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Abstract.
Let D be the ring of integers of a number field K and let E be an infinite
subset of D. The D-module Int(E,D) of integer-valued polynomials on E is
isomorphic to ⊕∞n=0Ingn where gn is a monic polynomial in D[X] of degree
n and In is a fractional ideal of D. For each maximal ideal m of D, let
vm be the corresponding valuation of K; we determine here the asymptotic
behavior of the characteristic sequences {vm(In)}n∈N in the case where E
is a homogeneous subset of D. In order to do this, we first study some
properties of ultrametric matrices; then we prove explicit formulas in the
case where D is a Dedekind domain with infinite residue fields; finally, we
extend these results to the case of number fields.
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1 INTRODUCTION

Let D be the ring of integers of a number field K and let E be an infinite
subset of D. We denote by Int(E,D) the ring of integer-valued polynomials
on E, that is,

Int(E,D) = {f ∈ K[X] | f(E) ⊆ D}.
Recall that the characteristic ideal of index n of Int(E,D) is the fractional
ideal In of D formed by 0 and the leading coefficients of polynomials in
Int(E,D) of degree ≤ n.

We know [2, Theorems 12 and 13] that there exist monic polynomials
gn ∈ D[X] of degree n such that

Int(E,D) ' ⊕∞n=0Ingn.

The aim of this paper is to determine these characteristic ideals In, that is,
if we denote by vm the valuation of K corresponding to a maximal ideal m

of D, to determine vm (In) = inf{vm(x) | x ∈ In}.
By the way, note that, for each polynomial f = a0+a1X+· · ·+anXn ∈ K[X]
of degree n, if

vm(f) = inf{vm(ai) | 0 ≤ i ≤ n} and vm(f(E)) = inf{vm(f(x)) | x ∈ E},

then one has:
vm(f) ≤ vm(f(E)) ≤ vm(f)− vm(In).

Since, for each maximal ideal m of D, one has Int(E,D)m = Int(E,Dm)
[5, Proposition I.2.7], (In)m is the characteristic ideal of index n of Int(E,Dm).
Thus, to determine the characteristic sequences {vm(In) | n ∈ N}, we may
restrict our study to the local case.

For the classical case where E = D, Pólya [8] gave the following formula:

vm (In) =
∑
k>0

[
n

qk
m

]
,

where qm denotes the cardinal of the residue field D/m and [x] denotes the
entire part of x.

In fact, to obtain some substantial results, we have to add an hypothesis
on E. We assume that E is a homogeneous subset of D in the sense given by
McQuillan [7, §3], i.e., there exists a nonzero ideal a of D such that, for each
x ∈ E, x + a = {x + a | a ∈ a} ⊆ E. We then say that E is homogeneous
with respect to the ideal a; equivalently, E is the union of cosets of a. With
such an hypothesis, we may still restrict our study to the local case:
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Proposition 1.1 Let D be the ring of integers of a number field K and
let E be a homogeneous subset of D with respect to an ideal a. Let m be a
maximal ideal of D and let α be the exponent of m in the decomposition of
a. Then

(Int(E,D))m = Int
(
E,Dm

)
where E is the following homogeneous subset of Dm:

E + mαDm = {x + y | x ∈ E, y ∈ mαDm} .

In particular,
— if a is not contained in m, then Int(E,D)m = Int(Dm);
— if In denotes the characteristic ideal of Int(E,D) of index n, then (In)m

is the characteristic ideal of index n of Int (E + mαDm, Dm).

Proof. Let m be a maximal ideal of D. We have Int(E,Dm) = Int(E,Dm)
where E denotes the closure of E in Dm with respect to the m-adic topol-
ogy [5, Theorem IV.1.15]. Obviously, E ⊆ E +mαDm. We are going to show
that E + mαDm ⊆ E. Write a = mαb where b is not contained in m. Let
x ∈ E and y ∈ mαDm. To prove that x + y ∈ E, we construct a sequence
{yn}n≥1 of elements of a such that x + yn tends to x + y in the m-adic
topology, equivalently, such that y− yn tends to 0. The ideals mn and b are
relatively prime and there are un ∈ mn and vn ∈ b such that un + vn = 1.
Take yn = vny. Then, yn ∈ mα ∩ b = a, and y − yn = uny ∈ mnDm. 2

Thus, we may replace D by its localizations Dm, that is, by discrete
valuation domains V with finite residue fields. In fact, we first delete the
hypothesis on the residue fields and recall in the next section the known
results in the local case ([1], [2], [4], [8]). To go further we establish some
properties of ultrametric matrices (section 3). These results lead to a com-
plete determination of the characteristic ideals in the case of infinite residue
fields (section 4). Finally, we obtain the asymptotic behavior of the charac-
teristic sequences in the case of finite residue fields (section 5).

2 The local case

Hypotheses.
Let K be a field with a discrete valuation v, let V be the corresponding
valuation domain, let m be the maximal ideal of V , and let q be the cardinal
of the residue field V/m. [We no longer assume that q is finite.]
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Let

E =
r⋃

i=1

bi + ml (1)

be a finite union of cosets of a power of m, where the bi ∈ V are pairewise
non-congruent modulo ml. [If q is infinite, a homogeneous subset of V may
be the union of infinitely many cosets, but we exclude this case.]

Let
Int(E, V ) = {f ∈ K[X] | f(E) ⊆ V }

be the ring of integer-valued polynomials on E. For each n ∈ N, In denotes
the characteristic ideal of index n of Int(E, V ), that is, the fractional ideal
formed by 0 and the leading coefficients of polynomials in Int(E, V ) of degree
n. Finally, consider the function wE : N → N that we have to determine and
which is defined by:

wE(n) = −v(In) = − inf{v(x) | x ∈ In, x 6= 0}. (2)

We still have:
Int(E, V ) = ⊕n∈N m−wE(n)gn(X), (3)

where gn(X) ∈ V [X] is a monic polynomial of degree n [even if V/m is
infinite, because V is a principal ideal domain [5, Corollary II.1.6]].

We already said that Pólya [8] determined the function wE in the classical
case where V is a localization of the ring of integers of a number field K
and where E = V :

wV (n) =
∑
k>0

[
n

qk

]
.

Bárbácioru [1, Theorem 4] proposed an extension of this formula to homo-
geneous subsets E:

wE(n) = l
∑
k≥0

[
n

rqlk

]
.

In fact, the proof is wrong [1, Lemma 3] and the formula is incorrect as soon
as l 6= 1 : if V = Z(2) and E = 2lZ(2), Bárbácioru’s formula gives the value

wE(2) = 2l, while X(X−2l)
22l+1 ∈ Int(E, V ), and hence wE(2) ≥ 2l + 1.

Using Barghava’s notion of v-ordered sequence ([2], [3]), we proved an-
other formula which, for each n, allows an algorithmic computation of
wE(n). We recall this result.
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Notations. If q is finite, let

wq(n) =
∑
k>0

[
n

qk

]
. (4)

If q is infinite, let
wq(n) ≡ 0. (5)

For i ∈ {1, . . . , r} and for d1, . . . , dr ∈ N, let:

wi
E(d1, . . . , dr) = wq(di) + ldi +

∑
j 6=i

v(bj − bi)dj . (6)

Proposition 2.1 [4, Theorem 3.6] With the previous hypotheses and nota-
tion [from (1) to (6)], one has:

wE(n) = max
d1+···+dr=n

(
min

1≤i≤r
wi

E(d1, . . . , dr)
)

. (7)

Hence, for each n, wE(n) may be computed in finitely many steps since
there are only finitely many (d1, . . . , dr) ∈ Nr such that d1 + · · · + dr = n.
Corollary 2.3 below improves the computation if this one is done step by
step. To establish this corollary, we need to recall the notion of v-ordered
sequence (although Proposition 2.1 shows that we may compute wE(n) with-
out knowing anything about our initial problem).

Definition. Let F be a subset of V . A v-ordered sequence {ak}0≤k≤n of
elements of F is a sequence such that, for each m ∈ {1, . . . , n},

v

(
m−1∏
k=0

(am − ak)

)
= inf

x∈F
v

(
m−1∏
k=0

(x− ak)

)
.

We easily see that for each subset F of V and each n ∈ N:
— there are v-ordered sequences {ak}0≤k<n of elements of F ,
— any v-ordered sequence {ak}0≤k<n may be extended to a v-ordered se-
quence {ak}0≤k≤n of n + 1 elements of F .

Proposition 2.2 [2, Theorems 1 and 12] and [4, Corollary 2.3] Let F be a
subset of V . Whatever the v-ordered sequence {ak}0≤k≤n of elements of F
is, one has:

wF (n) = v

(
n−1∏
k=0

(an − ak)

)
.
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Moreover, assuming {ak}0≤k<n is a v-ordered sequence of E =
⋃

1≤j≤r bj +
ml, we know that:
— for each j ∈ {1, . . . , r}, the subsequence formed by the elements ak in
bj + ml is a v-ordered sequence of bj + ml [4, Lemma 3.4];
— if, for each j ∈ {1, . . . , r}, dj denotes the number of ak’s lying in bj + ml,
then (see the first part of the proof of [4, Theorem 3.6]):

wE(n) = inf
j

wj
E(d1, . . . , dr).

Now note that, since there is at least one element an ∈ E which extends this
v-ordered sequence, there is at least one element s ∈ {1, . . . , r} such that

wE(n + 1) = inf
j

wj
E(d1, . . . , ds + 1, . . . , dr).

Since wE(n + 1) is a maximin, we also have:

wE(n + 1) = sup
1≤t≤r

inf
j

wj
E(d1, . . . , dt + 1, . . . , dr).

Now we may conclude with the following improvement of Proposition 2.1:

Corollary 2.3 The function wE(n) may be computed in the following way

wE(n) = inf
1≤j≤r

wj
E(d1, . . . , dr),

where the integers d1 = d
(n)
1 , . . . , dr = d

(n)
r are defined by induction:

d
(0)
1 = . . . = d

(0)
r = 0

and, for 0 ≤ k < n,
d

(k+1)
i = d

(k)
i for i 6= s , d

(k+1)
s = d

(k)
s + 1

where s ∈ {1, . . . , r} is such that

inf
1≤j≤r

wj
E(d(k)

1 , . . . , d(k)
s + 1, . . . , d(k)

r ) =

sup
1≤t≤r

inf
1≤j≤r

wj
E(d(k)

1 , . . . , d
(k)
t + 1, . . . , d(k)

r ).

Remark. The previous step by step computation of wE(n) has to begin with
n = 0 to be sure that, at each step, d

(n)
1 , . . . , d

(n)
r correspond to a v-ordered

sequence: it may happen that for some d1, . . . , dr such that d1 + . . . + dr =
n and wE(n) = infj wj

E(d1, . . . , dr) there do not exist a corresponding v-
ordered sequence, and hence, that we cannot compute wE(n + 1) with the
previous formula.
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For instance, let V = R[[T ]] and E = {α ∈ R[[T ]] | α ≡ 0, 1, T 2

(mod T 3)}. Then we have:
w1

E(d1, d2, d3) = 3d1 + 2d3, w2
E(d1, d2, d3) = 3d2, w3

E(d1, d2, d3) = 3d3 + 2d1.
In particular,

wE(5) = w2
E(2, 2, 1) = 6 = w2

E(3, 2, 0).
But (3, 2, 0) does not come from a v-ordered sequence since

wE(4) = w1
E(1, 2, 1) = 5 6= infj wj

E(2, 2, 0), infj wj
E(3, 1, 0).

Moreover, although (3, 2, 0) leads to the value wE(5), it does not provide
the following value wE(6):
wE(6) = w2

E(2, 2, 2) = 7 6= infj wj
E(4, 2, 0), infj wj

E(3, 3, 0), infj wj
E(3, 2, 1).

Nevertheless, there is a partial converse: it may happen that, for some
values of n, there is a unique r-uple (d1, . . . , dr) such that d1 + . . . + dr = n
and wE(n) = infj wj

E(d1, . . . , dr) (see Proposition 4.3). For such an r-uple,
we are sure that there is a corresponding v-ordered sequence!

In the case where the v(bi−bj) are equal, we deduced an explicit formula
from Proposition 2.1:

Proposition 2.4 [4, Proposition 4.4] If, for i 6= j, v(bi − bj) = h where h
is a fixed integer (0 ≤ h < l), then one has the following formula:

wE(n) = wq

([
n

r

])
+ (l − h)

[
n

r

]
+ hn.

For example, let p be a prime number, let V = Z(p), and let E be the
set of integers not divisible by p. Then l = 1, r = p − 1, h = 0, q = p, and
hence, one has [6, Lemme 4]:

wE(n) = wp

([
n

p− 1

])
+
[

n

p− 1

]
=
∑
k≥0

[
n

(p− 1)pk

]
.

If we do not have such a symmetry for the v(bi − bj), then the deter-
mination of the previous maximin may be quite difficult. For example, the
case where E is the set of integers not divisible by p2 is not so easy (see
Proposition 5.4 below).

To go further we may first consider the case where q is infinite, that
is, where wq ≡ 0. We then have a linear programming problem. Let us
introduce some notation.

Notation. Let B = (βi,j) ∈Mr(N) be the symmetric matrix defined by

βi,j = v(bi − bj) for 1 ≤ i, j ≤ r, i 6= j, and βi,i = l for 1 ≤ i ≤ r. (8)
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Let

WE(d1, . . . , dr) =

 w1
E(d1, . . . , dr)

· · ·
wr

E(d1, . . . , dr)

 and ∆ =

 d1

· · ·
dr

 .

Then, if q is infinite, formulas (6) are nothing but:

WE(∆) = B∆.

One way to restore some symmetry is to consider values d1, . . . , dr, if there
exist, such that

w1
E(d1, . . . , dr) = · · · = wr

E(d1, . . . , dr) = w.

For such values, one has:

B∆ = w

 1
...
1

 .

If the matrix B is invertible, then necessarily the values di are determined
with:

di =
w

det(B)
det γi(B),

where γi(B) denotes the matrix deduced from B by replacing the ith column

by the column

 1
· · ·
1

. We will see [Proposition 4.3 below] that, for some n,

this common value w gives the maximum. But, two questions immediately
appear in the previous considerations:

1) Is the matrix B invertible?

2) Are the numbers det(γi(B))
det B (1 ≤ i ≤ r) positive?

In the following section, we are going to see that both answers are affirma-
tive. To prove it, we introduce the ultrametric matrices; they form a class
of matrices which contains the matrices B. Then, in the fourth section, we
use our results on determinants of ultrametric matrices (Propositions 3.5
and 3.7) to determine the sequence wE(n) in the case where q is infinite
(Theorem 4.4). Finally, in the last section, we determine the limit of wE(n)

n
when n tends to infinity in the case where q is finite (Theorem 5.3).
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3 ULTRAMETRIC MATRICES

Definition. A matrix A = (ai,j) ∈ Mr(R) is said to be ultrametric if both
following conditions are satisfied:

1) A is symmetric,
2) for each i, j, k ∈ {1, . . . , r}, one has ai,j ≥ inf (ai,k, ak,j) .

For example,

(
a b
b c

)
is ultrametric if and only if a ≥ b and c ≥ b.

Lemma 3.1 Let A be an ultrametric matrix. Then, in particular:
a) for each i ∈ {1, . . . , r}, ai,i = sup1≤k≤r ai,k.
b) if i, j, k ∈ {1, . . . , r} are distincts and if ai,k < ak,j, then ai,j = ai,k.

Proof. We just have to check the second assertion. If ai,k < ak,j ,
then ai,j ≥ ai,k. On the other hand, ai,k ≥ inf(ai,j , aj,k). If moreover
inf(ai,j , aj,k) = aj,k, then ai,k ≥ aj,k, and we have a contradiction. Thus,
inf(ai,j , aj,k) = ai,j , ai,k ≥ ai,j , and we have the equality. 2

The class of ultrametric matrices is stable with respect to several oper-
ations we are going to consider now.

Notation. a) For each permutation σ ∈ Σr, we consider the operator:

σ : A = (ai,j) ∈Mr(R) 7→ σ(A) =
(
aσ

i,j

)
∈Mr(R),

where aσ
i,j = aσ(i),σ(j).

b) For i ∈ {1, . . . , r}, let

τi : A ∈Mr(R) 7→ τi(A) ∈Mr−1(R)

where τi(A) is the matrix deduced from A by deleting the i-th row and the
i-th column.
c) For each (ε1, . . . , εr) ∈ Rr, let

tε1,...,εr : A ∈Mr(R) 7→ tε1,...,εr(A) = A +

 ε1 · · · 0
· · · · ·
0 · · · εr

 ∈Mr(R).

If A ∈Mr(R) is ultrametric then, for each σ ∈ Σr, for each i ∈ {1, . . . , r},
and for each (ε1, · · · , εr) ∈ (R+)r, the matrices σ(A), τi(A), and tε1,···,εr(A)
are ultrametric.

We also have the following immediate result, we give it as a lemma
without proof.
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Lemma 3.2 Let A ∈Mr(R) and let σ ∈ Σr. Then,
a) det (σ(A)) = det(A),
b) for each (ε1, . . . , εr) ∈ Rr, σ (tε1,...,εr(A)) = tεσ(1),...,εσ(r)

(σ(A)).

Now let us return to the matrix B defined at the end of section 2. Ob-
viously, B is an ultrametric matrix. More generally, if F is a field with
a rank-one valuation ω (that is, such that the value group of ω is a sub-
group of R) and if c1, . . . , cr are distinct elements of F , then the elements
ai,j = ω(ci−cj) for 1 ≤ i 6= j ≤ r, are obviously the non-diagonal coefficients
of an ultrametric matrix A ∈Mr(R). In fact, the converse also holds.

Proposition 3.3 Let r ≥ 2 and let {ai,j | 1 ≤ i < j ≤ r} be a set of
real numbers. Let F be a field with a rank-one valuation ω such that the
value group ω(K∗) contains all the ai,j’s and the residue field of ω contains
at least r elements. Then the ai,j’s are the non-diagonal coefficients of an
ultrametric matrix A ∈Mr(R) if and only if there are r elements c1, . . . , cr ∈
F such that ω(ci − cj) = ai,j for 1 ≤ i < j ≤ r.

To prove this proposition we first point out a particularity of ultrametric
matrices.

Lemma 3.4 Let A = (ai,j) ∈Mr(R) be an ultrametric matrix (with r ≥ 3).
If i0 and j0 ∈ {1, . . . , r}, i0 6= j0, are such that ai0,j0 = supi6=j ai,j, then, for
each k 6= i0, j0, one has: ai0,k = aj0,k.

Proof. For each k 6= i0, j0, one has:

ai0,k ≥ inf (ai0,j0 , aj0,k) = aj0,k.

By symmetry, we have the equality. 2

Proof of Proposition 3.3. We have to state the necessary condition. We
prove it by induction on r. For r = 2 the assertion is obvious. Let r ≥ 3
and assume the assertion is true for r − 1. Let a = supi6=j ai,j .

Of course, for each permutation σ ∈ Σr, the assertion is true for the ul-
trametric matrix A ∈Mr(R) if and only if it is true for the matrix σ(A) and,
if c1, . . . , cr may be associated to A, then cσ(1), . . . , cσ(r) may be associated
to σ(A). Thus, we may assume that a1,r = a. Since τr(A) ∈ Mr−1(R) is
also ultrametric, it follows from the induction hypothesis that there are r−1
elements c1, . . . , cr−1 ∈ F such that ai,j = ω(ci − cj) for 1 ≤ i < j ≤ r − 1.
Moreover, we may assume that, for some s ∈ {1, · · · , r − 1}, a1,r = a2,r =
. . . = as,r = a and ak,r 6= a for s < k < r.

10



Now, for j, j′ ∈ {1, · · · , s}, if j 6= j′, then one has ω(cj − cj′) = aj,j′ ≥
inf(aj,r, aj′,r) = a, and hence ω(cj−cj′) = a. Let d ∈ F be such that ω(d) =
a. For each j ∈ {2, . . . , s}, let uj ∈ F be such that cj = c1+duj (ω(uj) = 0).
Let u1 = 0. Then the classes of the uj (1 ≤ j ≤ s) are distinct elements of
the residue field of ω: for j 6= j′, ω(uj − uj′) = ω(cj − cj′)− ω(d) = 0. Now,
let ur ∈ F be such that its class is distinct from those of u1 = 0, u2, . . . , us,
and let cr = c1 + dur.

Let us prove that ω(cr − cj) = aj,r for 1 ≤ j ≤ r − 1:
– by construction, ω(cr − c1) = ω(d) + ω(ur) = a = a1,r;
– for 2 ≤ j ≤ s, ω(cr − cj) = ω(d) + ω(ur − uj) = a = aj,r;
– for s + 1 ≤ j ≤ r− 1, one has: ω(cj − c1) = a1,j , a1,j = ar,j (Lemma 3.4);
ar,j < a = a1,r, a1,r = ω(c1− cr); finally, ω(cj − c1) < ω(c1− cr), and hence,
ω(cj − cr) = ω(cj − c1) = ar,j . 2

In fact, the matrix B considered in the first section has a property
stronger than the ultrametric property.

Definition. A matrix A = (ai,j) ∈Mr(R) (with r ≥ 2) is said to be strictly
ultrametric if both following conditions are satisfied:

1) A is ultrametric,
2) for each i ∈ {1, . . . , r}, one has:

ai,i > sup
1≤k≤r, k 6=i

ai,k.

The class of strictly ultrametric matrices is also stable with respect to the
operations σ, τi, and tε1,...,εr with (ε1, . . . , εr) ∈ (R+)r. Here is the answer
to the first question raised in section 2.

Proposition 3.5 Let A ∈Mr(R+).
1. If A is a ultrametric, then det(A) ≥ 0.
2. If A is strictly ultrametric, then det(A) > 0.

Proof. We prove the assertion by induction on r. If r = 2, then A =(
a b
b c

)
with a ≥ b ≥ 0, c ≥ b ≥ 0 (a > b ≥ 0, c > b ≥ 0, respectively),

and hence det(A) = ac− b2 ≥ 0 (> 0, respectively). Let r be a fixed integer
≥ 3. We assume that the assertion is true for r − 1 and we consider an
ultrametric matrix A ∈Mr(R+). It follows from Lemma 3.2.a that we may
assume a1,2 = supi,j ai,j , and from Lemma 3.4 that A is of the following
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form: 
a1,1 a1,2 a1,3 . . . a1,r

a1,2 a2,2 a1,3 . . . a1,r

a1,3 a1,3

· · τ1 (τ2(A))
a1,r a1,r

 .

Then

det(A) =

∣∣∣∣∣∣∣∣∣∣∣

a1,1 − a1,2 a1,2 − a2,2 0 . . . 0
a1,2 a2,2 a1,3 . . . a1,r

a1,3 a1,3

· · τ1 (τ2(A))
a1,r a1,r

∣∣∣∣∣∣∣∣∣∣∣
=

(a1,1 − a1,2) det (τ1(A)) + (a2,2 − a1,2) det
(
ta1,2−a2,2,0,...,0 (τ1(A))

)
.

It follows from the choice of a1,2 that the matrix ta1,2−a2,2,0,...,0 (τ1(A)) is
still ultrametric (although a1,2 − a2,2 may be < 0), and from the induction
hypothesis that its determinant is ≥ 0. Thus we have:

det(A) ≥ (a1,1 − a1,2) det (τ1(A)) ≥ 0 (> 0, respectively)

since A and then τ1(A) are (strictly) ultrametric. 2

Recall now the operators γi introduced in the first section.

Notation. For each i ∈ {1, . . . , r}, let

γi : A ∈Mr(R) 7→ γi(A) ∈Mr(R),

where γi(A) is the matrix deduced from A by replacing the ith column by

the column

 1
· · ·
1

 .

Once more, we have a straightforward result:

Lemma 3.6 For each i ∈ {1, . . . , r} and each permutation σ ∈ Σr, one has:

σ (γi(A)) = γσ−1(i) (σ(A)) .

Now we give the answer to the second question.
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Proposition 3.7 Let A ∈Mr(R).
1. If A is ultrametric then, for each i ∈ {1, . . . , r}, det (γi(A)) ≥ 0.
2. If A is strictly ultrametric then, for each i ∈ {1, . . . , r}, det (γi(A)) > 0.

Proof. Let us note that we no more assume that the coefficients of A
are positive. The proof is analogous to that of Proposition 3.5. If r = 1,

then det (γ1(A)) = 1. If r = 2, then A =

(
a b
b c

)
with a ≥ b and c ≥ b

(a > b and c > b, respectively), and hence det (γ1(A)) = c − b ≥ 0 (> 0,
respectively) and det (γ2(A)) = a− b ≥ 0 (> 0, respectively).

Let r ≥ 3. We assume the assertion is true for r − 1. Using the same
notation, an analogous computation shows that, for 3 ≤ i ≤ r,

det (γi(A)) =

∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 a1,3 . . . 1 . . . a1,r

a1,2 a2,2 a1,3 . . . 1 . . . a1,r

a1,3 a1,3

· · γi−1 (τ1(A))
a1,r a1,r

∣∣∣∣∣∣∣∣∣∣∣
=

(a1,1−a1,2) det (γi−1 (τ1(A)))+(a2,2−a1,2) det
(
γi−1

(
ta1,2−a2,2,0,...,0 (τ1(A))

))
.

In the same manner we may conclude with the induction hypothesis.
For i = 1, one has:

det (γ1(A)) =

∣∣∣∣∣∣∣∣∣∣∣

1 a1,2 a1,3 . . . a1,r

1 a2,2 a1,3 . . . a1,r

1 a1,3

· · τ1 (τ2(A))
1 a1,r

∣∣∣∣∣∣∣∣∣∣∣
=

(a2,2 − a1,2)

∣∣∣∣∣∣∣∣∣
1 a1,3 . . . a1,r

1
· τ1 (τ1(A))
1

∣∣∣∣∣∣∣∣∣ = (a2,2 − a1,2) det (γ1 (τ2(A))) .

Once more, we end with the induction hypothesis. The proof is the same
for γ2(A). 2
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4 COMPUTATION OF WE(n) IN THE CASE WHEN
q IS INFINITE

We first introduce another notation.

Notation. For every matrix A ∈Mr(R), we set

δi(A) = det(γi(A)) for i = 1, . . . , r (9)

(where γi(A) is the matrix deduced from A by replacing every element of
the ith column by 1) and

ν(A) =
r∑

i=1

δi(A) =
∑

1≤i≤r

det (γi(A)) . (10)

Proposition 4.1 If q is infinite then, for each n ∈ N, one has:

wE(n) ≤ n
det(B)
ν(B)

.

This is a particular case of the following lemma which will also be useful
for the finite case.

Lemma 4.2 Assume B# ∈ Mr(R) is a strictly ultrametric matrix such
that, for each ∆ ∈ Nr,

WE(∆) ≤ B#∆,

where Rr is partially ordered by:

(v1 . . . , vr) ≤ (w1, . . . , wr) := v1 ≤ w1, . . . , vr ≤ wr.

Then, for each n ∈ N, one has:

wE(n) ≤ n
det(B#)
ν(B#)

.

Proof. Let n ∈ N. Fix d1, . . . , dr ∈ N such that d1 + · · · + dr = n

and consider w1, . . . , wr defined by


w1

·
·

wr

 = B#


d1

·
·
dr

. We then may
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consider that we have a linear system of r + 1 equations in the r unknowns
d1, . . . , dr:  B#

1 · · · 1




d1

·
·
dr

 =


w1

·
·

wr

n

 .

There is a compatibility condition∣∣∣∣∣∣∣∣∣
w1

B# ·
wr

1 · 1 n

∣∣∣∣∣∣∣∣∣ = 0

which is necessarily satisfied. That is,

w1 det
(
γ1(B#)

)
+ . . . + wr det

(
γr(B#)

)
− n det(B#) = 0,

or
w1δ1(B#) + . . . + wrδr(B#)− n det(B#) = 0.

Since, for each i, δi(B#) > 0 (Proposition 3.6), one has:(
inf

1≤i≤r
wi
)

ν(B#) ≤ n det(B#).

On the other hand, by hypothesis wi
E(d1, . . . , dr) ≤ wi for each i ∈ {1, . . . , r}.

Thus,

inf
1≤i≤r

wi
E(d1, . . . , dr) ≤ inf

1≤i≤r
wi ≤ n

det(B#)
ν(B#)

.

Since the inequality infi wi
E(d1, . . . , dr) ≤ ndet(B#)

ν(B#)
holds for all d1, . . . , dr

such that d1 + · · ·+ dr = n, we finally have :

wE(n) = sup
d1+···+dr=n

inf
1≤i≤r

wi
E(d1, . . . , dr) ≤ n

det(B#)
ν(B#)

.

2

Proposition 4.3 Assume q is infinite and n is a multiple of ν(B). Then

wE(n) =
n

ν(B)
det(B).

Moreover, one has wE(n) = infj wj(d1, . . . , dr) where d1 + . . . + dr = n if
and only if di = n

ν(B)δi(B) for i = 1, . . . , r. In particular, in every v-ordered
sequence of n elements there are exactly di = n

ν(B)δi(B) elements in bi + ml.
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Proof. It follows from Proposition 4.1 that we just have to prove the in-
equality wE(n) ≥ ndet(B)

ν(B) . Write n = mν(B) where m ∈ N. For i = 1, . . . , r,
let di = mδi(B). Then, di ∈ N since det (γi(B)) > 0 (Proposition 3.6),∑r

i=1 di = mν(B) = n, and the di’s obviously form a solution of the linear
system

B

 d1

· · ·
dr

 = m det(B)

 1
· · ·
1

 .

Then, for such d1, . . . , dr one has:

WE(∆) = m det(B)

 1
· · ·
1

 ;

and hence,
inf

1≤i≤r
wi

E(d1, . . . , dr) = m det(B).

Finally,

wE(n) = sup
d1+···+dr=n

inf
1≤i≤r

wi
E(d1, . . . , dr) ≥ m det(B) =

n

ν(B)
det(B).

Now assume that d1, . . . , dr are such that d1 + . . . + dr = n and wE(n) =
infj wj

E(d1, . . . , dr). To simplify let us note wj = wj
E(d1, .., dr). It follows

from the previous proof that
(
infj wj

)
×
∑

i δi(B) = n det(B) and from the
proof of the previous proposition that

∑
j wj × δj(B) = n det(B). Thus,

necessarily w1 = . . . = wr, and hence, the di’s are of the form mδi(B) (see
the end of § 2), that is, di = n

ν(B)δi(B). The last assertion of the proposition
is then an immediate consequence. 2

Theorem 4.4 With the previous hypothesis and notations [from (1) to (10)],
assume q is infinite. If

n = mν(B) + n0 with m,n0 ∈ N,

then
wE(n) = wE(mν(B)) + wE(n0) = m det(B) + wE(n0).

Consequently, to know the sequence wE(n) we just have to compute
wE(n0) for 0 < n0 < ν(B).

Proof. The definition of wE(n) obviously implies:

wE(n) ≥ wE(mν(B)) + wE(n0).
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We have to prove the other inequality. Let d′i = mδi(B) for i = 1, . . . , r.
The previous proof shows that:

wE(mν(B)) = wj
E(d′1, . . . , d

′
r) for j = 1, . . . , r.

Moreover, the previous proposition shows that there is a v-ordered sequence
of elements of E with mν(B) elements such that d′i elements are in bi + ml

for i = 1, . . . , r. We extend this sequence to obtain a v-ordered sequence
with n elements and denote by di the number of elements belonging to
bi + ml (i = 1, . . . , r). Then, by Proposition 2.2, we have:

wE(n) = inf
j

wj
E(d1, . . . , dr).

Of course di ≥ d′i: let d′′i = di − d′i for i = 1, . . . , r. Since q is infinite, the
functions wj

E are linear:

wj
E(d1, . . . , dr) = wj

E(d′1, . . . , d
′
r) + wj

E(d′′1, . . . , d
′′
r ).

Since wj
E(d′1, . . . , d

′
r) does not depend on j, we also have:

inf
j

wj
E(d1, . . . , dr) = wE(mν(B)) + inf

j
wj

E(d′′1, . . . , d
′′
r ).

Now, it follows from Proposition 2.1 that

wE(n0) ≥ inf
j

wj
E(d′′1, . . . , d

′′
r ).

Consequently,
wE(n) ≤ wE(mν(B)) + wE(n0).

Finally we have an equality. 2

Example. Let V = R[[T ]] and E = {α ∈ R[[T ]] | α ≡ 0, 1, T (mod T 2)}.
If n = 7m + n0 , then wE(n) = 6m + wE(n0) with wE(n0) = n0 − 1 for
1 ≤ n0 ≤ 5 and wE(6) = 4.

Remark. In the case when q is infinite, we may consider the following more
general subsets E of V :

E =
r⋃

i=1

bi + mli ,

where the li are not necessarily equal and where the bi are pairwise non-
congruent modulo ml with l = infi li. All the previous results remain valid
when we replace βi,i = l by βi,i = li in Formula (8) because the corresponding
matrix B remains a strictly ultrametric matrix.
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5 ASYMPTOTIC BEHAVIOR OF wE(n) IN THE
CASE WHEN q IS FINITE

In the case when q is finite, things are slightly more complicated.

Proposition 5.1 Assume q is finite. Let B∗ = B + 1
q−1Ir. Then, for each

n ∈ N, one has:

wE(n) ≤ n
det(B∗)
ν(B∗)

.

This proposition follows from Lemma 4.2 with B# = B∗ since, for each
d ∈ N, wq(d) =

∑
k>0

[
d
qk

]
< d

q−1 .

Lemma 5.2 Assume q is finite. For each k ∈ N, let

B(k) = B +
qk − 1

qk(q − 1)
Ir.

If n is a multiple of qrkν(B(k)), then wE(n) ≥ ndet(B(k))

ν(B(k))
.

Proof. Write n = mqrkν(B(k)) where m ∈ N. For i = 1, . . . , r, let
di = mqrkδi(B(k)). Then di ∈ N,

∑r
i=1 di = n, and the di’s obviously form

a solution of the linear system:

B(k)

 d1

· · ·
dr

 = mqrk det(B(k))

 1
· · ·
1

 .

For each i ∈ {1, . . . , r} and for such d1, . . . , dr, one has

wq(di) ≥
qrk − 1

qrk(q − 1)
di,

and hence,
wi

E(d1, . . . , dr) ≥ mqrk det(B(k)).

Finally,

wE(n) ≥ inf
1≤i≤r

wi
E(d1, . . . , dr) ≥ mqrk det(B(k)) = n

det(B(k))
ν(B(k))

.

2
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Theorem 5.3 With the previous hypotheses and notations [from (1) to
(10)], assume q is finite. Then one has:

lim
n→∞

wE(n)
n

=
det(B∗)
ν(B∗)

where B∗ =
(

B +
1

q − 1
Ir

)
,

ν(B∗) =
r∑

i=1

δi(B∗) and δi(B∗) = det(γi(B∗)).

Proof. Let ε > 0. Since, det(B(k))

ν(B(k))
tends to det(B∗)

ν(B∗) when k tends to
infinity, we may fix a k such that∣∣∣∣∣det(B(k))

ν(B(k))
− det(B∗)

ν(B∗)

∣∣∣∣∣ ≤ ε

2
.

Let n ∈ N and let
m =

[
n

qrkν(B(k))

]
.

Then
n0 = mqrkν(B(k)) ≤ n < (m + 1)qrkν(B(k)) = n1.

One has: wE(n0) ≤ wE(n) (wE is an increasing function), wE(n) ≤ ndet(B∗)
ν(B∗)

(Proposition 5.1), and wE(n0) ≥ n0
det(B(k))

ν(B(k))
(Lemma 5.2). Thus,

m

m + 1
det(B(k))
ν(B(k))

≤ n0

n

det(B(k))
ν(B(k))

≤ wE(n0)
n

≤ wE(n)
n

≤ det(B∗)
ν(B∗)

.

In particular,
m

m + 1
det(B(k))
ν(B(k))

≤ wE(n)
n

≤ det(B∗)
ν(B∗)

.

Finally,
det(B∗)
ν(B∗)

− m

m + 1
det(B(k))
ν(B(k))

≤ 1
m

det(B∗)
ν(B∗)

+
ε

2
≤ ε

as soon as m ≥ 2
ε

det(B∗)
ν(B∗) . 2

Remark. Let B ∈ Mr(R+) be a strictly ultrametric matrix and, for each
x ∈ R+, let B(x) = B +xIr. We are going to see that the function φ defined
by φ(x) = det(B(x))

ν(B(x)) is an increasing function of x. In particular, det(B(k))

ν(B(k))
is

an increasing function of k whose limit at infinity is det(B∗)
ν(B∗) .
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This is a consequence of the previous proofs. Let

wx = sup
(d1,...,dr)∈(R+)r, d1+···+dr=1

inf
1≤i≤r

wi
x(d1, . . . , dr),

where (
wi

x(d1, . . . , dr)
)

= B(x)

 d1

· · ·
dr

 .

The proof of Lemma 4.2 shows that wx ≤ φ(x), and the proof of Proposi-
tion 4.3 shows that wx ≥ φ(x) (the di are no more supposed to be integers).
Thus, φ(x) = wx. Since x ≤ y obviously implies wx ≤ wy, we then have:

x ≤ y ⇒ φ(x) ≤ φ(y).

Proposition 5.4 Let p be a prime number. If E is the set of integers not
divisible by p2, then

lim
n→+∞

wE(n)
n

=
det(B∗)
ν(B∗)

=
p(p2 − p + 1)

(p− 1)2(p2 + 1)
.

Proof.

E =
p2−1⋃
k=1

k + p2Z

and
Int(E, Z)(p) = Int(E, Z(p))

where (Proposition 1.1):

E =
p2−1⋃
k=1

k + p2Z(p).

By ordering the elements bi ∈ {1, . . . , p2 − 1} in the following way :

1, 1 + p, 1 + 2p, . . . , 1 + (p− 1)p ; 2, 2 + p, 2 + 2p, . . . , 2 + (p− 1)p ;

3, 3 + p, 3 + 2p, . . . , 3 + (p− 1)p ; . . . ; p, 2p, . . . , (p− 1)p
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the corresponding matrix B∗ = B + 1
p−1Ip2−1 is of the form:

J =


Jp 0 · · · 0 0
0 Jp · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · Jp 0
0 0 · · · 0 Jp−1

 ,

where, for each s ∈ N∗, Js ∈Ms(R) is defined by:

Js =

 1 · · · 1
· · · · · · · · ·
1 · · · 1

+
p

p− 1
Is.

We easily obtain the following equalities:

det(B∗) = (det(Jp))p−1 det(Jp−1) ;

for 1 ≤ i ≤ (p− 1)p,

δi(B∗) = (det(Jp))p−2 det(Jp−1) det(γ1(Jp)) ;

for (p− 1)p + 1 ≤ i ≤ p2 − 1,

δi(B∗) = (det(Jp))p−1 det(γ1(Jp−1)) ;

and for each s ∈ N∗,

det(Js) =
(

s +
p

p− 1

)(
p

p− 1

)s−1

and det(γ1(Js)) =
(

p

p− 1

)s−1

.

Finally,

lim
n→+∞

wE(n)
n

=
det(B∗)
ν(B∗)

=
p(p2 − p + 1)

(p− 1)2(p2 + 1)
.

2
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