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Abstract Let V be a discrete valuation domain with quotient field K and let E
be an infinite subset of V . The V -module

Int(E, V ) = {f ∈ K[X] | f(E) ⊆ V }
of integer-valued polynomials on E is isomorphic to ⊕∞k=0Ikgk where the gk are
monic polynomials in V [X] and the Ik are the characteristic ideals of Int(E, V ). We
compute here the valuation of these ideals Ik in the case where E is a homogeneous
subset of V and we give explicit formulas in several particular cases.

1. Introduction

Two papers about integer-valued polynomials on an arbitrary subset E of a
Dedekind domain D appeared recently. The first one by Bárbácioru [1] essentialy
extends the results of Cahen [2] which concern the case where E = D. The second
paper by Bhargava [3] is more general, but in some sense gives less precise results
than [1]. The aim of the present paper is to use results of [3] to improve results
of [1]. For notation, definitions and well known results we refer to [4].

Let D be a Dedekind domain and let E be an infinite subset of D. Let K denote
the quotient field of D and Int(E,D) denote the ring of integer-valued polynomials
on E, that is:

Int(E,D) = {f ∈ K[X] | f(E) ⊆ D}.
We are interested in the D-module structure of Int(E,D). Bárbácioru’s main result
is the following (in the case where the residue fields are finite): for each integer
n ≥ 0,

Intn(E,D) = {f ∈ Int(E,D) | deg(f) ≤ n} =
n⊕

k=0

J
(n)
k fk

where J (n)
0 , . . . , J

(n)
n are fractional ideals of D and f0, . . . , fn are monic polynomials

in D[X] [1, Theorem 1]. It follows from the proofs of [1] that the ideals J (n)
k depend

a priori on the integer n. A natural question raised by this result is then: does the
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ideal J (n)
k actually depend on n? The answer is no because, if such fractional ideals

J
(n)
k exist, then they are necessarily the characteristic ideals Ik of Int(E,D).
Recall that, for each integer k ≥ 0, the characteristic ideal Ik of Int(E,D) is the

fractional ideal formed by 0 and the set of leading coefficients of polynomials in
Int(E,D) of degree ≤ k (see [4, §II.1]).

The fact that J (n)
k = Ik is easy to check by induction on k.

In fact, among several results of Bhargava [3], there is the following assertion
(without any assumption on the residue fields) which clearly contains Bárbácioru’s
assertion:

Int(E,D) =
∞⊕

k=0

Ikgk

where the Ik are the characteristic ideals of Int(E,D) and the gk are monic poly-
nomials in D[X] [3, Theorems 12 and 13].

But, on the other hand, there is one interesting point in [1] that we do not find
in [3]: an attempt to characterize, and actually compute, the fractional ideals Ik. In
order to do that, Bárbácioru first notices that to study the D-module Intn(E,D),
we may replace E by the set

En = {x ∈ K | ∀f ∈ Intn(E,D), f(x) ∈ D}

since
Intn(E,D) = Intn(En, D).

Of course,
E0 = K,

and, for n ≥ 1,
E ⊆ En ⊆ D

because X belongs to Intn(E,D).
Since E is infinite, theD-module Intn(E,D) is finitely generated (see for instance [4,
Proposition II.1.1]), and hence, ‘by continuity’ of the integer-valued polynomials
which generate Intn(E,D) (see for instance [4, Proposition III.2.1]), there is a
nonzero ideal A of D such that

for each x ∈ En, x+A = {x+ a | a ∈ A} ⊆ En.

Such a subset En is called by McQuillan [5, §2] a homogeneous subset of D with
ideal A. Since the subsets En are homogeneous subsets, in almost all the proofs
of [1], the subset E is supposed itself to be homogeneous.

We may notice that in the case where the Dedekind domain D has finite residue
fields, a homogeneous subset is necessarily of the form

E =
r⋃

i=1

bi +A

where b1, . . . , br are elements of D pairwise non-congruent modulo A (this is no
more true with infinite residue fields).

Moreover, to study the characteristic ideals In we may localize because, for each
ideal M of D, (Int(E,D))M = Int(E,DM ) [4, Proposition I.2.7], and hence, the
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fractional ideals (In)M are the characteristic ideals of Int(E,DM ). Then, DM is a
discrete valuation domain and, if E is the union of r cosets modulo M l, that is

E =
r⋃

i=1

bi +M l,

letting s = |D/M l|, we find in [1, Theorem 4] that

(In)M = M−S(n)DM with S(n) = l
∑
α≥0

[ n

rsα

]
.

This formula is correct for the classical case where E = D provided one considers
that it corresponds to the union of q cosets modulo M (where q = |D/M |), so that

S(n) =
∑
α≥0

[
n

qα+1

]
which is the formula given by Pólya [6] (see, for instance, [4, Corollary II.2.9]). In
fact, the formula fails for l > 1. For example, if D = Z, M = 2Z, and E = 4Z,
then l = 2, r = 1, s = 4, and S(2) = 2

∑
α≥0

[
2
4α

]
= 4, while X(X−4)

25 ∈ Int(E, V ).
The correct value is indeed 5 (as follows from Proposition 3.3).

The aim of this paper is to give a correct formula. In order to do this, we use a
general result of Bhargava [3] that we first recall.

2. Bhargava’s revisited result

HYPOTHESIS. From now on, V denotes a discrete valuation domain and E an
infinite subset of V . We denote by K the quotient field of V , v the valuation of K
associated to V , M the maximal ideal of V , and t a generator of M .

DEFINITION [4, §IX.3]. The characteristic sequence of Int(E, V ) is the sequence
of positive integers {−v(In)}{n∈N} where In denotes the characteristic ideal of
Int(E, V ) (that is, the fractional ideal formed by 0 and the leading coefficients
of the elements of Int(E, V ) with degree ≤ n).

Similarly to [3], we set the following.

DEFINITION. A v-ordered sequence of elements of E is a (finite or infinite)
sequence {an}n≥0 of elements of E such that, for n > 0,

v

(
n−1∏
k=0

(an − ak)

)
= inf

a∈E
v

(
n−1∏
k=0

(a− ak)

)
.

There always exist infinite v-ordered sequences of elements of E. Such sequences
may be constructed inductively on n: choose any element a0 in E, choose a1 in
E such that v(a1 − a0) = infa∈E v(a − a0), and so on. We may notice that a
V.W.D.W.O. sequence in V [4, Definition II.2.1] is a v-ordered sequence of E in
the case where E = V and V/M is finite.

From our point of view, the main result of Bhargava is the following [3, Theo-
rem 1].
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PROPOSITION 2.1 (Bhargava) The sequence {wE(n)}{n∈N} defined by wE(n) =∑n−1
k=0 v(an−ak) where {an}{n∈N} is a v-ordered sequence of E does not depend on

the choice of the sequence {an}.

This is an easy consequence of the fact that the sequence wE(n) is the charac-
teristic sequence of Int(E, V ), since the characteristic sequence of Int(E, V ) only
depends on Int(E, V ). For the sake of completness we give a straightforward proof
of these assertions (shorter than Barghava’s proof).

PROPOSITION 2.2 Assume {an}{n∈N} is a v-ordered sequence. Then the poly-
nomials

fn(X) =
n−1∏
k=0

X − ak

an − ak

form a basis of the V -module Int(E, V ).

Proof. By construction, for each a ∈ E, v(fn(a)) ≥ v(fn(an)), and hence, fn(E) ⊆
V . Moreover, fn(a0) = fn(a1) = . . . = fn(an−1) = 0 and fn(an) = 1. It then
follows that the fn, n ∈ N, form a basis of Int(E, V ) (as in the classical case of
Int(Z) [4, Proposition I.1.1]).

COROLLARY 2.3 Assume {an}{n∈N} is a v-ordered sequence of elements of E.
Then,

(1) v(In) = −
∑n−1

k=0 v(an − ak),
(2) wE(n) = −v(In),
(3) if {an}{n∈N} is a v-ordered sequence of elements of E, then the polynomials

t−wE(n)
∏n−1

k=0(X − ak) form a basis of Int(E, V ).

Now, let us return to the particular case where E is supposed to be homogeneous.

3. Bárbácioru’s corrected formula

We begin with some easy remarks concerning the function wE . For a fixed subset
E of V , wE(n) is an increasing function of n. More precisely, for all m and n ∈ N,

wE(m+ n) ≥ wE(m) + wE(n).

Moreover, if E ⊆ F ⊆ V , then, for each n ∈ N,

0 ≤ wV (n) ≤ wF (n) ≤ wE(n).

We now consider translations and homotheties: for each a ∈ V , let a+E = {a+x |
x ∈ E} and, for each l ∈ N, let tlE = {tlx | x ∈ E}.

PROPOSITION 3.1 Let E be a subset of V .
(1) For each a ∈ V , wa+E(n) = wE(n).
(2) For each l ∈ N, wtlE(n) = wE(n) + ln.

Proof. Let τ (resp., σ) be the K-automorphism of K(X) such that τ(X) = X − a
(resp., σ(X) = X/tl). Then τ(Int(E, V )) = Int(a + E, V ) (resp., σ(Int(E, V )) =
Int(tlE, V )) ). Indeed, if f(X) belongs to Int(E, V ), then τ(f(X)) = f(X − a)
belongs to Int(a + E, V ) (resp., σ(f(X)) = f(X/tl) belongs to Int(tlE, V ) ). If
{fn}n∈N is a basis of Int(E, V ), then {τ(fn)} (resp., {σ(fn}) is a basis of Int(a +
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E, V ) (resp., Int(tlE, V )). If the leading coefficient of fn is α, then the leading
coefficient of τ(fn) (resp., σ(fn)) is α (resp., α/tln).

The case where E = V is well known. We first recall a notation.

NOTATION [4, §II.2]. For each q ∈ N∗ and each n ∈ N, let

wq(n) =
∑
α>0

[
n

qa

]
where [x] denotes the entire part of x. We extend this notation to the case where
q is infinite with w∞(n) = 0 for each n ∈ N.

PROPOSITION 3.2 [4, Corollaries I.3.7 and II.2.9]. Let q be the cardinal of
the residue field V/M (q is finite or infinite). Then, for each n ∈ N, one has
wV (n) = wq(n).

This leads us to a first formula.

PROPOSITION 3.3 If E = a+M l with a ∈ V and l ∈ N, then

wE(n) = wq(n) + ln.

Indeed, E = a+ tlV .

Here are two basic technical lemmas. The first one is quite general.

LEMMA 3.4 Let {ak} be a v-ordered sequence of E and E1 = (b+M l)∩E be the
intersection of E with some coset modulo M l. Then the subsequence formed by the
elements ak in E1 is a v-ordered sequence of E1.

Proof. Note that, even if the sequence {ak} is infinite, the subsequence formed
by the elements ak in E1 may be finite. If this subsequence is empty, or contains
only one element, there is nothing to prove. Suppose, by induction, that the first
n elements ak0 , ak1 , . . . , akn−1 of this subsequence form a v-ordered sequence of E1.
If there is a next one, akn , we prove that ak0 , ak1 , . . . , akn is a v-ordered sequence
of E1. We set N = kn. For each α in E1, we have

N−1∑
k=0

v(α− ak) =
∑

k<N, ak∈E1

v(α− ak) +
∑

k<N, ak /∈E1

v(α− ak).

If ak /∈ E1, we have v(b− ak) < l, while v(α− b) ≥ l, thus∑
k<N, ak /∈E1

v(α− ak) =
∑

k<N, ak /∈E1

v(b− ak)

and this sum is independent of the choice of α in E1.
By hypothesis,

∑N−1
k=0 v(α− ak) is minimal for α = akn . Hence∑

k<N, ak∈E1

v(α− ak) =
n−1∑
i=0

v(α− aki)

is also minimal for this choice of α.
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HYPOTHESIS. From now on, we assume that E is of the following form:

E = ∪r
i=1bi +M l

where r ∈ N∗, l ∈ N and b1, . . . , br are pairwise non-congruent modulo M l.

NOTATION. For j ∈ {1, . . . , r} and δ1, . . . , δr ∈ N, let

wj
E(δ1, . . . , δr) = wq(δj) + lδj +

∑
i 6=j

v(bj − bi)δi.

LEMMA 3.5 For each j ∈ {1, . . . , r}, let δj ∈ N and let aj,1, . . . , aj,δj
be δj ele-

ments of bj +M l which form a v-ordered sequence of elements of bj +M l. Consider
the polynomial

g(X) =
r∏

j=1

 δj∏
k=1

(X − aj,k)

 .

Then, for each j, one has:

inf
{
v(g(x)) | x ∈ bj +M l

}
= wj

E(δ1, . . . , δr).

Proof. Let x ∈ bj + M l. For each i 6= j and each k ∈ {1, . . . , δi}, we have
v(x− ai,k) = v(bj − bi), and hence

v(g(x)) =
δj∑

k=1

v(x− aj,k) +
∑
i 6=j

v(bj − bi)δi.

Clearly
∑

i 6=j v(bi − bj)δi does not depend on the choice of x in bj + M l. Since
{aj,1, . . . , aj,δj

} is a v-ordered sequence of elements of bj + M l, it follows from
Proposition 3.3 that the minimal value of

∑δj

k=1 v(x− aj,k) is wq(δj) + lδj .

THEOREM 3.6 Let V be a discrete valuation domain. Denote by v the corre-
sponding valuation, by M the maximal ideal of V , and by q the cardinal (finite or
infinite) of the residue field V/M . Let E be a subset of V such that E = ∪r

i=1bi+M
l

where r ∈ N∗, l ∈ N and b1, . . . , br ∈ V are pairwise non-congruent modulo M l.
The characteristic sequence {wE(n)}{n∈N} of Int(E, V ) may be computed by means
of the following formulas:

wE(n) = max
δ1+···+δr=n

(
min

1≤j≤r
wj

E(δ1, . . . , δr)
)

(δ1, . . . , δr ∈ N)

where
wj

E(δ1, . . . , δr) = wq(δj) + lδj +
∑
i 6=j

v(bi − bj)δi

and

wq(δj) =
∑
α>0

[
δj
qα

]
.

Proof. Let n be a fixed integer and let

ω(n) = max
δ1+···+δr=n

(
min

1≤j≤r
wj

E(δ1, · · · , δr)
)
.

Let {a0, a1, . . . , an} be a v-ordered sequence of elements of E. For each j ∈
{1, . . . , r}, let δj be the number of elements ak (k < n) which are in bj + M l.
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Let g(X) =
∏n−1

k=0(X−ak). Lemma 3.4 says that, for each j, the finite subsequence
formed by the ak which lie in bj +M l is a v-ordered sequence of elements of bj +M l.
Thus, the hypothesis of Lemma 3.5 is satisfied. It follows that we have

inf
x∈E

{v(g(x))} = min
1≤j≤r

wj
E(δ1, . . . , δr).

By definition of a v-ordered sequence, we also have

v(g(an)) = inf
x∈E

{v(g(x))}.

Consequently,

wE(n) =
n−1∑
k=0

v(an − ak) = min
1≤j≤r

wj
E(δ1, . . . , δr).

Since δ1 + · · ·+ δr = n, we have in particular

ω(n) ≥ min
1≤j≤r

wj
E(δ1, . . . , δr)

and hence
ω(n) ≥ wE(n).

Conversely, let now d1, . . . , dr ∈ N be such that

d1 + . . .+ dr = n

and such that
inf

1≤j≤r
wj

E(d1, . . . , dr) = ω(n).

For each j ∈ {1, . . . , r}, let {aj,1, . . . , aj,dj
} be a v-ordered sequence of elements of

bj +M l. Then, let

g(X) =
r∏

j=1

 dj∏
k=1

(X − aj,k)

 .

It follows from Lemma 3.5 that, for each x ∈ E, we have

v(g(x)) ≥ min
1≤j≤r

wj
E(d1, . . . , dr).

Thus, t−ω(n)g(X) belongs to Int(E, V ); and hence, by definition of In,

ω(n) ≤ wE(n) = −v(In).

Finally
ω(n) = wE(n).

REMARKS
a) Theorem 3.6 shows that in order to compute wE(n), we do not really have to

know any v-ordered sequence in E. In fact, we may forget the original question on
integer-valued polynomials, we just have to know the integers q, l and v(bi − bj).
We may also notice that, for each n, wE(n) may be computed in finitely many steps
since there are only finitely many (δ1, . . . , δr) ∈ Nr such that δ1 + · · ·+ δr = n.

b) On the other hand, for each n, the computation of wE(n) may help us to
determine a v-ordered sequence of n elements. Among the r-uples (δ1, . . . , δr) ∈ Nr

such that δ1 + · · · + δr = n and inf1≤j≤r w
j
E(δ1, . . . , δr) = wE(n), there is at least

one which corresponds to a v-ordered sequence. To construct the corresponding
sequence, it suffices to consider, for each j ∈ {1, . . . , r}, a v-ordered sequence of δj
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elements in bj +M l. Such sequences are easy to construct : if {ak} is a v-ordered
sequence in V , then {bj + akt

l} is a v-ordered sequence in bj +M l. Moreover, v-
ordered sequences in V are well known : if q is finite, see for instance [4, Proposition
II.2.3], and if q is infinite, any sequence of elements of V which are pairwise non-
congruent modulo M is a v-ordered sequence in V .

c) In the case where q is infinite, the problem becomes a classical linear pro-
gramming problem. Let us consider the symmetric matrix

B = (βi,j) ∈Mr(N)

defined by {
βii = l for each i
βij = βji = v(bj − bi) for i 6= j.

We have to determine the function wE such that

wE(n) = max
δ1+···+δr=n

(
min

1≤j≤r
wj

E(δ1, . . . , δr)
)

with
WE(∆) = ∆B

where

∆ = (δ1, . . . , δr) ∈ Nr and WE(∆) =
(
w1

E(∆), . . . , wr
E(∆)

)
∈ Nr.

REFEREE’S REMARK The previous results may be slightly improved in the
case where the residue field is infinite: Lemma 3.5 and Theorem 3.6, in particular,
remain valid if E is of the form

E =
r⋃

i=1

bi +M li ,

where the li are positive integers and the bi are elements of V which are pairwise
non-congruent modulo M l with l = inf1≤i≤r li. We just have to consider the new
following functions

wj
E(δ1, . . . , δr) = wq(δj) + ljδj +

∑
i 6=j

v(bi − bj)δi.

[Note that if the residue field is finite, we may always assume that all the li are
equal.]

4. Some explicit formulas

There are some cases where the maximin which gives the value for wE(n) (see
Theorem 3.6) may be described by an explicit formula. The first one is the case
where l = 1, that is, the only case where Bárbácioru’s formula is correct (see Section
1).

PROPOSITION 4.1 If E = ∪r
j=1bj + M where b1, . . . , br are pairwise non-

congruent modulo M , then

wE(n) = wq

([n
r

])
+
[n
r

]
=
∑
α≥0

[
n

rqα

]
.
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This is a particular case of Proposition 4.2 below where, for each i 6= j, βij =
v(bj − bi) = 0. We already encountered an example of such a case in the literature:
Int(E, V ) where V = Z(p), E = Z \ pZ and p is a prime number. Then Int(E, V ) =
Int(E, V ) where E = Z(p) \ pZ(p) [4, Theorem IV.1.15], and E =

{
1 + Z(p)

}
+ · · ·+{

(p− 1) + Z(p)

}
corresponds to l = 1, q = p, and r = p− 1. Hence,

wE(n) =
∑
α≥0

[
n

(p− 1)pα

]
.

There are at least two reasons which explain the difficulty in replacing the max-
imin by explicit formulas:
— the gaps of the function wq are difficult to control unless the residue field is
infinite (in this case, wq(n) ≡ 0, see the last remark of the previous section),
— the weights of the cosets modulo M l may be different unless all the βi,j =
v(bi − bj) are equal.
A first case where the later difficulty is avoided is those where all the βi,j are equal
to zero.

PROPOSITION 4.2 If E = ∪r
i=1bj +M l where l ∈ N and b1, . . . , br are pairwise

non-congruent modulo M , then

wE(n) = wq

([n
r

])
+ l
[n
r

]
.

Proof. Since v(bi−bj) = 0 for i 6= j, it follows from the definition of wj
E(δ1, . . . , δr)

that we have
wj

E(δ1, . . . , δr) = wq(δj) + lδj .

Then
wj

E(δ1, . . . , δr) = ϕ(δj) where ϕ(δ) = wq(δ) + lδ

is an increasing function of δ. Thus

min
j
wj

E(δ1, . . . , δr) = ϕ(δ) where δ = inf
j
δj ,

and

max
δ1+···+δr=n

(
min

j

(
wj

E(δ1, . . . , δr)
))

= max
δ1+···+δr=n

ϕ

(
min

j
δj

)
= ϕ

(
max

δ1+...+δr=n

(
min

j
δj

))
.

Since

max
δ1+···+δr=n

(
min

j
δj

)
=
[n
r

]
,

one has
wE(n) = ϕ

([n
r

])
.

Another case where things are relatively easy is those where r = 2 since in that
case there is only one βi,j to consider (β1,2 = β2,1).

PROPOSITION 4.3 If E = {b1+M l}∪{b2+M l} with l ∈ N∗ and v(b1−b2) < l,
then

wE(n) = wq

([n
2

])
+ l
[n
2

]
+ v(b1 − b2)

[
n+ 1

2

]
.
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Proof. For j = 1, 2, one has

wj
E(δ1, δ2) = wq(δj) + lδj + hδ3−j where h = β12 = β21.

Thus, if δ1 + δ2 = n, then
wj

E(δ1, δ2) = ψ(δj)
where

ψ(δ) = wq(δ) + lδ + h(n− δ) = wq(δ) + (l − h)δ + hn

is an increasing function of δ. As in the previous proof:

max
δ1+δ2=n

(
min

j
wj

E(δ1, δ2)
)

= ψ

(
max

δ1+δ2=n

(
min

j
δj

))
= ψ

([n
2

])
= wq

([n
2

])
+ (l − h)

[n
2

]
+ hn

= wq

([n
2

])
+ l
[n
2

]
+ h

[
n+ 1

2

]
.

In fact, both previous propositions are particular cases of the following where
the βi,j are equal to each other.

PROPOSITION 4.4 If E = ∪r
j=1bj + M l where βi,j = v(bj − bi) = h for each

i 6= j, l ∈ N and 0 ≤ h < l, then

wE(n) = wq

([n
r

])
+ (l − h)

[n
r

]
+ hn.

Proof. By hypothesis, for each j ∈ {1, . . . , r}, one has bj − b1 = thcj where t
is a generator of M and the elements c1, . . . , cr of V are pairwise non-congruent
modulo M . Let E1 = E − b1, then E1 = thE2 where E2 = ∪r

j=1cj +M l−h. Then,
Proposition 3.1 shows that

wE(n) = wE1(n) = wE2(n) + hn,

and Proposition 4.2 shows that

wE2(n) = wq

([n
r

])
+ (l − h)

[n
r

]
.
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