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1. INTRODUCTION

Let D be a Dedekind domain with quotient field K and let

(1) f=Y aX* e K[X]

k=0
be a polynomial of degree n. We denote by C(f) the content of f, that is, the ideal
of D generated by the coefficients of f and by D(f) the divisor of f, that is, the
ideal generated by the values of f on D.

In this introduction we assume that f is primitive, that is, C(f) = D. When
f € Z[X], it is well known that the ged of the values of f on Z divides n!. For
Dedekind domains, this result was generalized by Pdlya [8, §4] in the following way
(see also [5, 11.3.3]): the ideal D(f) divides the n'! factorial ideal n!p where n!p is
defined by

(2) n'D _ H m“’N(m)(")
méeEmax (D), N(m)<n

with
(3) N(m) = Card(D/m)
and
- [

1>1
Writing the ideal D(f) in the following form
(5) )= [ w™,
méemax(D)

this divisibility relation may be written as inequalities. For each maximal ideal m
of D, one has:

(6) dun(f) < Wn(m)(n)-
1
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The aim of this paper is to state another divisibility relation making use of the
number of coefficients of f not belonging to m instead of the degree of f. More
precisely, let

(7) pim (f) = Card{ay, | ar, ¢ m},

we are going to prove that

(8) A (f) < oo (f)-

But this inequality holds only for small values of n = deg(f), namely:
(9) deg(f) < char(D/m) x (N(m) —1).

Véajaitu [9, Theorem 2] proved Inequality (8) when D = Z. Here, we generalize it
to every Dedekind domain D (Proposition 4.1). Then, we extend it to the ideal
D(f, E) generated by the values of f on a subset E of D when D =V is a discrete
valuation domain (Proposition 5.4).

2. TECHNICAL PRELIMINARIES

Notation. For every polynomial f, we denote by pu(f) the number of nonzero
coeflicients of f.

The following technical result is implicitly contained in the proof of [9, Thm 2].

Lemma 2.1. Let k be a field with characteristic p > 0 such that k? = k (for
instance, a finite field). Let f € k[X] be a nonzero polynomial and let z € k be a
nonzero root of f with multiplicity m. If m < p, then m < u(f).

In order to prove this lemma we associate to every polynomial f an integer
s(f) < p(f) defined by means of the following algorithm:

Algorithm A.

s—0, fo—f

while p(fs) > 1 do
begin
s—s+1

A
fs = (#)

end

S(f) =

where vx (g) denotes the least degree of the monomials of g and the symbol ’ denotes
the formal derivation of polynomials.

It is clear that the procedure is finite since, for every g # 0, one has:
g !/
p ((va(g)) > < ulg)-

s(f) < u(f).

Consequently,
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Proof. of Lemma 2.1. Assume that m > u(f). Then z is a root of all the polyno-
mials f, constructed in Algorithm A with multiplicity

m—s>m—s(f)>m—u(f)>0.

By definition of s(f), one has u(fyr)) < 1. If u(fsr)) =1, then fy5) is of the form
bX" and z cannot be a root of fs(p)- Consequently, fyr) =0, and hence,

fsp—1(X) =br XM 4+ 4 X"
with
1 >2, bj Ek’*, hy <h2<"'<hl,h]‘—h1 :pijithijN*.
By hypothesis, for j =1,...,1, b; = c? with ¢; € k*. Thus,
P

l l
Fan-1(X) = XM Y X = XM | Y ey X
j=1

j=1

Since z is a root of fy(s)_1, 2 is a root of Z;=1 ¢; X™i. Consequently, the multi-
plicity of z as a root of fs)_1 is a nonzero multiple of p. But this multiplicity is
m — s(f)+ 1, so m > p, which contradicts the hypothesis. O

Corollary 2.2. Let k be a field of characteristic p > 0 such that kP = k and let f
be a nonzero polynomial in k[X|. If v € k is a root of f with multiplicity m, < p
then, for everyy € k, y # x, one has :

my < p(f(X +y)).

Proof. Tt suffices to use Lemma 2.1 with the polynomial g(X) = f(X + y) and its
root z = — y. ([

3. POLYNOMIALS WITH COEFFICIENTS IN A DISCRETE VALUATION DOMAIN

Hypotheses and notation for Section 3. Let V be a discrete valuation domain with
finite residue field. Denote by K the quotient field of V, v the corresponding
valuation of K, m the maximal ideal of V| 7 a generator of m, k = V/m the residue
field, p the characteristic of k, and ¢ = p/ its cardinality.

For every nonzero polynomial

n

(10) FX) =3 ax’ e K[x],
=0

we consider the following integers:

(1) o(f) = it va)
(12 () = inf o(f(@),
(13) v(f) = #{i | v(as) = v(1)}

Note that v(f) = pu(f) where f denotes the image of ﬁf in k[X].
Clearly,

(14) o(f) <d(f),
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and we also know that (see for instance [8] or [5, Corollary 11.2.13])
(15) d(f) < o(f) + wq(deg(f))
where w, is defined by:
n
(16) wln) =3 |5
=1 L4

In particular, if deg(f) < ¢, then d(f) = v(f). Here we prove another inequality
for d(f):

Proposition 3.1. With the previous hypotheses and notation, for every nonzero
polynomial f in K[X] such that

(17) deg(f) <p(¢g—1)+1,
one has:
(18) v(f) <d(f) <o(f) +v(f)

Proof. We may replace f by 7~*(f) f and assume that f is primitive in V[X], that
is, v(f) = 0. Note that v(f) > 1 and, if v(f) = 1, then necessarily d(f) = 0.
Consequently, one may also assume that d(f) > 2.

First, we recall some classical results concerning the values of a polynomial. Let
ug = 0,u1,...,uq—1 be a complete system of representatives of V' modulo m. We
extend the sequence u, in the following way: for

r=ro+rq+...+mrq where0<r; <gq,
we let
Up = Upy + Up, T+ ...+ unwl.
Clearly, the following sequence of polynomials
i—1
g(X) =[] X —uy),ieN
§=0
is a basis of the V-module V[X]. Then let

FX) =" bigi(X) withb; € V.
=0

We know, and this is easy to check, that the ideal generated by the values of f
on V is equal to the ideal generated by the values of f on wug,uy,...,u, where
n = deg(f) [5, Corollary I1.2.9], that is, the ideal generated by the b; [[,_; (ui —uy)
for 0 <4 < n. Since v([];; (ui —u;)) = wq(i) [5, Lemma I1.2.6], one has:

d() = inf (ub) + ()

Let ig be the least integer i such that v(b;) = 0 (f is assumed to be primitive). The
hypothesis on n = deg(f) implies that

io i() i() Z'0

S| << —F-< =<1

[QQ} ? " plg—1) ’
io}

3

and hence,

d(f) < wylio) = > [Zqﬂ

I
—
[}

IN
< S
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Finally,
io > q d(f).

We denote by b the canonical image in k of an element b of V and by g the
canonical image in k[X] of an element g of V[X]. It follows from the choice of g
and from the construction of the g;’s that

FX) =" bgi(X) = Y bigi(X) = Fig(X)R(X) where h(X) € k[X].
i=0 i=ip
Since W, = Us as soon as ¢ divides r — s and ig > d(f), the g elements of k = V/m
are roots of g;,, and hence of f, with multiplicity > d(f). On the other hand, there
exists at least one root of f in k* with a multiplicity < p since otherwise we would
have:

n = deg(f) = deg(f) 2 d(f)+(¢—1)p =2+ (¢—1Lp>n.
Thus, there exists a root z € k* of f with a multiplicity m such that d(f) < m < p.

It follows from Lemma 2.1 that m < u(f), and hence, d(f) < v(f). O

Example 3.2. Let p be a prime number. For
f(X) = X(X(pfl)(qfl) —1) 4,
one has
dif)y=1=v(f) -1
while
we(n) =p—2(>v(f)—1 assoonasp>5).

Let us introduce another notation: for each a € V, let v,(f) = v(f(X + a)). In
particular, vo(f) = v(f). Let

P(f) = inf va(f) = inf v(f(X +a))

acV
Of course, v(f(X)) = v(f(X 4+ a)) and d(f(X)) = d(f(X + a)). Consequently,
Corollary 3.3. Ifdeg(f) <p(q—1)+1, then
(19) o(f) < d(f) <v(f) +o(f).

Example 3.4. Let p be a prime number > 5, let V' = Z,), and let f(X) =
(X —1)?=t — 1. Then, on the one hand, for every a € Z,

fX+a)=X+(a—-1)P"' -1 (mod p).

If a £ 1 (mod p), then v,(f) =p—1. If a =1 (mod p), then v,(f) = 2. On the
other hand, f(1) = —1, and hence, d(f) = 0. Finally,
dif)=0<v(f)—1=1<v(f)—1=p-—2.

Thus, we may have strict inequalities. Nevertheless:
Remark. For n < p(q — 1) < ¢?, one has wy(n) = [%] < p—1, and hence, it follows
from Inequalities (15) and (18) that, if f € V[X] is primitive of degree
(20) n<p(g—1)+1,
then

(21) d(f) < min (M ) - 1) -
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Moreover, both inequalities are sharp. Inequality (20) is sharp as shown by the
following example:

FX) = XX =1)7, deg(f) =plg—1)+2, v(f) <2, d(f) =2

Inequality (21) is sharp in the following sense: for every integer v between 1 and p,
there exists a polynomial f primitive in V[X] of degree n < p(¢ — 1) + 1 such that
a(f) = v(f) —1=v—1:

For 0 < k < p — 1, the polynomial f,(X) = (X? — X)* satisfies d(fx) = k and
v(fr) =k+1 with deg(fx) =k¢ < (p—1)g<plg—1)+1.

4. POLYNOMIALS WITH COEFFICIENTS IN A DEDEKIND DOMAIN
Now we globalize the previous results.

Hypotheses and notation for section 4. Let D be a Dedekind domain with quotient
field K. For every maximal ideal m of D, we denote by v, the corresponding
valuation of K, by py the characteristic of the residue field D/m, and by ¢y, its
cardinality (finite or infinite).

For every polynomial

(22) f=>aX" € K[X],
i=0
C(f) denotes the content of f, that is, the fractional ideal of D generated by the
coefficients of f and D(f) denotes the divisor of f, that is, the fractional ideal
generated by the values of f on D.
For every maximal ideal m of D, we introduce the following integers:

23 o) = 0 vlan)

(24) du(f) = alg]g vm(f(a)),

(25) v (f) = #{i | vm(ai) = v (f)}-

Obviously,

(26) chH= 1] w0,
meEmax (D)

(27) p(f)= [ w0,
méemax(D)

Clearly, the ideal C(f) divides the ideal D(f) and it is known [5, Proposition I1.3.3]
that D(f) divides C(f) x n!p where the ideal n!p is defined by Formula (2), in
other words, for every maximal ideal m of D, analogously to Formulas 14 and 15,
one has the inequalities:

(28) Um(f) < dw(f) < vm(f) + Wi (m)(deg(f))
where N (m) and wy(m) are defined by Formulas (3) and (4).
Proposition 3.1 may be globalized in the following way:
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Proposition 4.1. Let D be a Dedekind domain with quotient field K and let f €
KI[X] be a nonzero polynomial of degree n. With the previous notation, for every
mazimal ideal m of D such that

(29) nSPm(Qm* 1)+17
one has:
(30) dw(f) < vm(f) + v (f)-

This proposition is the extension of Theorem 2 of Vajaitu [9] from Z to every
Dedekind domain D. Theorem 3 of [9] corresponds to the first example below.

Examples 4.2. In these three examples, f denotes a polynomial of degree n prim-
itive in D[X].

1) Let D = Z and denote by PP the set of prime integers. Then, a generator of D(f)
divides the integer

H pwp(n) ~ H pmin([%]ﬂfp(f)*l).
PEP, p<y/n—F+3 pEP, /n—3+1<p<n
2) Let D = Z[i], po = inf{p € P | p(p> —1) +1 > n} and p; = inf{p € P |
p(p— 1)+ 1> n}. For each p € P, v,(f) denotes the number of coefficients of f
that are not divisible by p. Then, the ideal D(f) divides the following ideal of Z[i]

Z[i] (14 i)v2( x H pr (™) x H Pl (H)=1)
p=1(4), p<p1 p=1(4),p1<p<n
R I O | )
p=3(4), p<po p=3(4), po<p<n
3) Let D = F,[T] and denote by P, the set of monic irreducible polynomials of

F,[T]. For m = (Q) where Q € P,, one has gn = ¢%°8(?). Then, a generator of
D(f) divides the polynomial

H Wodeg @ (M) o H Qmin([qdeg%]ﬂ@(f)—l)

In —P In —P
Inn ntp—1 Inn ntp—1 Inn
deg(@) <1 ——Tq o —REP=l <deg(Q)< o

Remark. Recall Theorem 1 of [9]: if the characteristic of D is 0 and if f € D[X] is
primitive with degree n and leading coefficient a, then

Card(D/D(f)) < Card(D/(a.n!D)

In fact, we have just recalled a stronger result: D(f) divides n!p and n!p divides
n!D because of the containment Z C D. Thus, D(f) divides n!D, and hence,

Card(D/D(f)) < Card(D/n!D).

n2n+1

5. THE IDEAL GENERATED BY THE VALUES ON A SUBSET

In this paragraph we extend the previous results to the ideal D(f, E) generated
by the values of a polynomial f € K[X] on a subset E of D. We will give the
statement for the main result (Proposition 5.4) in the case when D is a discrete
valuation domain. Then, by using a specific example, we will show what happens
in the more general case of a Dedekind domain.
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Hypotheses and notation for section 5 are those of Section 3. Hence, the domain
D =V is a discrete valuation domain, and we denote by E a subset of V.
We introduce the integer

(31) d(f,E) = inf v(f(2)).
Obviously,
(32) D(f,E) = m¥/:E),

Definition 5.1 ([1], [2]). A v-ordering of F is a sequence {uy }ren of elements of
FE such that, for every s > 1, one has

v (ﬁ(us - ut)> = ;IGIEU <1:[(J; — ut)> .

There always exist v-orderings and, for every s > 1, the integer

(33) wg(s) =v (H(us - ut)>

t=0
does not depend on the choice of the v-ordering {us}sen of E (see for instance [1]
or [6]).
Definition 5.2. The s*! factorial ideal of E with respect to V is the ideal

4

sl = mwe(),

It is easy to see that if E C F C V, then s!¥ divides s!¥,, that is,
(34) ECF = wg(s)>wpr(s) VseN.
In particular,

(35) wg(s) > wy(s) VseN.

Let {us}sen be a v-ordering of E and, for ¢ € N, let

i—1

gz(X> = H(X - Us)'

s=0

Then, every polynomial f € K[X] of degree n may be written in the following way:
FX) =) bigi(X) withb; € K.
i=0

It is known (and this is easy to check) that D(f, E) is also the ideal generated by
the values f(uop), f(u1),..., f(uy) [6, Corollary 2.8]. Thus, D(f, E) is generated by
the b; [[;;(ui —u;) (0 <i < n). Consequently,

(36) A(f.E) = inf (v(bi) + wp (D).

In particular,

ALE) S B o)+ g wei)

that is,
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Proposition 5.3. For every f € K[X]| with degree n, one has:
(37) d(f, E) < v(f) +we(n),
where d(f, E), v(f), and wg(n) are defined by (31), (11) and (33).

This well-known inequality generalizes Inequality (15). But our next goal is to
extend Inequality (18) under some condition on the degree n of f.

Proposition 5.4. Let E be a subset of V' which contains at least r > 2 distinct
classes modulo m and let f € K[X] be a polynomial of degree n. If

(38) n<plr—1)+1,
then
(39) d(f, E) <v(f) + va(f)

Moreover, the previous inequality also holds as soon as

(1) n < pr whenm € E,
(2) n <pr when ) # ENm#m.

Proof. Since E C F implies d(f, E) > d(f, F), in order to prove Inequality (39)
one may assume that F is exactly the union of r classes modulo m. Analogously
to the proof of Proposition 3.1, one may also assume that f is primitive, that is,
v(f) =0, and that d(f, E) > 2.

We still consider a v-ordering {us}sen of F, the basis of the V-module V[X]
formed by the polynomials g; = [[;<,.,(X —us), and the coefficients b; (0 <i < n)
of f with respect to this basis. Then, inf; v(b;) = 0; let iy be the least integer i
such that v(b;) = 0. It follows from (36) that

d(f, E) < wi(io).
When E is a union of r distinct classes modulo m, then (cf. [4] or [3, Prop. 2.4]):
) 1
wg(i) = Z [rql} .
1>0
It follows from the hypothesis that

[ZO} <o
rq] = rq

io Z Td(f, E)

Because of the fact that E is a union of r classes modulo m and from the previous
inequality, the image g;, of g;, in (V/m)[X] has a root in each class of £ modulo
m with a mutiplicity at least equal to d(f, E). The image f of f has the same
property. Moreover, if each root of f distinct from the class m had multiplicity
> p, we would have the following inequalities:

Thus, wg(io) = [2], and hence,

(40) n = deg(f) = deg(f) = deg(g;,) = io = d(f, E)+(r—1)p = 2+p(r—1) > n.

Consequently, there is at least one root of f distinct from the class m and with

multiplicity m < p. It follows from Lemma 2.1 that m < u(f) = vm(f). Finally,
d(f, E) <m < vn(f).



10 ON THE IDEAL GENERATED BY THE VALUES OF A POLYNOMIAL

When m € E, it follows from the proof and inequalities analogous to (40) that the
condition n < pr is enough.

Finally, assume that m ¢ FE and that there is t € m N E. We may assume that
E = Ey U {t} where Fj is exactly the union of r classes modulo m distinct from m.
Then, choosing t as first element of a v-ordering {us} of E, we easily see that

wpls) = we ()= ¥ [

r
1>0 q

Consequently, we the previous notation ig, one has ig — 1 > r d(f, E). Then, f
admits each class of F modulo m as root with mutiplicity at least equal to d(f, E).
Moreover, if each root of f had a multiplicity > p, we would have:

n = deg(f) > deg(f) > deg(g;,) = io > 1 +rp>n.

We conclude in the same manner. O

Example 5.5. Let p € P, V = Z,), and E = {p} UN\ pN (r = p — 1). For every
f € Q[X], we have

n<plp—1) = d(f,E) <vp(f) +vp(f).

Globalization. We discuss the extension of Proposition 5.4 to any Dedekind
domain by showing what happens for a specific example. This seems to us a more
efficient way in order to understand the general case rather than proving a general
result.

Let D =Z, E =P, and f be a primitive polynomial in Z[X] of degree n. Recall
that, if f(P) C Z then, for every p € P, f({p} UZ\ pZ) C Z, [7]. Consequently,
on the one hand, for every p € P, one has:

k—1
dp(fvp) é Z |:l:| ’
= Lo —=1p
on the other hand, for every p € P such that p(p—1) > n—1, that is, y/n — 341 < p,
one has:

dp(fa P) < Vp(f)a

and hence,
. n—1
dp(f7P) S inf (p_ layp(f) - 1) .

Remark. A priori we have d(f,P) > d(f,Z), but the fact that the inequality
dp(f,P) < 1v,(f) holds as soon as n < p(p — 1) is exactly the assertion given
by Proposition 3.1 for d,(f,Z).
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