove that

(8) dm(f) < µm(f).

But this inequality holds only for small values of n = deg(f), namely:

(9) deg(f) ≤ char(D/m)× (N(m)− 1).

Vâjâitu [9, Theorem 2] proved Inequality (8) when D = Z. Here, we generalize it
to every Dedekind domain D (Proposition 4.1). Then, we extend it to the ideal
D(f,E) generated by the values of f on a subset E of D when D = V is a discrete
valuation domain (Proposition 5.4).

2. Technical preliminaries

Notation. For every polynomial f , we denote by µ(f) the number of nonzero
coefficients of f .

The following technical result is implicitly contained in the proof of [9, Thm 2].

Lemma 2.1. Let k be a field with characteristic p > 0 such that kp = k (for
instance, a finite field). Let f ∈ k[X] be a nonzero polynomial and let z ∈ k be a
nonzero root of f with multiplicity m. If m < p, then m < µ(f).

In order to prove this lemma we associate to every polynomial f an integer
s(f) < µ(f) defined by means of the following algorithm:

Algorithm A.

s← 0 , fs ← f

while µ(fs) > 1 do
begin

s← s + 1
fs ←

(
fs

XvX (fs)

)′
end

s(f) = s

where vX(g) denotes the least degree of the monomials of g and the symbol ′ denotes
the formal derivation of polynomials.

It is clear that the procedure is finite since, for every g 6= 0, one has:

µ

(( g

XvX(g)

)′)
< µ(g).

Consequently,
s(f) < µ(f).
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Proof. of Lemma 2.1. Assume that m ≥ µ(f). Then z is a root of all the polyno-
mials fs constructed in Algorithm A with multiplicity

m− s ≥ m− s(f) > m− µ(f) ≥ 0.

By definition of s(f), one has µ(fs(f)) ≤ 1. If µ(fs(f)) = 1, then fs(f) is of the form
bXh and z cannot be a root of fs(f). Consequently, fs(f) = 0, and hence,

fs(f)−1(X) = b1X
h1 + . . . + blX

hl

with
l ≥ 2, bj ∈ k∗, h1 < h2 < · · · < hl, hj − h1 = pmj with mj ∈ N∗.

By hypothesis, for j = 1, . . . , l, bj = cp
j with cj ∈ k∗. Thus,

fs(f)−1(X) = Xh1

l∑
j=1

cp
jX

pmj = Xh1

 l∑
j=1

cjX
mj

p

.

Since z is a root of fs(f)−1, z is a root of
∑l

j=1 cjX
mj . Consequently, the multi-

plicity of z as a root of fs(f)−1 is a nonzero multiple of p. But this multiplicity is
m− s(f) + 1, so m ≥ p, which contradicts the hypothesis. �

Corollary 2.2. Let k be a field of characteristic p > 0 such that kp = k and let f
be a nonzero polynomial in k[X]. If x ∈ k is a root of f with multiplicity mx < p
then, for every y ∈ k, y 6= x, one has :

mx < µ(f(X + y)).

Proof. It suffices to use Lemma 2.1 with the polynomial g(X) = f(X + y) and its
root z = x− y. �

3. Polynomials with coefficients in a discrete valuation domain

Hypotheses and notation for Section 3. Let V be a discrete valuation domain with
finite residue field. Denote by K the quotient field of V , v the corresponding
valuation of K, m the maximal ideal of V , π a generator of m, k = V/m the residue
field, p the characteristic of k, and q = pf its cardinality.

For every nonzero polynomial

(10) f(X) =
n∑

i=0

aiX
i ∈ K[X],

we consider the following integers:

(11) v(f) = inf
0≤i≤n

v(ai),

(12) d(f) = inf
a∈V

v(f(a)),

(13) ν(f) = #{i | v(ai) = v(f)}

Note that ν(f) = µ(f̃) where f̃ denotes the image of 1
πv(f) f in k[X].

Clearly,

(14) v(f) ≤ d(f),
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and we also know that (see for instance [8] or [5, Corollary II.2.13])

(15) d(f) ≤ v(f) + wq(deg(f))

where wq is defined by:

(16) wq(n) =
∑
l≥1

[
n

ql

]
.

In particular, if deg(f) < q, then d(f) = v(f). Here we prove another inequality
for d(f):

Proposition 3.1. With the previous hypotheses and notation, for every nonzero
polynomial f in K[X] such that

(17) deg(f) ≤ p(q − 1) + 1,

one has:

(18) v(f) ≤ d(f) < v(f) + ν(f).

Proof. We may replace f by π−v(f)f and assume that f is primitive in V [X], that
is, v(f) = 0. Note that ν(f) ≥ 1 and, if ν(f) = 1, then necessarily d(f) = 0.
Consequently, one may also assume that d(f) ≥ 2.

First, we recall some classical results concerning the values of a polynomial. Let
u0 = 0, u1, . . . , uq−1 be a complete system of representatives of V modulo m. We
extend the sequence ur in the following way: for

r = r0 + r1q + . . . + rlq
l where 0 ≤ ri < q,

we let
ur = ur0 + ur1π + . . . + url

πl.

Clearly, the following sequence of polynomials

gi(X) =
i−1∏
j=0

(X − uj) , i ∈ N

is a basis of the V -module V [X]. Then let

f(X) =
n∑

i=0

bigi(X) with bi ∈ V.

We know, and this is easy to check, that the ideal generated by the values of f
on V is equal to the ideal generated by the values of f on u0, u1, . . . , un where
n = deg(f) [5, Corollary II.2.9], that is, the ideal generated by the bi

∏
j<i (ui−uj)

for 0 ≤ i ≤ n. Since v(
∏

j<i (ui − uj)) = wq(i) [5, Lemma II.2.6], one has:

d(f) = inf
0≤i≤n

(v(bi) + wq(i)).

Let i0 be the least integer i such that v(bi) = 0 (f is assumed to be primitive). The
hypothesis on n = deg(f) implies that[

i0
q2

]
≤ i0

q2
<

i0
p(q − 1)

≤ i0
n
≤ 1,

and hence,

d(f) ≤ wq(i0) =
∑
l≥1

[
i0
ql

]
=
[
i0
q

]
≤ i0

q
.
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Finally,
i0 ≥ q d(f).

We denote by b the canonical image in k of an element b of V and by g the
canonical image in k[X] of an element g of V [X]. It follows from the choice of i0
and from the construction of the gi’s that

f(X) =
n∑

i=0

bigi(X) =
n∑

i=i0

bigi(X) = gi0(X)h(X) where h(X) ∈ k[X].

Since ur = us as soon as q divides r − s and i0 ≥ d(f), the q elements of k = V/m

are roots of gi0 , and hence of f , with multiplicity ≥ d(f). On the other hand, there
exists at least one root of f in k∗ with a multiplicity < p since otherwise we would
have:

n = deg(f) ≥ deg(f) ≥ d(f) + (q − 1)p ≥ 2 + (q − 1)p > n.

Thus, there exists a root z ∈ k∗ of f with a multiplicity m such that d(f) ≤ m < p.
It follows from Lemma 2.1 that m < µ(f), and hence, d(f) < ν(f). �

Example 3.2. Let p be a prime number. For

f(X) = X(X(p−1)(q−1) − 1) + π,

one has
d(f) = 1 = ν(f)− 1

while
wq(n) = p− 2 ( > ν(f)− 1 as soon as p ≥ 5 ).

Let us introduce another notation: for each a ∈ V , let νa(f) = ν(f(X + a)). In
particular, ν0(f) = ν(f). Let

ν̃(f) = inf
a∈V

νa(f) = inf
a∈V

ν(f(X + a)).

Of course, v(f(X)) = v(f(X + a)) and d(f(X)) = d(f(X + a)). Consequently,

Corollary 3.3. If deg(f) ≤ p(q − 1) + 1, then

(19) v(f) ≤ d(f) < v(f) + ν̃(f).

Example 3.4. Let p be a prime number ≥ 5, let V = Z(p), and let f(X) =
(X − 1)p−1 − 1. Then, on the one hand, for every a ∈ Z,

f(X + a) ≡ (X + (a− 1))p−1 − 1 (mod p).

If a 6≡ 1 (mod p), then νa(f) = p − 1. If a ≡ 1 (mod p), then νa(f) = 2. On the
other hand, f(1) = −1, and hence, d(f) = 0. Finally,

d(f) = 0 < ν̃(f)− 1 = 1 < ν(f)− 1 = p− 2.

Thus, we may have strict inequalities. Nevertheless:

Remark. For n ≤ p(q − 1) < q2, one has wq(n) = [n
q ] ≤ p− 1, and hence, it follows

from Inequalities (15) and (18) that, if f ∈ V [X] is primitive of degree

(20) n ≤ p(q − 1) + 1,

then

(21) d(f) ≤ min
([

n

q

]
, ν(f)− 1

)
.
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Moreover, both inequalities are sharp. Inequality (20) is sharp as shown by the
following example:

f(X) = X2(Xq−1 − 1)p , deg(f) = p(q − 1) + 2 , ν(f) ≤ 2 , d(f) = 2.

Inequality (21) is sharp in the following sense: for every integer ν between 1 and p,
there exists a polynomial f primitive in V [X] of degree n ≤ p(q − 1) + 1 such that
d(f) = ν(f)− 1 = ν − 1:

For 0 ≤ k ≤ p − 1, the polynomial fk(X) = (Xq −X)k satisfies d(fk) = k and
ν(fk) = k + 1 with deg(fk) = kq ≤ (p− 1)q ≤ p(q − 1) + 1.

4. Polynomials with coefficients in a Dedekind domain

Now we globalize the previous results.

Hypotheses and notation for section 4. Let D be a Dedekind domain with quotient
field K. For every maximal ideal m of D, we denote by vm the corresponding
valuation of K, by pm the characteristic of the residue field D/m, and by qm its
cardinality (finite or infinite).

For every polynomial

(22) f =
n∑

i=0

aiX
i ∈ K[X],

C(f) denotes the content of f , that is, the fractional ideal of D generated by the
coefficients of f and D(f) denotes the divisor of f , that is, the fractional ideal
generated by the values of f on D.

For every maximal ideal m of D, we introduce the following integers:

(23) vm(f) = inf
0≤i≤n

vm(ai),

(24) dm(f) = inf
a∈D

vm(f(a)),

(25) νm(f) = #{i | vm(ai) = vm(f)}.

Obviously,

(26) C(f) =
∏

m∈max(D)

mvm(f),

(27) D(f) =
∏

m∈max(D)

mdm(f).

Clearly, the ideal C(f) divides the ideal D(f) and it is known [5, Proposition II.3.3]
that D(f) divides C(f) × n!D where the ideal n!D is defined by Formula (2), in
other words, for every maximal ideal m of D, analogously to Formulas 14 and 15,
one has the inequalities:

(28) vm(f) ≤ dm(f) ≤ vm(f) + wN(m)(deg(f))

where N(m) and wN(m) are defined by Formulas (3) and (4).

Proposition 3.1 may be globalized in the following way:
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Proposition 4.1. Let D be a Dedekind domain with quotient field K and let f ∈
K[X] be a nonzero polynomial of degree n. With the previous notation, for every
maximal ideal m of D such that

(29) n ≤ pm(qm − 1) + 1,

one has:

(30) dm(f) < vm(f) + νm(f).

This proposition is the extension of Theorem 2 of Vâjâitu [9] from Z to every
Dedekind domain D. Theorem 3 of [9] corresponds to the first example below.

Examples 4.2. In these three examples, f denotes a polynomial of degree n prim-
itive in D[X].
1) Let D = Z and denote by P the set of prime integers. Then, a generator of D(f)
divides the integer∏

p∈P, p<
√

n− 3
4+ 1

2

pwp(n) ×
∏

p∈P,
√

n− 3
4+ 1

2≤p≤n

pmin([ n
p ],νp(f)−1).

2) Let D = Z[i], p0 = inf{p ∈ P | p(p2 − 1) + 1 ≥ n} and p1 = inf{p ∈ P |
p(p − 1) + 1 ≥ n}. For each p ∈ P, νp(f) denotes the number of coefficients of f
that are not divisible by p. Then, the ideal D(f) divides the following ideal of Z[i]

Z[i] (1 + i)w2(n) ×
∏

p≡1 (4), p<p1

pwp(n) ×
∏

p≡1 (4), p1≤p≤n

pinf([ n
p ],νp(f)−1)

×
∏

p≡3 (4), p<p0

pwp2 (n) ×
∏

p≡3 (4), p0≤p≤n

p
inf([ n

p2 ],νp(f)−1)
.

3) Let D = Fq[T ] and denote by Pq the set of monic irreducible polynomials of
Fq[T ]. For m = (Q) where Q ∈ Pq, one has qm = qdeg(Q). Then, a generator of
D(f) divides the polynomial∏
deg(Q)< ln n

ln q −
ln pn

n+p−1
ln q

Qw
qdeg Q (n) ×

∏
ln n
ln q −

ln pn
n+p−1
ln q ≤deg(Q)≤ ln n

ln q

Q
min

„»
n

qdeg(Q)

–
,νQ(f)−1

«
.

Remark. Recall Theorem 1 of [9]: if the characteristic of D is 0 and if f ∈ D[X] is
primitive with degree n and leading coefficient a, then

Card(D/D(f)) ≤ Card(D/(a.n!D)n2n+1
.

In fact, we have just recalled a stronger result: D(f) divides n!D and n!D divides
n!D because of the containment Z ⊆ D. Thus, D(f) divides n!D, and hence,

Card(D/D(f)) ≤ Card(D/n!D).

5. The ideal generated by the values on a subset

In this paragraph we extend the previous results to the ideal D(f,E) generated
by the values of a polynomial f ∈ K[X] on a subset E of D. We will give the
statement for the main result (Proposition 5.4) in the case when D is a discrete
valuation domain. Then, by using a specific example, we will show what happens
in the more general case of a Dedekind domain.
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Hypotheses and notation for section 5 are those of Section 3. Hence, the domain
D = V is a discrete valuation domain, and we denote by E a subset of V .
We introduce the integer

(31) d(f,E) = inf
x∈E

v(f(x)).

Obviously,

(32) D(f,E) = md(f,E).

Definition 5.1 ([1], [2]). A v-ordering of E is a sequence {uk}k∈N of elements of
E such that, for every s ≥ 1, one has

v

(
s−1∏
t=0

(us − ut)

)
= inf

x∈E
v

(
s−1∏
t=0

(x− ut)

)
.

There always exist v-orderings and, for every s ≥ 1, the integer

(33) wE(s) = v

(
s−1∏
t=0

(us − ut)

)
does not depend on the choice of the v-ordering {us}s∈N of E (see for instance [1]
or [6]).

Definition 5.2. The sth factorial ideal of E with respect to V is the ideal

s!VE = mwE(s).

It is easy to see that if E ⊆ F ⊆ V , then s!VF divides s!VE , that is,

(34) E ⊆ F ⇒ wE(s) ≥ wF (s) ∀s ∈ N.

In particular,

(35) wE(s) ≥ wq(s) ∀s ∈ N.

Let {us}s∈N be a v-ordering of E and, for i ∈ N, let

gi(X) =
i−1∏
s=0

(X − us).

Then, every polynomial f ∈ K[X] of degree n may be written in the following way:

f(X) =
n∑

i=0

bigi(X) with bi ∈ K.

It is known (and this is easy to check) that D(f,E) is also the ideal generated by
the values f(u0), f(u1), . . . , f(un) [6, Corollary 2.8]. Thus, D(f,E) is generated by
the bi

∏
j<i(ui − uj) (0 ≤ i ≤ n). Consequently,

(36) d(f,E) = inf
0≤i≤n

(v(bi) + wE(i)).

In particular,
d(f,E) ≤ inf

0≤i≤n
v(bi) + sup

0≤i≤n
wE(i),

that is,
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Proposition 5.3. For every f ∈ K[X] with degree n, one has:

(37) d(f,E) ≤ v(f) + wE(n),

where d(f,E), v(f), and wE(n) are defined by (31), (11) and (33).

This well-known inequality generalizes Inequality (15). But our next goal is to
extend Inequality (18) under some condition on the degree n of f .

Proposition 5.4. Let E be a subset of V which contains at least r ≥ 2 distinct
classes modulo m and let f ∈ K[X] be a polynomial of degree n. If

(38) n ≤ p(r − 1) + 1,

then

(39) d(f,E) < v(f) + νm(f).

Moreover, the previous inequality also holds as soon as
(1) n < pr when m 6⊆ E,
(2) n ≤ pr when ∅ 6= E ∩m 6= m.

Proof. Since E ⊆ F implies d(f,E) ≥ d(f, F ), in order to prove Inequality (39)
one may assume that E is exactly the union of r classes modulo m. Analogously
to the proof of Proposition 3.1, one may also assume that f is primitive, that is,
v(f) = 0, and that d(f,E) ≥ 2.

We still consider a v-ordering {us}s∈N of E, the basis of the V -module V [X]
formed by the polynomials gi =

∏
0≤s<i(X−us), and the coefficients bi (0 ≤ i ≤ n)

of f with respect to this basis. Then, infi v(bi) = 0; let i0 be the least integer i
such that v(bi) = 0. It follows from (36) that

d(f,E) ≤ wE(i0).

When E is a union of r distinct classes modulo m, then (cf. [4] or [3, Prop. 2.4]):

wE(i) =
∑
l≥0

[
i

rql

]
.

It follows from the hypothesis that[
i0
rq

]
≤ n

rq
< 1.

Thus, wE(i0) =
[

i0
r

]
, and hence,

i0 ≥ r d(f,E).

Because of the fact that E is a union of r classes modulo m and from the previous
inequality, the image gi0 of gi0 in (V/m)[X] has a root in each class of E modulo
m with a mutiplicity at least equal to d(f,E). The image f of f has the same
property. Moreover, if each root of f distinct from the class m had multiplicity
≥ p, we would have the following inequalities:

(40) n = deg(f) ≥ deg(f) ≥ deg(gi0) = i0 ≥ d(f,E)+(r−1)p ≥ 2+p(r−1) > n.

Consequently, there is at least one root of f distinct from the class m and with
multiplicity m < p. It follows from Lemma 2.1 that m < µ(f) = νm(f). Finally,

d(f,E) ≤ m < νm(f).
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When m 6⊆ E, it follows from the proof and inequalities analogous to (40) that the
condition n < pr is enough.

Finally, assume that m 6⊆ E and that there is t ∈ m ∩ E. We may assume that
E = E0 ∪ {t} where E0 is exactly the union of r classes modulo m distinct from m.
Then, choosing t as first element of a v-ordering {us} of E, we easily see that

wE(s) = wE0(s) =
∑
l≥0

[
s− 1
rql

]
.

Consequently, we the previous notation i0, one has i0 − 1 ≥ r d(f,E). Then, f
admits each class of E modulo m as root with mutiplicity at least equal to d(f,E).
Moreover, if each root of f had a multiplicity ≥ p, we would have:

n = deg(f) ≥ deg(f) ≥ deg(gi0) = i0 ≥ 1 + rp > n.

We conclude in the same manner. �

Example 5.5. Let p ∈ P, V = Z(p), and E = {p} ∪ N \ pN (r = p− 1). For every
f ∈ Q[X], we have

n ≤ p(p− 1) ⇒ d(f,E) < vp(f) + νp(f).

Globalization. We discuss the extension of Proposition 5.4 to any Dedekind
domain by showing what happens for a specific example. This seems to us a more
efficient way in order to understand the general case rather than proving a general
result.

Let D = Z, E = P, and f be a primitive polynomial in Z[X] of degree n. Recall
that, if f(P) ⊆ Z then, for every p ∈ P, f({p} ∪ Z \ pZ) ⊆ Z(p) [7]. Consequently,
on the one hand, for every p ∈ P, one has:

dp(f, P) ≤
∑
l≥0

[
k − 1

(p− 1)pl

]
,

on the other hand, for every p ∈ P such that p(p−1) ≥ n−1, that is,
√

n− 3
4+ 1

2 ≤ p,
one has:

dp(f, P) < νp(f),

and hence,

dp(f, P) ≤ inf
(

n− 1
p− 1

, νp(f)− 1
)

.

Remark. A priori we have d(f, P) ≥ d(f, Z), but the fact that the inequality
dp(f, P) < νp(f) holds as soon as n ≤ p(p − 1) is exactly the assertion given
by Proposition 3.1 for dp(f, Z).
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