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1 On Bhargava’s factorials

1.1 Arithmetical viewpoint

The first generalization of the notion of factorials can probably be attributed
to Carlitz [8]. It stems from the arithmetical analogy between the ring Z of
integers and the ring Fq[T ] of polynomials over a finite field: both rings are
principal ideal domains with finite residue fields, finite group of units and an
infinite number of irreducible elements. With respect to this analogy, monic
polynomials correspond to natural numbers and monic irreducible polynomials
to prime numbers. The construction of Carlitz factorials is a little mysterious.
He first defines, for each positive integer j, a polynomial Dj that may be
interpreted as a piece of factorial:

Dj =
∏

fmonic, deg(f)=j

f (1)

Then, for each positive integer n with q-adic expansion:

n = n0 + n1q + . . . + nsq
s (0 ≤ nj < q), (2)

Carlitz defines the n-th factorial by:

n!C =
s∏

j=0

D
nj

j . (3)

We shall clarify that this may somehow be called a factorial by relating this
construction to other generalizations.
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1.2 Number theoretical viewpoint

Here is another generalization replacing the ring Z by the ring OK of integers
of a number field K. We first interpret the classical factorial as a product of
powers of prime numbers, the power of p being given by Legendre’s formula:

n! =
∏
p∈P

pwp(n) where wp(n) =
∑
k≥1

[
n

pk

]
. (4)

We then analogously define the n-th factorial with respect to K as a product
of powers of maximal ideals of OK :

n!OK
=

∏
p∈Max(OK)

pwp(n), (5)

where the power of p is linked to its norm q = N(p) = Card(OK/p) by a
formula very close to Legendre’s formula:

wp(n) = wq(n) =
∑
k≥1

[
n

qk

]
. (6)

Note that here factorials are not elements, like numbers in Z or polynomials
in Fq[T ], but ideals of the ring OK . These ideals may first be traced in Pólya’s
work on integer-valued polynomials in 1919 [32], although factorials were not
mentioned, and later in papers by Gunji and McQuillan [24] in 1970 and by
Zantema [39] in 1982.

1.3 Algebraic viewpoint

The previous generalization can naturally be extended with a commutative
algebraic viewpoint, replacing more generally the ring OK by a Dedekind
domain D. The corresponding n-th factorial ideal n!D appears as a product
of prime ideals as in (5), the power wp(n) of p being given by formula (6), using
the norm q = N(p) = Card(D/p). Note that, if q = +∞, then wq(n) = 0,
so that a maximal ideal with an infinite residue field does not appear in any
factorial ideal.

If D is a principal ideal domain, factorials can be interpreted as elements
of D. In particular, letting D be the ring Fq[T ], we obtain Carlitz factorials
thanks to Sinott’s formula [23, Thm 9.1.1]:

n!C =
∏

f monic, irreducible

fwf (n) where wf (n) =
∑
k≥1

[
n

qk deg(f)

]
. (7)

Indeed the norm of the (principal prime) ideal fFq[t] is obviously given by

N(fFq[t]) = Card(Fq[t]/fFq[t]) = qdeg(f).

The factorial ideals n!D apply also to rings of integers of function fields, that
is, finite algebraic extensions of Fq(T ) (compare with Γ -ideals of Goss [23]).
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1.4 Multiplicative viewpoint

Write the usual factorial as

n! =
n−1∏
k=0

(n− k).

If we replace the natural sequence 0, 1, 2, 3, . . . by a geometrical sequence
1, q, q2, q3, . . . , where q denotes an integer, q ≥ 2, we obtain the Jackson
factorials [26]:

n!q =
n−1∏
k=0

(qn − qk). (8)

This is a different kind of generalization: now it is not the ring of integers Z
which is replaced by a Dedekind domain D but the subset N of Z which is
replaced by another subset S (as here S = {qn | n ∈ N}). In fact, all these
generalizations are particular cases of the following one.

1.5 Combinatorial viewpoint

Bhargava’s factorials were introduced in 1997 [4]. For a Dedekind domain
D and a subset S of D, Bhargava defined factorial ideals by means of the
following local notion of p-ordering, where p is a maximal ideal of D and vp

denotes the corresponding valuation.

Definition 1. A p-ordering of S is a sequence {an}n∈N in S such that, for
each n > 0, an minimizes the expression

vp

(
n−1∏
k=0

(an − ak)

)
.

Thus, a0 being arbitrarily chosen,

vp(a1 − a0) = inf
s∈S

vp(s− a0)

and, inductively, for each n > 0,

vp

(
n−1∏
k=0

(an − ak)

)
= inf

s∈S
vp

(
n−1∏
k=0

(s− ak)

)
. (9)

Obviously, such p-orderings always exist and are not unique. However, as we
shall see in the next section, the value of the left hand side in (9) does not
depend on the choice of the p-ordering of S. Thus, letting

wS,p(n) = vp

(
n−1∏
k=0

(an − ak)

)
(10)
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Bhargava defined the n-th factorial ideal of S with respect to D by the formula:

n!DS =
∏

p∈Max(D)

pwS,p(n). (11)

One may check that formula (11) generalizes all previously mentioned ones.
Moreover, as shown by Bhargava [5], there are many reasons that allow us to
consider it a good generalization. For instance, here are 3 of its nice properties:

It is well known that We also have
For all k, l ∈ N For all k, l ∈ N

k!l! divides (k + l)! k!DS l!DS divides (k + l)!DS
in Z as ideals of D

For all x0, x1, . . . , xn ∈ Z For all x0, x1, . . . , xn ∈ S∏
0≤i<j≤n (xj − xi)

∏
0≤i<j≤n (xj − xi) D

is divisible by is divisible by
1!× 2!× · · ·n! 1!DS × 2!DS × · · ·n!DS

For all f ∈ Z[X] For all f ∈ D[X]
f monic, deg(f) = n f monic, deg(f) = n

the GCD of {f(k) | k ∈ Z} the ideal generated by {f(s) | s ∈ S}
divides n! (Pólya 1915) divides n!DS

1.6 Last generalization: Integer-valued polynomial viewpoint

We finally allow D to be any domain with quotient field K (not restricting
ourselves to Dedekind domains, D could for instance be an order of a number
field). For a subset S of D we consider the ring of integer-valued polynomials
on S with respect to D:

Int(S, D) = {f(X) ∈ K[X] | f(S) ⊆ D}.

We then set the following.

Definition 2. The n-th factorial ideal of S with respect to D is defined by:

n!DS = {a ∈ D | a f ∈ D[X], ∀f ∈ Int(S, D), deg(f) ≤ n}.

Hence, the ideals {n!DS }n∈N form a decreasing sequence of ideals of D with
0!DS = D.

Proposition 1. Definition 2 generalizes Formula (11).

Proof. Assume D to be a Dedekind domain. We may look at things locally
since, for every maximal ideal p of D, one has (see for instance [7, I.2.7]):

Int(S, D)p = Int(S, Dp).
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Now fix a maximal ideal p of D and consider a p-ordering {an}n∈N of D. It
follows from the definition of p-orderings that the Lagrange polynomials

gn(X) =
n−1∏
k=0

X − ak

an − ak

form a basis of the Dp-module Int(S, Dp). Consequently, af ∈ Dp[X] for
every f ∈ Int(S, D) such that deg(f) ≤ n, if and only if, a is divisible by∏n−1

k=0(an − ak) in Dp, that is,

n!DS Dp = pwS,p(n) Dp where wS,p(n) = vp

(
n−1∏
k=0

(an − ak)

)
.ut

Remark 1. With Definition 2, it is easy to see that, for a Dedekind domain:
1) The function wS,p defined by (10) does not depend on the choice of the
p-ordering of S.
2) The product k!DS l!DS divides (k+l)!DS since the product of two integer-valued
polynomials of respective degree k and l is an integer-valued polynomial of
degree k + l.
3) If S ⊆ T ⊆ D, then n!DT divides n!DS since Int(T,D) ⊆ Int(S, D).

2 Examples and questions on factorials

2.1 An example in non-commutative algebra: Hurwitz quaternions

In the previous definition of factorial ideals we just need to consider Int(S, D)
as a D-module. This allows for instance to consider the ring H of Hurwitz
quaternions, that is,

H =
{

a + bi + cj + dk | (a, b, c, d) ∈ Z4 or (Z +
1
2
)4
}

One knows that H is a non-commutative principal ideal domain with quotient
field:

H(Q) = {a + bi + cj + dk | (a, b, c, d) ∈ Q4}
Now consider the left H-module of integer-valued polynomials on H:

Int(H) = {f(X) ∈ H(Q)[X] | f(H) ⊆ H}.

The corresponding factorial ideals n!H are left ideals of H. The first ideals are:

0!H = 1!H = 2!H = 3!H = H and 4!H = H
1 + i

2
.

The value of 4!H follows from the fact that 1+i
2 (X4 − X) is integer-valued

(Gerboud [18]).

Question A. Find a formula for the (principal) factorial ideals n!H with
n ≥ 5.
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2.2 Factorials of the prime numbers and Bernoulli polynomials

Factorials of the set P of prime numbers (with respect to Z) are given by the
formula [12]:

n!P =
∏
p∈P

pωp(n) where ωp(n) =
∑
k≥0

[
n− 1

(p− 1)pk

]
. (12)

The first terms of this sequence are
1, 1, 2, 24, 48, 5 760, 11 520, 2 903 040, 5 806 080, 1 393 459 200, ...

If we look at The On-line Encyclopedia of Integer sequences [33], we find
another sequence with the same first terms: Sequence A075265 defined by
Paul D. Hanna as the sequence (dn)n∈N such that(

− log(1− x)
x

)m

=

( ∞∑
k=1

xk

k + 1

)m

= 1 +
m

2
x +

m(3m + 5)
24

x2 + . . . =
∑
n≥1

1
dn

Cn(m) xn (13)

where dn ∈ N and the polynomial Cn(m) ∈ Z[m] is primitive of degree n.
Experimental checking suggests and theoretical proof [11] shows that:

dn = (n + 1)!P

Moreover, superseeker@research.att.com suggests (and it may be proved) that

(n + 1)!P = n!× en

where en is the nth term of Sequence A0011898 formed by the denominators of
Bernoulli polynomials. More precisely, the nth Bernoulli polynomial of order
m, denoted by B

(m)
n , is defined by:(

t

et − 1

)m

=
∞∑

n=0

B(m)
n

tn

n!
(14)

and may be written:

B(m)
n =

1
en

Dn(m)

where en ∈ N and the polynomial Dn(m) ∈ Z[m] is primitive. Thus, we have:

Proposition 2. (
t

et − 1

)m

=
∞∑

n=0

Dn(m)
tn

(n + 1)!P
(15)

where Dn(m) ∈ Z[m] is primitive.
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Such a link with denominators of Bernoulli numbers had been previously
suggested by Bhargava [5, Example 21].

Question B. Explain the relation between the sequence of factorials of P
and the sequence of denominators of either Bernoulli numbers or Bernoulli
polynomials.

2.3 Subsets with the same factorial sequences

The following question seems to be natural:

Question C. Let S and T be two subsets of an integral domain D. Under
which conditions the factorial sequences of S and T are equal?

These factorial sequences are obviously equal if S and T are polynomially
equivalent, that is, Int(S, D) = Int(T,D) (see for instance [7, Chapter IV]).
This is far from necessary! Indeed if T = uS + a = {us + a | s ∈ S} where
a ∈ A and u is a unit of A, the factorial sequences of S and T are clearly
equal.

For an infinite subset S of Z, Gilmer and Smith conjectured [22] that, if
f ∈ Int(S, Z) is such that Int(S, Z) = Int(f(S), Z), then deg(f) = 1. Fares [16]
proved this conjecture by establishing that, in fact, if S and f(S) have the
same factorial sequences, then deg(f) = 1. He even recently extended this
result [17] with the following:

Proposition 3. Let OK be the ring of integers of any number field K and let
S be any infinite subset of OK . If ϕ(X) ∈ K(X) is a rational function such
that S and ϕ(S) have the same factorial sequences, then ϕ is an homographic
function (i.e., a rational function of the form aX+b

cX+d with ad− bc 6= 0).

This suggests two more questions:

Question C1. Does Fares’ result hold for ring of integers of function fields?

Question C2. Assume that S is an infinite subset of the ring OK of integers
of a number field K. Let f and g ∈ Int(S,OK). Does the equality of the
factorial sequences of f(S) and g(S) imply that g = f ◦ h where deg(h) = 1?

Even in the case of the ring Z, there are nevertheless examples of subsets
S and T with the same factorial sequences such that T is not of the form
uS + a where a ∈ A and u is a unit of A:
1) when the subsets are finite: for instance, the three subsets S = {0, 2, 35},
T = {0, 7, 22} and U = {0, 10, 21} have the same factorial sequences but there
does not exist any polynomial f of degree 1 such that either T = f(S), or
U = f(S), or U = f(T ).
2) when T is not assumed to be the image of S by a polynomial, as for instance:

S = 5Z ∪ (1 + 5Z) and T = 5Z ∪ (2 + 5Z)
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For a subset S of Z, A. Crabbe [15] tried to test the factorial sequence on
finite subsets. For each prime number p and each r ≥ 1, set

S mod(pr) = {0 ≤ a < pr | ∃s ∈ S such that s ≡ a (mod pr)}.

Gilmer characterized the subsets S such that Int(S, Z) = Int(Z) as the subsets
which are prime power complete, that is, such that S mod(pr) = {0 ≤ a < pr},
for each prime p and each r ≥ 1 [19, Theorem 2]. More generally, it follows from
[7, IV.§1 and §2] that two subsets S and T of Z are polynomially equivalent
if and only they have the same p-adic completion for each p and hence, if and
only if S mod(pr) = T mod(pr) for each p ∈ P and each r ≥ 1. Crabbe asked
the following question [15, Conjecture 3.3].

Question C3. Is the equality of the factorial sequences of two subsets S and
T of Z characterized by the equalities of the factorial sequences of S mod(pr)
and T mod(pr) for each p ∈ P and each r ≥ 1?

He proved one way: if S mod(pr) and T mod(pr) have the same factorial
sequences, for each p ∈ P and each r ≥ 1, then S and T have the same factorial
sequences. He proved the converse for S ⊆ T = Z. In fact, whenever S ⊆ T,
if S and T have the same factorial sequences, then Int(S, Z) = Int(T, Z), thus
S mod(pr) = T mod(pr) for each p ∈ P and each r ≥ 1. A fortiori, S mod(pr)
and T mod(pr) have the same factorial sequences.

2.4 Several indeterminates

Another natural question is:

Question D. What would be a good generalization of the notion of factorials
to several indeterminates?

Let n be a positive integer, D be an integral domain with quotient field K,
and S be a subset of Dn. Denote by Int(S,D) the ring of integer-valued
polynomials in several indeterminates on S, that is:

Int(S,D) = {f ∈ K[X] | ∀a ∈ S, f(a) ∈ D}

where X = (X1, . . . , Xk). For each k = (k1, . . . , kn) ∈ Nk, a definition of the
k-th factorial ideal of S with respect to D could be:

k!DS = {a ∈ D | ∀f ∈ Int(S,D), such that degXj
(f) ≤ kj , af ∈ D[X]}.

As noticed by Ostrowski [34], if D = Z and S = Zn, then one has:

k! = k1! · · · kn!

since the products
(
X1
k1

)
· · ·
(
Xn

kn

)
form a basis of the Z-module Int(Zn, Z). More

generally, if D is a Dedekind domain and S is of the form S1 × · · · × Sn, then
(see [24] and [7, § XI.1]):
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k!DS =
n∏

j=1

kj !DSj
.

But, if S is more general, the question is much more difficult. There are some
partial studies by Mulay [29] and Bhargava [5, § 12].

3 Simultaneous orderings

3.1 Newtonian orderings (or simultaneous p-orderings)

Recall that the polynomials(
X

n

)
=

X(X − 1) . . . (X − n + 1)
n!

=
n−1∏
k=0

X − k

n− k
.

form a basis of the Z-module Int(Z) = {f ∈ Q[X] | f(Z) ⊆ Z}. This is linked
to Gregory-Newton interpolation formula ([7], Historical Introduction). More
generally, the unique degree n polynomial that interpolates a function f at a
given set of n + 1 distinct arguments {an}0≤n≤N can be written in different
manners and, in particular, as the Newton’s interpolation polynomial [31], that
is, as a linear combination of the polynomials:

fn(X) =
n−1∏
k=0

X − ak

an − ak
.

By analogy, we introduce the following definition.

Definition 3. Let D be a domain and E be a subset of D. A sequence {an}n∈N
of distinct elements of E is said to be an infinite Newtonian ordering for E
in D, or shortly an ordering for E, if the polynomials

fn(X) =
n−1∏
k=0

X − ak

an − ak

form a basis of the D-module Int(E,D).

It is easy to establish the following.

Lemma 1. A sequence {an} is an ordering for E in D if and only if the
polynomials fn belong to Int(E,D).

Infinite orderings do not necessarily exist and thus, for a given integer N,
one may consider orderings of length N, that is, finite sequences {an}0≤n<N

such that the interpolation polynomials {fn}0≤n<N belong to Int(E,D).
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Question E. [5, Quest. 30] Characterize the subsets of Z which admit an
infinite Newtonian ordering.

Here are some examples (see [5]):
1) 0, 1, . . . , n, . . . is an infinite ordering for N, and also for Z.
2) 12, 22, . . . , n2, . . . is an infinite ordering for {n2 | n ∈ N}
3) 1, q, q2, . . . , qn, . . . is an infinite ordering for {qn | n ∈ N}.
On the other hand, there exists an infinite ordering for {nk | n ∈ N} or for
{nk | n ∈ Z} if and only if k = 1 or 2.

Of course, one can study subsets of other rings, in particular of Dedekind
domains. For instance, in line with our third example above, for every non-
constant polynomial g ∈ Fq[T ], the sequence 1, g, g2, . . . , gn, . . . is an infinite
ordering for {gn | n ∈ N} in Fq[T ].

A few facts are relevant in the study of orderings, whether infinite or of
length N, for a subset of a domain D:
1) Orderings are related to factorials ideals: if {an} is an infinite ordering for
E in D (resp. an ordering of length N), then each factorial ideal n!DE (resp.
each factorial ideal up to N) is generated by

∏n−1
k=0(an−ak) and, in particular,

is principal.
2) Local behaviour: it follows from the containment [7, I.2.4]

Int(E,D) ⊆ Int(E,Dp)
that if {an} is an ordering for E in D (of length N or infinite) then it is an
ordering for E in Dp for each prime ideal p of D. Conversely if P is a set of
prime ideals of D such that D = ∩p∈P Dp, and if {an} is an ordering for E
in Dp for all p ∈ P then it is an ordering for E in D.

In particular, suppose that D is a Dedekind domain with finite residue
fields. Then {an} is an ordering for E if and only if, for every maximal ideal
p of D, it is a p-ordering of E (Def. 1). Following Bhargava, this is known
as a simultaneous ordering (note that, for a discrete valuation domain with
maximal ideal p and finite residue field, a Newtonian ordering is nothing else
than a p-ordering).
3) Non-uniqueness: when they exist, orderings are not necessarily unique. For
instance, if {an}0≤n≤N is an ordering for D itself in the ring D, then, for every
b ∈ D and every unit u of D, {uan + b} is also an ordering for D, moreover
there may also be orderings of a different type. For instance, the sequence{
(−1)n

[
n+1

2

]}
n∈N is an ordering for Z [7, Exercise I.5] which is not linked by

a linear transformation to the sequence 0, 1, . . . , n, . . . of natural numbers.
4) Polynomial closure: if {an} is an ordering for E in D it is also an ordering
for the polynomial closure E of E in D, that is,

E = {b ∈ D | ∀f ∈ Int(E,D), f(b) ∈ D}.

3.2 Newtonian domains

Definition 4. A domain D is said to be a Newtonian domain if there exists
an infinite Newtonian ordering for D in D.
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Here are some examples:
1) Z is a Newtonian domain.
2) Every local domain D with infinite residue field is a Newtonian domain.
Any sequence of elements in distinct residue classes is an ordering for D since
Int(D) = D[X].
3) Every discrete valuation domain V is a Newtonian domain. If the residue
field is infinite this follows from the previous example and if the residue field if
finite, a Newtonian ordering is given by a p-ordering (where p is the maximal
ideal of V ). A particular case is that of a very well distributed and well ordered
sequence [7, Definition II.2.1]. To build such a sequence [7, Proposition II.2.3],
let t be a generator of the maximal ideal p and a0 = 0, a1, . . . , aq−1 be a
system of representatives of V modulo p then, for each n ∈ N with q-adic
expansion (2), put

an = an0 + an1t + . . . + ank
tk. (16)

From the previous examples and the Chinese remainder theorem we deduce
the following.

Proposition 4. A semi-local principal ideal domain is a Newtonian domain.

Let us consider now non semi-local domains. The first question is the following.

Question F. Does there exist a number field K 6= Q such that the ring of
integers OK of K is a Newtonian domain? [5, Quest. 30]

Known results are essentially negative (Wood [37]).

Proposition 5. The ring of integers OK of an imaginary quadratic field K
is not Newtonian.

The reason why it is easier to obtain a negative answer for imaginary quadratic
fields is probably due to the fact that there are only finitely many units. Here
is a positive result [14].

Proposition 6. Let K be a number field and let D be a localization of the ring
OK of integers of K. Then, the sequence {n}n∈N is a Newtonian ordering for
D (and thus D is a Newtonian domain) if and only if every prime number
splits completely in D.

For instance, if S denotes the multiplicative subset generated by the prime
numbers p such that p ≡ 1 (mod 4), then S−1Z[i] is a Newtonian domain.
More generally, we have the following.

Proposition 7. Let D be a Dedekind domain which is Newtonian, let {an}n∈N
be an ordering for D and let R be an integral domain containing D. The fol-
lowing assertions are equivalent:

(i) {an}n∈N is an ordering for R,
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(ii) For each p ∈ max(D) with finite residue field and for each m ∈ max(R)
containing p, one has R/m ' D/p and mRm = pRm.
When R is Noetherian, this is also equivalent to:

(iii) each p ∈ max(D) with finite residue field such that pR 6= R splits
completely in R (that is, pR =

∏r
i=1 mi where the mi’s are distinct maximal

ideals of R with norm equals to the norm of p).

The proof follows from the results given in [7, §IV.3]. See also [37, Prop. 5.1]
when R is a Dedekind domain.

One may also consider the question of Newtonian domains in the context
of functions with analogous results. First of all, for each finite field Fq, the
polynomial ring Fq[T ] is a Newtonian domain. Indeed, the sequence {an}n∈N
obtained by Formula (16) for the valuation domain Fq[T ](T ), that is,

an = an0 + an1T + . . . + ank
T k (17)

is in fact a Newtonian ordering for the domain Fq[T ] itself (see [5] or [1]).
Similarly to Question F, one may then ask the following.

Question F1. Are there algebraic extensions K 6= Fq(T ) of Fq(T ) such that
the integral closure OK of Fq[T ] in K is a Newtonian domain?

There is a result very similar to Wood’s result. Recall that the extension K
of Fq(T ) is called an imaginary extension if the infinite place of Fq(T ), that
is the valuation associated to 1

T , has only one extension to K. In this case
the units of K are the elements of F∗q . Assume that q is odd, then a quadratic
extension K = Fq(T )[Y ]/(Y 2 − D(T )) of Fq(T ) is imaginary if and only if
either deg(D) is odd or the leading coefficient of D is not a square in Fq.

Proposition 8. (Adam [1]) Assume that q is odd and consider an imaginary
quadratic extension K = Fq(T )[Y ]/(Y 2 −D(T )) of Fq(T ). Then the integral
closure OK of Fq[T ] in K is not a Newtonian domain unless deg(D) = 1.

In fact, if deg(D) = 1, the quadratic extension K is isomorphic to Fq(T ).

More generally, we ask the following.

Question F2. Characterize the Dedekind domains that are Newtonian.

For a discrete valuation domain with maximal ideal p and finite residue field,
Newtonian orderings and p-orderings are the same; they were characterized by
Julie Yeramian [38] and correspond to the very well ordered sequences defined
by Y. Amice [3]. By globalization, we obtain the following partial answer:

Proposition 9. Let D be a Dedekind domain with finite residue fields. A
sequence {an}n∈N in D is a Newtonian ordering for D if and only if, for each
maximal ideal p of D with norm q, for each s ∈ N, and for each k ∈ N∗, the
qk following consecutive elements form a complete system of representatives
of D modulo pk :

asqk , asqk+1, . . . , a(s+1)qk−1. (18)
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3.3 Schinzel orderings

The last proposition is obviously related to an old problem suggested by J.
Browkin in 1965 for Q[i], which is known as Schinzel’s problem [30, Problem 8].

Schinzel’s problem (1969). Does there exist a number field K 6= Q with
a sequence {an}n∈N of elements in the ring of integers OK of K such that,
for each ideal I of OK with norm N = N(I) = Card(OK/I), the sequence
a0, a1, . . . , aN−1 is a complete system of representatives of OK modulo I?

Some results are known: K cannot be a quadratic field (Wantula, 1969), OK

must be a principal ideal domain (Wasen, 1976).

More generally, we may consider a domain D. As for Newtonian orderings,
good infinite sequences may not exist and hence, we may wish to restrict
ourselves to finite sequences. We thus set the following.

Definition 5. Let D be a domain.
1) A sequence {an}n∈N in D is called an infinite Schinzel ordering for D if,
for each integer k and each ideal I of D with norm N(I) ≥ k, the elements
a0, a1, . . . , ak−1 are in distinct classes modulo I.
2) Given a positive integer N, a sequence {an}0≤n<N in D is called a Schinzel
ordering of length N for D if, for each k ≤ N and each ideal I of D with norm
N(I) ≥ k, the elements a0, a1, . . . , ak−1 are in distinct classes modulo I.
3) The domain D is said to be a Schinzel domain if there exists an infinite
Schinzel ordering for D.

Here are some examples:
1) Z is a Schinzel domain with Schinzel ordering {n}n∈N.
2) A discrete valuation domain with finite residue field is a Schinzel domain.
The sequence constructed by means of Formula (16) is a Schinzel ordering.
3) Fq[T ] is a Schinzel domain: the Newtonian ordering for Fq[T ] defined by (17)
is a Schinzel ordering because, whatever the polynomial g ∈ Fq[T ] of degree
d, the qd first elements of this sequence are in distinct classes modulo g.
4) A local domain with an infinite residue field is (trivially) a Schinzel domain
(the norm of every proper ideal is infinite and a sequence of elements in distinct
classes modulo the maximal ideal is a Schinzel ordering).

The following necessary condition was communicated to us by Sophie
Frisch.

Proposition 10. Let D be a domain with finite residue rings. If D is a
Schinzel domain, then D is Euclidean for the norm.

Proof. For x ∈ D, write N(x) for the norm of the principal ideal xD. Assume
there exists an infinite Schinzel ordering {an}n∈N. One may always assume
that a0 = 0. Then, for each k, ak and a0 are in the same class modulo akD.
It follows from the definition of a Schinzel ordering that N(ak) ≤ k. Let
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x, y ∈ D and set n = N(x). As a0, a1, . . . , an−1 form a complete system of
residues modulo xD, one may write y = qx + r, with q ∈ D and r = ak, for
some k ≤ n− 1. Clearly, one then has N(ak) < N(x). ut

In general, the ring of integers of a number field is not a Schinzel domain.
Maximal lengths of Schinzel orderings are given in [27] and [36].

It may be interesting to compare Schinzel and Newtonian orderings. In
particular, we pose the following.

Question G. Are the classes of Newtonian and Schinzel domains distinct?

In fact, for a Dedekind domain with finite residue fields, one can list six natural
properties for a sequence {an}n∈N in D as follows: ν denotes the norm of any
nonzero ideal I of D, q denotes the norm of any maximal ideal p of D and,
‘c.s.r.’ means ‘is a complete system of representatives of ...’

property for all the sequence c.s.r.
I ν = N(I), r ∈ N ar, . . . , ar+ν−1 D/I
I’ q = N(p), s ∈ N∗, r ∈ N ar, . . . , ar+qs−1 D/ps

II ν = N(I), k ∈ N akν , . . . , a(k+1)ν−1 D/I
II’ Newton q = N(p), s ∈ N∗, k ∈ N akqs , . . . , a(k+1)qs−1 D/ps

III Schinzel ν = N(I) a0, . . . , aν−1 D/I
III’ q = N(p), s ∈ N∗ a0, . . . , aqs−1 D/ps

One can say that a Dedekind domain D satisfies one of these properties if
there exists a sequence in D which satisfies the given property. We have the
following obvious implications:

I −−−−→ II −−−−→ IIIy y y
I ′ −−−−→ II ′ −−−−→ III ′

Problem G1. Discuss each reverse implication.

We list below some examples for the strongest properties (I, I’ and II):
Property I: a) Obviously, the sequence of natural numbers satisfies I in Z.
b) A discrete valuation domain with a finite residue field. A sequence {an}n∈N
satisfies I if and only if it is a very well distributed and well ordered sequence [7,
§II.2], that is if, for each n and m,

v(an − am) = vq(n−m)

where v denotes the valuation, q denotes the cardinality of the residue field
and vq(n−m) denotes the greatest k such that qk divides n−m. The sequence
given by Formula 16 satisfies this property.
Property I’ : a) A Dedekind domain D with characteristic 0 such that every
prime number splits completely in D. Merely consider the sequence {n}n∈N.
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b) A semi-local principal ideal domain D (because property I may be global-
ized for finitely many maximal ideals, cf. [38]).
Property II: The sequence given by (17) yields that Fq[T ] has this property.

Here is a partial answer to question G1. The domain Fq[T ] satisfies II, but not
I’ [2, Prop. 2.8]). Consequently, II 6→I’. We may also notice that the negative
results concerning the Newtonian property are generally obtained by using
only the first terms of the sequences (that is, property III’).

4 The Pólya-Ostrowski group and Pólya fields

A necessary (but not sufficient) condition for D to be a Newtonian domain is
that all factorial ideals are principal. We discuss here this property.

4.1 The Pólya-Ostrowski group

Definition 6. Let D be a Dedekind domain.
1) The factorial group of D is the subgroup Fact(D) of the group J (D) of
nonzero fractional ideals of D generated by the factorial ideals.
2) The Pólya-Ostrowski group of D is the image Po(D) of Fact(D) in the
class group Cl(D) = J (D)/P(D) of D.

It is easy to check the following (see for instance, [10, Prop. 2.2]).

Proposition 11. Let D be a Dedekind domain. Then Fact(D) is a free
Abelian group with a basis formed by the non trivial ideals

Πq =
∏

p∈Max(D), N(p)=q

p.

Assume throughout that K is a number field and that OK denotes its ring of
integers. A natural question is the following.

Problem H. Describe the Pólya-Ostrowski group Po(OK) of the ring of
integer OK of a number field K.

We have some partial answers for Galois extensions K/Q, since in this case
the ideals Πq are the ambige Ideale of Hilbert.
1) The Pólya-Ostrowski Po(OK) is generated solely by the Πq’s where q is
some power of a ramified prime number [34].
2) A description of the Pólya-Ostrowski group of a quadratic number field can
be found in [25, Prop. 105 and 106] or [7, II.4.4].
3) The following sequence of Abelian groups is exact:

1 → H1(G, U(OK)) → ⊕p∈PZ/epZ → Po(OK) → 1
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where ep denotes the ramification index of p in the extension K/Q (see [10]
or [39]).
4) If K is the compositum of two Galois subextensions K1 and K2 of Q such
that [K1 : Q] and [K2 : Q] are relatively prime, then by [10, Prop. 3.6],

Po(OK) ' Po(OK1)× Po(OK2).

4.2 Pólya fields

Proposition 12. Let D be a Dedekind domain. The following assertions are
equivalent:

(i) Int(D) admits a regular basis, that is, a basis {fn}n∈N where deg(fn) = n.
(ii) The ideals n!D are principal.

(iii) The ideals Πq =
∏

N(p)=q p are principal.
(iv) The Pólya-Ostrowski group of D is trivial, that is, Po(D) ' {1}.

Returning to number fields, we use a definition of Zantema [39].

Definition 7. A Pólya field is a number field K such that Po(OK) = {1},
that is, such that Int(OK) admits a regular basis.

Here again, we offer some answers.
1) Every cyclotomic field is a Pólya field.
2) For the characterization of the quadratic Pólya fields see [39] or [7, II.4.5].
3) It follows from the previous section that, if K1 and K2 are two Pólya fields
such that [K1 : Q] and [K2 : Q] are relatively prime, then K1K2 is a Pólya
field.

The notion of Pólya field may also be extended to function fields with some
partial results. The first ones were given by Van der Linden [35]. More general
results were obtained by Adam [2, Chapter 5]:
1) The analog of cyclotomic fields in the context of function fields are Pólya
fields .
2) The analog of imaginary Kummer’s extensions Fq(T )[Y ]/(Y n−D(T )) that
are Pólya fields are characterized.

Finally, let us recall the problem of class field towers which goes back to
Kronecker and Weber. The ring of integers OK of a number field K is not
necessarily a principal ideal domain. However, if hK denotes the class number
of K, that is, the order of the class group Cl(OK)), there exists a Galois
extension H(K) of K of degree hK , the Hilbert class field of K, such that, for
every ideal I of OK , its extension IOH(K) is a principal ideal of OH(K) (and
moreover, the Galois group Gal(H(K)/K) is isomorphic to Cl(OK)). Again,
OH(K) is not necessarily a principal ideal domain, so that, one may iterate
the process and consider H(H(K))..., and so on. The question was as follows:
does this construction of the Hilbert class field tower of K stops after a finite
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number of steps? The answer is no and was given by Golod and Shafarevich
in 1964.

Analogously, we introduce the following definition:

Definition 8. An extension of number fields L/K is called a Pólya extension
if all the extended ideals Πq(OK)OL are principal.

In other words, the extension L/K is a Pólya extension if and only if the
OL-module Int(OK ,OL) has a regular basis. Of course, if K is a Pólya field,
then every finite extension of K is a Pólya extension and, whatever the fixed
number field K, there exist a Pólya extension L of K contained in the Hilbert
class field H(K) of K (since Po(OK) ⊆ Cl(OK)). If this extension L is not a
Pólya field, we may iterate the process. This suggests two questions:

Question I1. For every number field K, is there a smallest Pólya extension
of K contained in the Hilbert class field H(K) of K?

Question I2. For every number field K, is there a Pólya field containing K?
That is, is there a finite Pólya extension tower of K?

5 Around Prüfer domains

We end our paper with a short section which, following R. Gilmer [21], is
most strongly linked to multiplicative ideal theory. In the classical case of the
ring of integer-valued polynomials in a global field K (i.e., a number field or
a function field), the ring Int(OK) is a 2-dimensional Prüfer domain. In the
case of a local field (i.e., a field which is complete for a discrete valuation with
a finite residue field), if V denotes the ring of the valuation, Int(V ) provides
a very natural example of a 2-dimensional Prüfer domain that is completely
integrally closed but not the intersection of rank-one valuation domains. This
last example answers several questions which go back to Krull.

A natural question then was the following: for which domain D, is Int(D)
a Prüfer domain?

When D is Noetherian, it is necessary and sufficient that D is a Dedekind
domain with finite residue fields. In general, the answer is more difficult and
Gilmer’s paper [20] is a seminal step for this characterization. We state it in
characteristic 0.
Int(D) is a Prüfer domain if and only if D is an almost Dedekind domain (each
localization of D with respect to a maximal ideal p is a discrete valuation
domain) with finite residue fields and, for each prime number p, the following
subsets are bounded: {|D/p| | p ∈ p} and {vp(p) | p ∈ p} where vp denotes
the normalized valuation associated to p (see [9], [20] and [28]).

Recent papers deal more and more with subsets.

Problem J. Characterize the pairs (S, D), where D is a domain and S is a
subset of D, such that Int(S, D) is a Prüfer domain.
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There are several partial answers (for instance [7, V.Exercises] or [13]), but
no characterization. It is however interesting to note that subsets allow one to
provide examples of Prüfer domains with arbitrarily large Krull dimensions.

Finally, recall a question from Brewer and Klinger [6] which is of great
interest. It concerns the question whether, as with Dedekind domains, Prüfer
domains D have the simultaneous bases property. This property is defined as
follows: for each n ∈ N∗ and each sub-D-module M of Dn, one has
1) M is a projective D-module of rank k ≤ n,
2) there exist n rank-one projective sub-D-modules P1, . . . , Pn of Dn and a
decreasing sequence I1 ⊇ . . . ⊇ Ik of ideals of D such that

Dn = P1 ⊕ · · · ⊕ Pn , M = I1P1 ⊕ · · · ⊕ IkPk.

For a Prüfer domain, this property is equivalent to the bcs-property that may
be formulated in the following way: for each matrix B ∈ Mn×m(D) of unit
content, there exists a matrix C ∈ Mm×l(D) such that BC has unit content
and rank one (recall that the content of a matrix is the ideal generated by its
coefficients). The final question is as follows.

Question K (Brewer and Klinger). Does the very classical Prüfer domain
Int(Z) = {f ∈ Q[X] | f(Z) ⊆ Z} satisfy the bcs-property?
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