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ABSTRACT

Using the notion of v-ordering in discrete valuation domains, Bhargava introduced
factorial ideals associated with subsets of Dedekind domains, which generalize the classical
factorials. We show how v-orderings may be extended to subsets of rank-one valuation
domains, and also, how factorial ideals may be generalized to subsets of Krull domains
with almost the same properties. In addition, we obtain results concerning the asymptotic
behavior of the sequence of these factorial ideals.
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GENERALIZED FACTORIAL IDEALS

INTRODUCTION

Recall first some properties of the classical factorials n! [1]:

Property 1 — For each k, l ∈ N,

(k + l)!
k!l!

∈ N.

Property 2 — For any sequence a0, a1, . . . , an of n + 1 integers, the product:
∏

0≤i<j≤n

(aj − ai) is divisible by 1! . . . n!.

Moreover, the product is equal to 1 for the sequence 0, 1, . . . , n.

Property 3 — For every monic polynomial f ∈ Z[X] of degree n,

d(f) = gcd{f(k) | k ∈ Z} divides n! [16].

Moreover, for f = (X + 1) . . . (X + n), d(f) = n!.

Property 4 — For every integer-valued polynomial g of degree n, that is, every g ∈ Q[X] of degree n such that
g(Z) ⊆ Z,

n!g(X) ∈ Z[X].

Moreover, 1
n! is the leading coefficient of the binomial polynomial:

(
X

n

)
=

X(X − 1) . . . (X − n + 1)
n!

.

In these assertions, Z is considered either as a domain (divisibility in Z), or as a set (sequences of elements in Z).
Following Bhargava [2], we will extend these properties by replacing Z both by a domain D and by a subset E

of D. In the first section, generalizing Property 4, we define the factorial ideals with respect to any subset E of
an integral domain D. In Section 2, we extend to any valuation domain the notion of v-ordering introduced by
Bhargava for discrete valuation domains [2], and recall the links with integer-valued polynomials and factorial
ideals. Then, in Section 3, we show that, even if there is no v-ordering, the main results concerning factorial
ideals still remain valid in the case of rank-one valuation domains (Prop. 3.2, Thms 3.12 and 3.13). In Section 4,
we study the asymptotic behavior of some arithmetic functions associated with the sequence of factorials ideals
(Prop. 4.1 and Thm 4.2). Then, in Section 5, we globalize the previous results in the case where D is a Krull
domain (Prop. 5.8 and 5.9) extending Bhargava’s results for Dedekind domains [3]. Finally, in the last section,
we consider some examples.

1. FACTORIALS IDEALS

Notation. Let D be an integral domain with quotient field K and let E be any subset of D. (In the three next
sections, D will be a valuation domain denoted by V .)

Recall that the ring of integer-valued polynomials on E (with respect to D) is:

Int(E, D) = {f ∈ K[X] | f(E) ⊆ D}.
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Definition 1.1. [6, §II.1] For each n ∈ N, the characteristic ideal of index n of the ring Int(E, D) is the set
In(E,D) formed by the leading coefficients of the polynomials in:

Intn(E, D) = {f ∈ Int(E, D) | deg(f) ≤ n}.

Clearly, {In(E, D)}n∈N is an increasing sequence of D-modules such that

D ⊆ In(E,D) ⊆ K, and I0(E, D) = D.

One knows that (see [12] and [6, Proposition I.3.1]):

• if n ≥ card(E), then In(E, D) = K,

• if n < card(E), then In(E, D) is a fractional ideal of D.

In particular, if card(E) is infinite, all the In(E,D) are fractional ideals.

Recall also that, for each fractional ideal I of D, the set

I−1 = {x ∈ K | xI ⊆ D}

is a fractional ideal of D called the inverse of I (although, the inclusion I · I−1 ⊆ D may be strict and (I−1)−1

may strictly contain I). Such an inverse is a divisorial ideal, that is, an intersection of principal fractional ideals
of D (and, in this case, is equal to the inverse of its inverse). By convention, we will write K−1 = (0) and
(0)−1 = K.

The following definition extends those given by Zantema [20] in the case where D is the ring of integers of a
number field and E = D, and by Bhargava [3] in the case where E is a subset of a Dedekind domain D.

Definition 1.2. The factorial ideal of index n with respect to the subset E of D is the inverse of the fractional
ideal In(E, D) and is denoted by (n!)D

E or (n!)E if the context allows us to omit D:

(n!)D
E = I−1

n (E, D).

For instance,

(n!)ZZ = (n!)ZN = n!Z.

Here are some easy properties of these factorial ideals.

Proposition 1.3. For each subset E of the integral domain D:

(1) (0!)E = D,

(2) {(n!)E}n∈N is a decreasing sequence of entire divisorial ideals of D,

(3) (n!)E = (0) if and only if n ≥ card(E),

(4) if E ⊆ F ⊆ D, then (n!)E ⊆ (n!)F , and hence, (n!)E × (n!)−1
F ⊆ D.

2. GENERALIZED v-ORDERINGS

The notion of v-ordering defined by Bhargava [2] for any subset of discrete valuation domains is a very fruitful
notion in the study of integer-valued polynomials and generalized factorials. We are going to see that such a
notion may also be useful for some subsets of non-discrete valuation domains.
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Hypothesis. Let V be a valuation domain and let E be a subset of V . We denote by K the quotient field of
V , by v the corresponding valuation of K, by m the maximal ideal of V , and by Γ the value group of v.

Definition 2.1. A v-ordering of E is a (finite or infinite) sequence {an}N
n=0 of distinct elements of E such that,

for 1 ≤ n ≤ N , one has:

v

(
n−1∏

k=0

(an − ak)

)
≤ v

(
n−1∏

k=0

(x− ak)

)
for each x ∈ E.

Remarks 2.2.

(a) In the case where the valuation v is discrete, there always exist v-orderings of E with N < card(E)
without any assumption on E. Such sequences may be constructed inductively on n choosing any
element in E for a0.

(b) If v is not discrete, we have to assume, at each step n, the existence of a minimum for v(
∏n−1

k=0(x− ak)).
For instance, if E = m and m is not principal, then Int(m, V ) = V [X], and hence, (n!)V

E = V for each n.
On the other hand, v(a− a0) > 0 for all a0, a ∈ m, while infx∈m v(x− a0) = 0. Consequently, there does
not exist any v-ordering (cf. [7, § 4]).

(c) The existence of a minimum is obviously satisfied if the subset E is finite, or more generally, if E is
compact with respect to the topology induced by v, or even, if the completion Ê of E is compact [7, § 4].
In fact, weaker conditions are enough. In the particular context of topologies defined by valuations, Ê

is compact if and only if, for each nonzero ideal I of V , E meets only finitely many cosets of V modulo
I. We extend such a property by considering the following one.

Proposition 2.3. Let E be an infinite subset of the valuation domain V such that, for each γ ∈ Γ of the form
γ = v(x− y) where x, y ∈ E and x 6= y, E meets only finitely many cosets of V modulo Iγ = {z ∈ V | v(z) ≥ γ}.
Then there exist infinite v-orderings of E.

Proof.

First step: for each x0 ∈ E, the map

x ∈ E 7→ v(x− x0) ∈ Γ ∪ {+∞}

reaches a minimum on E.

Let γ = v(y0 − x0) where y0 ∈ E, y0 6= x0 and let Iγ = {z ∈ V | v(z) ≥ γ}. Then, there are finitely
many x1, . . . , xr ∈ E such that:

E ⊆ ∪r
k=0 {xk + Iγ} and v(xj − xi) < γ for 0 ≤ i 6= j ≤ r.

If r = 0, then infx∈E v(x− x0) = γ.

If r ≥ 1 then, for k ≥ 1 and x ∈ xk + Iγ , v(x− x0) = v(xk − x0); consequently,

inf
x∈E

v(x− x0) =
r

inf
k=1

v(xk − x0).

Second step: for each a1, a2, . . . , an ∈ E, the map:

x ∈ E 7→ v((x− a1)(x− a2) . . . (x− an)) ∈ Γ ∪ {+∞},

reaches a minimum on E.
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First note that, from every infinite sequence of elements of Γ, we may extract either an infinite increasing
sequence, or an infinite strictly decreasing sequence. Assume that x 7→ g(x) = v((x−a1) . . . (x−an)) does
not reach a minimum. Then, there exists an infinite sequence {yk} of elements of E such that {g(yk)}
is strictly decreasing. Since the subset {yk | k ∈ N} of E has the same property of finiteness, it follows
from the first step that, for every i ∈ {1, . . . , n}, we cannot extract from the sequence {v(yk − ai)} a
strictly decreasing sequence. Consequently, we may extract from the sequence {yk} an infinite sequence
{zl} such that, for every i, the sequence {v(zl − ai)} is increasing. This is a contradiction with the fact
that {g(zl)} is strictly decreasing. ¤

Example 2.4. Let k be a field, let Q+ be the set of positive rational numbers, and let K = k({T r | r ∈ Q+}).
Let v be the rank-one valuation on K such that v(

∑n
k=0 akT rk) = inf{rk | ak 6= 0} and let V be the corresponding

valuation domain. For every strictly increasing sequence {rn}n∈N of positive rational numbers and every finite
subset F of k containing 0, we consider the following subset of V :

E = {k0t
r0 + k1t

r1 + . . . + klt
rl | l ∈ N, k0, k1, . . . , kl ∈ F}.

This subset E has the property assumed in Proposition 2.3, and hence, there are infinite v-orderings of E. Note
that the completion Ê of E cannot be compact if the sequence {rn} is bounded (and F 6= {0}). We may obtain a
v-ordering {an}n∈N in the following way. Let a0 = 0, a1, . . . , aq−1 be the elements of F . Writing, for each n ∈ N,

n = n0 + n1q + n2q
2 + . . . + nsq

s where 0 ≤ ni ≤ q − 1,

we let

an = an0T
r0 + an1T

r1 + . . . + ansT
rs .

Indeed, denoting by vq(n) the greatest integer k such that qk divides n, for each n and m ∈ N we have:

v(an − am) = rvq(n−m).

We then may check that

v

(
n−1∏

k=0

(an − ak)

)
=

n∑

l=1

rvq(l)

=
∑

k≥0

rk

([
n

qk

]
−

[
n

qk+1

])
= r0n +

∑

k>0

[
n

qk

]
(rk − rk−1).

Consequently, for m ≥ n,

v

(
n−1∏

k=0

(am − ak)

)
=

n−1∑

k=0

rvq(m−k) =
m∑

l=1

rvq(l) −
m−n∑

l=1

rvq(l)

= r0n +
∑

k>0

([
m

qk

]
−

[
m− n

qk

])
(rk − rk−1).

By induction on n, it follows from the previous equalities that the sequence {an} is a v-ordering of E since, for
every m ≥ n,

[
m

qk

]
−

[
m− n

qk

]
≥

[
n

qk

]
.
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Now we recall the link between v-orderings and integer-valued polynomials.

Proposition 2.5. Let {an}N
n=0 be a sequence of distinct elements of E. Then, {an}N

n=0 is a v-ordering of E if
and only if the polynomials

fn(X) =
n−1∏

k=0

X − ak

an − ak

form a basis of the V -module

IntN (E, V ) = {f ∈ K[X] | f(E) ⊆ V, deg(f) ≤ N}.

Proof. The sequence is a v-ordering of E if and only if, for each n ≤ N , v(fn(a)) ≥ v(fn(an)) for each a ∈ V ,
that is, fn(E) ⊆ V . Moreover, the fn’s form a basis of the K-vector space KN [X] = {g ∈ K[X] | deg(g) ≤ N}.
Consequently, if the fn’s are in Int(E, V ), then they form a basis of the V -module IntN (E, V ) since fn(an) = 1
for each n ≤ N . ¤

Note that there may be infinitely many v-orderings of E. Nevertheless, we have the following straightforward
consequence:

Corollary 2.6. [2, Prop. 2.1] If {an}N
n=0 is a v-ordering of E, then for each n ≤ N , one has:

(n!)V
E = In(E, V )−1 =

n−1∏

k=0

(an − ak)V,

and the sum

wE(n) =
n−1∑

k=0

v(an − ak)

does not depend on the choice of the v-ordering of E.

Remark 2.7. Note that if there exists a v-ordering {an}N
n=0 of E then, for 0 ≤ n < N , (n!)V

E is a principal ideal.
It follows from Remark 2.2 (b) that (n!)E may be principal even though there does not exist any v-ordering.

Corollary 2.8. Assume that there exists a v-ordering {ak}n
k=0 of E and let f ∈ Int(E, V ) of degree ≤ n. Denote

by c(f) and f(E) the fractional ideals of V generated respectively by the coefficients of f and by the values of f

on E, and write:

f(x) =
n∑

k=0

bk

k−1∏

l=0

X − al

ak − al
.

(1) c(f)(n!)E is an entire ideal.

(2) f(E) = (f(a0), f(a1), . . . , f(an)) = (b0, . . . , bn).

(3) c(f)(n!)E ⊆ f(E) ⊆ c(f).

Moreover, for f =
∏n−1

k=0(X − ak), we have c(f) = V and f(E) = (n!)E.
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Proof.

(1) results from the equality:

c(f) =

(
b0,

b1

a1 − a0
, . . . ,

bn∏n−1
k=0(an − ak)

)
.

(2) Obviously,

f(E) ⊆ (b0, . . . , bn) ⊆ (f(a0), . . . , f(an)) ⊆ f(E).

(3) Clearly, f(E) ⊆ c(f). The equality in the proof of assertion (1) shows that c(f)(n!)E is contained in
(b0, b1, . . . , bn) which by (2) is equal to f(E). ¤

3. RANK-ONE VALUATION DOMAINS

Hypothesis. In this section, V denotes a rank-one valuation domain (Γ is a subgroup of R).

For every ideal I, denote by v(I) the valuation of I, that is,

v(I) = inf{v(x) | x ∈ I}.

Definition 3.1. If v is a rank-one valuation, the characteristic function of Int(E, V ) is the arithmetic function
wE defined by:

n ∈ N 7→ wE(n) = v
(
(n!)V

E

)
= −v (In(E, V )) ∈ N ∪ {+∞}.

Such a sequence wE(n) was already considered in the special case where the valuation is discrete (as in [4] and
[5]) or, more generally, where there exists a v-ordering (Corollary 2.6).

The characteristic function is an increasing function. More precisely, we have the following inequality which
extends Property 1 of the classical factorials (cf. Introduction).

Proposition 3.2. For each k, l ∈ N, one has:

wE(k) + wE(l) ≤ wE(k + l).

This inequality results from the obvious inclusion:

Ik(E, V ) · Il(E, V ) ⊆ Ik+l(E, V ).

We can find some computations of this function wE in [4] and [5]. Let us return to Example 2.4 and consider the
case where k = F = Fq and rk = k, that is, V = Fq[T ](T ) and E = Fq[T ]. We then have wE(n) =

∑
k>0

[
n
qk

]
.

This is a particular case of the following result.

Proposition 3.3 (Pólya [17]). If v is discrete and if q denotes the cardinality (finite or infinite) of the residue
field of v, then

wV (n) = wq(n) =
∑

k>0

[
n

qk

]
.

Again we generalize the notion of v-ordering.
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Definition 3.4. Let ε ≥ 0. A v-ordering of E modulo ε is a sequence {bn}N
n=0 of distinct elements of E such

that, for each n ≤ N , one has:

v

(
n−1∏

k=0

(bn − bk)

)
≤ v

(
n−1∏

k=0

(x− bk)

)
+ ε for every x ∈ E.

For ε = 0, we have the classical notion of v-ordering. Although v-orderings do not necessarily exist, conversely,
there exist v-orderings modulo ε for every ε > 0. Such sequences may be constructed inductively on n choosing
any element in E for b0. Then, the link between v-orderings and integer-valued polynomials becomes:

Lemma 3.5. Let N < card(E), let ε > 0, and let {bn}N
n=0 be a v-ordering of E modulo ε. Every polynomial

f ∈ K[X] of degree ≤ N may be written:

f(X) =
N∑

n=0

cn

n−1∏

k=0

X − bk

bn − bk
with cn ∈ K.

If v(cn) ≥ ε for each n ≤ N , then f belongs to Int(E, V ). Conversely, if f belongs to Int(E, V ), then v(cn) ≥ −nε

for each n ≤ N .

Proof. For each n ≤ N , let:

hn(X) =
n−1∏

k=0

X − bk

bn − bk
.

Then,

f(X) =
N∑

n=0

cnhn(X).

By definition of the sequence {bn}, for each n ≤ N and for each x ∈ E, one has v(hn(x)) ≥ −ε. Obviously, if
v(cn) ≥ ε, then v(cnhn(x)) ≥ 0 for each x ∈ E, and hence, f belongs to Int(E, V ).

Conversely, assuming that f belongs to Int(E, V ), let us prove by induction on n, that v(cn) ≥ −nε. First,
f(b0) = c0 ∈ V , and hence v(c0) ≥ 0. Let n ∈ {1, . . . , N} and suppose that v(ck) ≥ −kε for 0 ≤ k ≤ n − 1.
Then,

f(bn) = c0 + c1h1(bn) + . . . + cn−1hn−1(bn) + cnhn(bn).

We have hn(bn) = 1, v(ck) ≥ −kε, and v(hk(bn)) ≥ −ε for 1 ≤ k ≤ n− 1. Consequently,

v(cn) ≥
(

inf
0<k<n

v(ck)
)
− ε ≥ −nε. ¤

As an immediate consequence we have:

Lemma 3.6. If b0, b1, . . . , bN is a v-ordering modulo ε, then for n ≤ N :

v

(
n−1∏

k=0

(bn − bk)

)
− ε ≤ wE(n) ≤ v

(
n−1∏

k=0

(bn − bk)

)
+ nε.
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For every subset F of E and for every n ∈ N, we have wE(n) ≤ wF (n) and, if there is a v-ordering {ak}n
k=0 of

E, then wE(n) = wF (n) where F = {ak | 0 ≤ k ≤ n}. More generally:

Proposition 3.7. For each n ≥ 0,

wE(n) = inf{wF (n) | F ⊆ E, card(F ) = n + 1}.

Proof. Fix an n < card(E) and an ε > 0. Let b0, b1, . . . , bn be a v-ordering of E modulo ε and let F = {b0, . . . , bn}.
Then, b0, . . . , bn is also a v-ordering of F modulo ε, thus

wF (n)− nε ≤ v

(
n−1∏

k=0

(bn − bk)

)
≤ wE(n) + ε.

Hence, for every ε > 0, there is a subset F of E such that card(F ) = n + 1 and wF (n) ≤ wE(n) + (n + 1)ε. ¤

Recall that, for every polynomial g ∈ K[X], g(E) denotes the fractional ideal generated by the values of g on E

and that v(I) denotes the valuation of the ideal I. In particular,

v(g(E)) = inf
x∈E

v(g(x)).

Lemma 3.8. For each monic polynomial g ∈ K[X] of degree n, v(g(E)) ≤ wE(n).

Proof. Let y ∈ K be such that v(y) ≥ −v(g(E)). Then yg belongs to Int(E, V ); and hence, y ∈ In(E, V ).
Consequently, v(y) ≥ −v(g(E)) implies v(y) ≥ −wE(n); and hence, v(g(E)) ≤ wE(n). ¤

Proposition 3.9. For each n ∈ N, we have:

wE(n) = sup{v(g(E)) | g ∈ K[X], deg(g) = n, g monic},

wE(n) = sup{v(g(E)) | g ∈ V [X], deg(g) = n, g monic},

wE(n) = sup{v(g(E)) | g =
n−1∏

k=0

(X − xk), with x0, . . . , xn−1 ∈ E}.

Proof. If E is finite, we may assume that n < card(E). Let ε > 0 and let {bk}n
k=0 be a v-ordering of E modulo

ε. Consider the polynomial g =
∏n−1

k=0(X − bk). It follows from Lemma 3.6 that:

wE(n) ≤ v

(
n−1∏

k=0

(bn − bk)

)
+ nε.

Consequently, by definition of a v-ordering modulo ε,

wE(n) ≤ inf
x∈E

v

(
n−1∏

k=0

(x− bk)

)
+ (n + 1)ε,

that is,

wE(n) ≤ v(g(E)) + (n + 1)ε.

Thus, wE(n) ≤ v(g(E)). The other inequality follows from Lemma 3.8. ¤

From now on, we will omit in the proofs the condition n < card(E) because, if n ≥ card(E), then all the
equalities correspond to +∞ = +∞ or 0 = 0.
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Corollary 2.6 says that, if there is a v-ordering {ak}n
k=0, then:

wE(n) = v

(
n−1∏

k=0

(an − ak)

)
= inf

x∈E
v

(
n−1∏

k=0

(x− ak)

)
.

More generally, the previous proposition shows that:

Corollary 3.10. For each n ≥ 0, we have:

wE(n) = sup
x0,..., xn−1∈E

inf
x∈E

v

(
n−1∏

k=0

(x− xk)

)
.

With Proposition 3.7, the previous corollary leads to the following result:

Corollary 3.11. For each n ≥ 0, we have:

wE(n) = inf
x0,..., xn∈E

sup
0≤i≤n

v


 ∏

0≤k≤n , k 6=i

(xi − xk)


 .

Since (n!)E is a divisorial ideal, Proposition 3.9 leads to an assertion very similar to Property 3 of the classical
factorials (cf. Introduction).

Theorem 3.12. For each f ∈ V [X], let d(f, E) be the fixed divisor of f over E, that is, the divisorial ideal of
V generated by the values of f on E. Then,

(n!)E = ∩{d(f, E) | f ∈ V [X], deg(f) = n, f monic}.

Finally, analogously to Property 2 of the classical factorials, we have:

Theorem 3.13. For each n ∈ N,

inf
x0,..., xn∈E

v


 ∏

0≤i<j≤n

(xj − xi)


 =

n∑

k=1

wE(k).

If {ak}n
k=0 is a v-ordering, then:

v


 ∏

0≤i,j≤n

(aj − ai)


 =

n∑

k=1

wE(k).

Proof. Let x0, . . . , xn ∈ E. We first prove that:

v


 ∏

0≤i<j≤n

(xj − xi)


 ≥

n∑

k=1

wE(k).

The proof is the same as that given by Bhargava for discrete valuations. Let F = {x0, x1, . . . , xn}. Assume that
these n + 1 elements are reordered so that the sequence x0, x1 . . . , xn is a v-ordering of F . Then,

v


 ∏

0≤i<j≤n

(xj − xi)


 =

n∑

j=1

v

(
j−1∏

i=0

(xj − xi)

)
=

n∑

j=1

wF (j) ≥
n∑

j=1

wE(j)
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since F ⊆ E (see Proposition 1.3.4). In particular, if x0, . . . , xn is a v-ordering of E, then we have an equality.

Conversely, let ε > 0 and let {bk}n
k=0 be a v-ordering of E modulo ε. It follows from Lemma 3.6 that:

v


 ∏

0≤i<j≤n

(bj − bi)


 =

n∑

j=1

v

(
j−1∏

i=0

(bj − bi)

)
≤

n∑

j=1

wE(j) + nε.

Consequently,

inf
x0,..., xn∈E

v


 ∏

0≤i<j≤n

(xj − xi)


 ≤

n∑

j=1

wE(j) + nε,

that is,

inf
x0,..., xn∈E

v


 ∏

0≤i<j≤n

(xj − xi)


 ≤

n∑

j=1

wE(j). ¤

4. ASYMPTOTIC BEHAVIOR AND VALUATIVE CAPACITY

Hypothesis. As in the previous section, K is a field with a rank-one valuation v, V denotes the corresponding
domain, q the cardinality of the residue field, and E is any subset of V .

Here we study the asymptotic behavior of the arithmetic function wE . More precisely, we show that wE(n)
n has

a limit and that this limit is also the limit of the sequence δE(n) where, for n ≥ 1:

δE(n) =
2

n(n + 1)
inf

x0,..., xn∈E
v


 ∏

0≤i<j≤n

(xj − xi)


 .

This limit will be denoted by δE and, by analogy with the Archimedean case (see for instance [11]), δE is called
the valuative capacity of E (with respect to v).

Proposition 4.1. The sequence {δE(n)}n∈N∗ is an increasing sequence, and hence tends to a (finite or infinite)
limit δE ∈ R+ ∪ {+∞}.

Proof. Let x0, . . . , xn be elements of E. It follows from the obvious formula:


 ∏

0≤i<j≤n

(xj − xi)




n−1

=
n∏

k=0


 ∏

0≤i<j≤n, i,j 6=k

(xj − xi)


 ,

and from the inequality:

v


 ∏

0≤i<j≤n, i,j 6=k

(xj − xi)


 ≥ (n− 1)n

2
× δE(n− 1) ,

that:

(n−1)v


 ∏

0≤i<j≤n

(xj − xi)


 =

n∑

k=0

v


 ∏

0≤i<j≤n, i,j 6=k

(xj − xi)


 ≥ (n+1)× (n− 1)n

2
×δE(n−1).
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Consequently,

(n− 1)× n(n + 1)
2

δE(n) ≥ (n + 1)× (n− 1)n
2

× δE(n− 1). ¤

The limit δE is linked to the function wE because of the formula given by Theorem 3.13:

1
2
n(n + 1)δE(n) = wE(1) + . . . + wE(n).

Theorem 4.2.

lim
n→∞

wE(n)
n

= sup
n≥1

wE(n)
n

= δE .

Proof.
First step: wE(n)

n tends to ωE = supn≥1
wE(n)

n .

If ωE is finite (resp., infinite), let m be such that wE(m)
m is close to ωE (resp., is large). For n ≥ m, write

n = km + r with 0 ≤ r < m. It follows from Proposition 3.2 that:

ωE ≥ wE(n)
n

=
wE(km + r)

km + r
≥ wE(km)

(k + 1)m
≥ k

k + 1
wE(m)

m
.

Thus, for n large, k is large, k
k+1

wE(m)
m is close to wE(m)

m , and hence, wE(n)
n is close to ωE (resp., is large).

Second step: ωE = δE .

From the equalities:

1
2
n(n + 1)δE(n) = wE(1) + . . . + wE(n),

it follows that:

n(n + 1)δE(n)− (n− 1)nδE(n− 1) = 2wE(n);

that is,

(n + 1)δE(n)− (n− 1)δE(n− 1) = 2
wE(n)

n
,

nδE(n− 1)− (n− 2)δE(n− 2) = 2
wE(n− 1)

n− 1
, . . .

By addition,

δE(1) + δE(2) + δE(n− 1) + (n + 1)δE(n) = 2
n∑

k=1

wE(k)
k

,

or,

1
n

(δE(1) + δE(2) + . . . + δE(n− 1)) +
(
1 +

1
n

)
δE(n) =

2
n

n∑

k=1

wE(k)
k

.

By Cesàro’s theorem, the first term in the left side tends to δE , of course the second term also tends to
δE , while the sum in the right side tends to 2ωE , both by the first step and by Cesàro’s theorem. ¤

Of course, in some sense, the larger E is, the smaller δE becomes.
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Examples 4.3.

(1) If V is a discrete valuation domain, it follows from Pólya’s formula [Proposition 3.3] that:

δV =
1

q − 1
.

Then, for a ∈ V and b ∈ V ∗, we have:

δ(a + bV ) =
1

q − 1
+ v(b) .

More generally, it follows from [4, Proposition 4.4] that if E is a finite union of classes modulo a nonzero
ideal bV , that is,

E = ∪r
i=1 {ci + bV }

and if, moreover, v(ci − cj) = h < v(b) for every (i, j) with i 6= j, then

δE =
1
r

(
1

q − 1
+ v(b) + h(r − 1)

)
.

In particular, let p be a prime number and let V = Z(p) (and hence, v = vp). It follows from
[5, Proposition 5.4] that to the containments:

Z \ pZ ⊂ Z \ p2Z ⊂ Z

correspond the following inequalities for the valuative capacities:

p

(p− 1)2
>

p(p2 − p + 1)
(p− 1)2(p2 + 1)

>
1

p− 1
.

(2) On the other hand, δE may be infinite. Let V be a rank-one valuation domain and let t be an element
of its maximal ideal. Then, {tn | n ∈ N} is a v-ordering of E = {tn | n ∈ N}, wE(n) = n(n−1)

2 v(t) and
δE = +∞.

(3) The valuative capacity δE in Example 2.4 may be finite or infinite, since:

δE =
(

1− 1
q

) ∞∑

k=0

rk

qk
,

and {rk} is any strictly increasing sequence of positive rational numbers.

5. DEDEKIND AND KRULL DOMAINS

By globalization, results on discrete valuation domains may be extended to Dedekind domains. We are going
to show that some of the results obtained by Bhargava [3] for Dedekind domains may also be proved for Krull
domains. We first begin with some results with respect to localization.

Notation. We now denote by D an integral domain with quotient field K and by E a subset of D.

Proposition 5.1. [8, Proposition 1.2] If D is a Mori domain then, for each multiplicative subset S of D, one
has:

S−1Int(E, D) = Int(E, S−1D).
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Recall that a Mori domain is a domain which satisfies the ascending chain condition on divisorial ideals. In
particular, Noetherian domains and Krull domains are Mori domains.

Corollary 5.2. If D is a Mori domain then, for each multiplicative subset S of D and each n ∈ N, one has:

In(E,S−1D) = S−1In(E, D) , (n!)S−1D
E = S−1(n!)D

E .

(n!)D
E = ∩m∈max(D)(n!)Dm

E .

Proof. We just have to explain the second equality, that is, why the localization of the inverse of an ideal I is
equal to the inverse of the localization of I. This is an easy consequence of the fact that in a Mori domain, for each
fractional ideal I, there exists a finitely generated fractional ideal J such that I−1 = J−1 [18, Théorème 1]. ¤

In a Krull domain, the divisorial ideals are characterized by their localization with respect to the height-one
prime ideals:

Corollary 5.3. If D is a Krull domain then, for each n ∈ N, one has:

(n!)D
E = ∩p∈Spec(D), ht(p)=1(n!)Dp

E .

For each height-one prime ideal p of the Krull domain D, Dp is a discrete valuation domain. Let us denote
by wE,p the function wE corresponding to this valuation defined in Section 3. The previous corollary may be
formulated in the following way:

If D is a Krull domain then, for each n ∈ N,

(n!)E = ∩p∈Spec(D), ht(p)=1 pwE,p(n)Dp.

For Dedekind domains, we obtain the well known result [3, § 2].

Corollary 5.4. If D is a Dedekind domain then, for each n ∈ N, one has:

(n!)D
E =

∏

m∈max(D)

(n!)Dm

E =
∏

m∈max(D)

mwE,m(n).

Examples 5.5. Let D be a Dedekind domain.

1. Let E be a subset, a be an ideal, and b be an element of D. Let

F = b + aE = {b + ax | a ∈ a, x ∈ E}.

Then,

(n!)F = (n!)E × an.

In particular, for every ideal a of D:

(n!)a = (n!)D × an.

2. For every maximal ideal m of D, let N(m) = card(D/m). Recall that wq(n) =
∑

k>0

[
n
qk

]
. Then,

(n!)D =
∏

m∈max(D)

mwN(m)(n) =
n∏

q=2


 ∏

N(m)=q

mwq(n)


 .
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For any two divisorial ideals a and b of a Krull domain D, the containment a ⊆ b is equivalent to vp(a) ≥ vp(b)
for each height-one prime ideal p of D. By globalization, it then follows from inequalities of Proposition 3.2:

Proposition 5.6. If D is a Krull domain then, for each k, l ∈ N,

((k + l)!)E ⊆ (k!)E · (l!)E .

In particular, ((k + l)!)E · Ik(E, D) · Il(E, D) is an entire ideal of D.

Corollary 5.7. [3] If D is a Dedekind domain then, for each k, l ∈ N, the ideal (k!)E · (l!)E divides the ideal
((k + l)!)E.

Analogously, the equality in Theorem 3.13 leads to:

Proposition 5.8. If a0, a1, . . . , an are n + 1 elements of a subset E of a Krull domain D, then
∏

0≤i<j≤n

(aj − ai) ∈ (1!)E · (2!)E · · · (n!)E .

In particular,
∏

0≤i<j≤n(aj−ai) is a common denominator of the fractional ideal I1(E, D)·I2(E,D) · · · In(E, D).

Finally, by globalization, Corollary 2.8 leads to the following extension of [2, Theorem 2].

Proposition 5.9. For each g ∈ K[X], let d(g,E) be the divisorial fractional ideal generated by the values of g

on E. If D is a Krull domain then, for each n ∈ N, one has:

(n!)E = ∩{d(g,E) | g ∈ D[X], deg(g) = n, g monic}.

Proof. Let a = ∩{d(g, E) | g ∈ D[X], deg(g) = n, g monic}. If g ∈ D[X] is a monic polynomial of degree n,
then (n!)E ⊆ d(g,E) since this inclusion holds locally with respect to each height-one prime ideal of D. Thus,
(n!)E ⊆ a. Moreover, for each prime ideal p of D, there is a monic polynomial gn,p ∈ D[X] of degree n such that
d(gn,p, E)Dp = (n!)Dp

E . Consequently, ap ⊆ d(gn,p, E)Dp = (n!)Dp

E . Since a is divisorial, a ⊆ (n!)E , and then we
have an equality. ¤

Remark 5.10. Denote by Jn(E, D) the fractional ideal of D generated by all the coefficients of the polynomials
in Int(E, D) of degree n. Obviously, we have: In(E, D) ⊆ Jn(E, D). We do not know if these two fractional
ideals are equal, but if D is a Krull domain it follows from assertion 3 of Corollary 2.8 that:

Jn(E, D)−1 = In(E, D)−1 = (n!)D
E

since

Jn(E, D) = ∪{c(f) | f ∈ Int(E, D), deg(f) = n}.

In particular, if D is a Dedekind domain, then Jn(E, D) = In(E,D).

6. EXAMPLES AND D-ORDERINGS

To end this paper, let us come back to the introduction. We recalled that, if a0, a1, . . . , an are any n + 1
integers, then the product:

∏

0≤i<j≤n

(aj − ai) is divisible by 1! . . . n!.
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This fine result is not so easy to obtain; Bhargava [2] gave an enlightening proof with the notion of v-ordering.
In fact, this result is a very particular case of Proposition 5.8, which concerns Krull domains and is itself a
globalization of Theorem 3.13. One find another interesting proof in [19]. Applying L’Hôpital’s rule to the
factors of the function P (t) =

∏
0≤i<j≤n

taj−ai−1
tj−i−1 , we obtain:

lim
t→1

P (t) =
∏

0≤i<j≤n

lim
t→1

(aj − ai)taj−ai−1

(j − i)tj−i−1
=

∏

0≤i<j≤n

aj − ai

j − i
.

It follows from the next proposition that this rational number is in fact an integer.

Proposition 6.1 (Sury [19]). For any integers a0 < a1 < . . . < an,

P (T ) =
∏

0≤i<j≤n

T aj−ai − 1
T j−i − 1

∈ Z[T ].

Sury’s proof of this last assertion needs some computation. Following Bhargava, we wish to give a more en-
lightening proof using the notion of v-ordering in the localizations of the Krull domain (more precisely, unique
factorization domain) Z[T ].

Lemma 6.2. Let D = Z[T ] and E = {Tn | n ∈ N}. The sequence {Tn}n∈N is a vπ-ordering of E for every
irreducible element π of Z[X].

Proof. Either π is a prime number p, or π is an irreducible polynomial Q(T ) of Q[T ] that we may suppose to
be monic. Obviously, if vπ(Tn − Tm) 6= 0 for some n 6= m, then π = T or Φd(T ) where Φd denotes the d-th
cyclotomic polynomial and d divides n−m. Consequently, we just have to check that {Tn} is a vπ-ordering for
π = T or Φd. For π = T , this is Example 4.3.2. Let d > 0 and let us prove by induction on n that {T k}n

k=0 is a
vΦd

-ordering. For every m > n, we have:

vΦd

(
n−1∏

k=0

(Tm − T k)

)
= vΦd

(
m∏

k=m−n+1

(T k − 1)

)
,

while

vΦd

(
n−1∏

k=0

(Tn − T k)

)
= vΦd

(
n∏

k=1

(T k − 1)

)
.

These quantities are respectively equal to:

card{k | d|k, m− n + 1 ≤ k ≤ m}

and

card{k | d|k, 1 ≤ k ≤ n},

that is,

[m

d

]
−

[
m− n

d

]
and

[n

d

]
.

Clearly, this latter quantity is less or equal to first one. ¤
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Proof of the proposition. Let a0 < a1 < . . . < an be integers. We may assume that a0 ≥ 0. Theorem 3.13
together with Lemma 6.2 says that, for each irreducible element π of Z[X],

∏

0≤i<j≤n

T aj − T ai

T j − T i
∈ Z[T ]π.

Consequently,

∏

0≤i<j≤n

T aj − T ai

T j − T i
∈ Z[T ].

Finally, P (T ) ∈ Z[T ] since a0 + a1 + . . . + an ≥ 0 + 1 + . . . + n. ¤

The sequence {Tn} in Z[T ] is a particular case of the following:

Definition 6.3. Let D be an integral domain and let E be a subset of D. A D-ordering of E is a sequence
{an}N

n=0 of distinct elements of E such that, for each n ≤ N ,
∏n−1

k=0(an − ak) divides
∏n−1

k=0(x − ak) for every
x ∈ E.

This notion of D-ordering is in fact the same than the notion of special sequence introduced by
Mulay [14, § 1.6] although both definitions are distinct. It is worth noticing that Mulay’s Theorem 4 (ii)
already showed the existence of such sequences for every subset of discrete valuation domains. The following
assertion is straightforward.

Proposition 6.4. Let a0, a1, . . . , aN be distinct elements of E. The sequence {an}N
n=0 is a D-ordering of E if

and only if the polynomials:

fn(X) =
n−1∏

k=0

X − ak

an − ak
(0 ≤ n ≤ N)

form a basis of:

Intn(E, D) = {f ∈ Int(E, D) | deg(f) ≤ n}.

In that case, (n!)E =
∏n−1

k=0(an − ak)D for every n ≤ N .

If D is a Krull domain, then {an}N
n=0 is a D-ordering of E if and only if, for each height-one prime ideal p of

D,
∏n−1

k=0
x−ak

an−ak
∈ Dp for each x ∈ E and n ≤ N , that is, {an}N

n=0 is a vp-ordering of E in Dp. The following
assertion is a particular case of Proposition 5.8.

Proposition 6.5. If D is a Krull domain and {an}N
n=0 is a D-ordering of E, then for every n ≤ N and every

choice of elements x0, x1, . . . , xn ∈ E,

∏

0≤i<j≤n

xi − xj

ai − aj
∈ D.

Examples 6.6.

(1) The sequence {n}n∈N is a Z-ordering of N.

(2) The sequence {n2}n∈N is a Z-ordering of {n2 | n ∈ N}.
(3) The sequence {Tn}n∈N is a Z[T ] ordering of {Tn | n ∈ N}.
(4) The sequence {qn}n∈N is a Z-ordering of {qn | n ∈ N}.
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(5) The sequence {1, 2, 3, 5} is a Z-ordering of the polynomial closure P∪{±1} of the set P of prime numbers.
On the other hand, there does not exist any Z-ordering with 5 elements, although, for each N ∈ N,
there are prime numbers p0, p1, . . . , pN such that the polynomials 1

πn

∏n−1
k=0(X − pk) form a basis of the

Z-module IntN (P,Z) where πn denotes a generator of (n!)P (cf [10]).
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