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Abstract: Let B× be the biset functor over F2 sending a finite group G to the group

B×(G) of units of its Burnside ring B(G), and let B̂× be its dual functor. The main

theorem of this paper gives a characterization of the cokernel of the natural injection from

B× in the dual Burnside functor F̂2B, or equivalently, an explicit set of generators GS

of the kernel L of the natural surjection F2B → B̂×. This yields a two terms projective

resolution of B̂×, leading to some information on the extension functors Ext1(−, B×). For

a finite group G, this also allows for a description of B×(G) as a limit of groups B×(T/S)

over sections (T, S) of G such that T/S is cyclic of odd prime order, Klein four, dihedral of

order 8, or a Roquette 2-group. Another consequence is that the biset functor B× is not

finitely generated, and that its dual B̂× is finitely generated, but not finitely presented.

The last result of the paper shows in addition that GS is a minimal set of generators of L,

and it follows that the lattice of subfunctors of L is uncountable.
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1. Introduction

The Burnside ring B(G) is a fundamental invariant attached to a finite
group G. It is a commutative (unital) ring, and most of its structural prop-
erties have been described several decades ago, e.g. the prime spectrum by
Dress ([10]), or the primitive idempotents of the algebra QB(G) by Gluck
([12]) and Yoshida ([19]).

An important missing item in this list is the group of multiplicative units
B(G)×. More precisely, it follows from Burnside’s theorem that B(G)× is a
finite elementary abelian 2-group, but the rank of this group is known only
under additional assumptions on G, by the work of many different people
([13], [14], [20], [18], [6], [1]). A very efficient algorithm for computing this
rank has also been obtained in [2]. However, no general formula for the rank
of B(G)× is known so far. Let us recall that, according to an observation
of tom Dieck ([17], Proposition 1.5.1) based on a theorem of Dress ([10]),
Feit-Thompson’s theorem ([11]) is equivalent to the assertion that B×(G)
has order 2 if |G| is odd.

It was observed in [6] that the assignment G 7→ B(G)× is a biset func-
tor B× with values in F2-vector spaces, and that B× embeds in the F2-
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dual functor HomZ(B,F2) of the Burnside functor. In the present paper,
we give (Theorem 3.4) a characterization of the image of this embedding
ı : B× → HomZ(B,F2), or equivalently, we describe generators for the kernel
L of the natural transposed surjection  : F2B → HomZ(B

×,F2). This yields
a functorial presentation

0 // L // F2B


// HomZ(B
×,F2) // 0

of the (dual) functor HomZ(B
×,F2). Unfortunately, the generators we obtain

for L are not linearly independent, so at least at this stage, the previous
exact sequence doesn’t provide any obvious formula for the F2-dimension of
the evaluations of the functor B×.

It still admits some interesting consequences, that we develop in the three
last sections. Section 4 is concerned with the extension groups Ext1(M,B×)
for some biset functors M over F2. In Section 5, we give a sectional charac-
terization of B×(G) as a limit of groups B×(T/S), where (T, S) runs through
sections (T, S) of G such that T/S is cyclic of odd prime order, Klein four,
dihedral of order 8, or a Roquette 2-group. Finally, in Section 6, it is shown
that the biset functor B× is not finitely generated, and that its dual is finitely
generated (by a single element), but not finitely presented. We also show that
the generating set we obtain for the above functor L is minimal, and that
the lattice of subfunctors of L is uncountable. These last results may be seen
as another sign of the difficulty of determining B×(G) for an arbitrary finite
group G, at least with our present methods.

2. Review of Burnside rings and biset functors

2.1. Burnside rings. We quickly recall first some basic definitions on
Burnside rings. Missing details can be found in [3].

Let G be a finite group. The Burnside ring B(G) of G is the Grothendieck
ring of the category of finite (left) G-sets, for relations given by disjoint union
decompositions. In other words B(G) is the quotient of the free abelian group
on the set of isomorphism classes of finite G-sets by the subgroup generated
by all the elements of the form [X ⊔ Y ] − [X] − [Y ], where [X] denote the
isomorphism class of the G-set X.

The multiplication in B(G) is induced by the cartesian product of G-sets.
In other words [X][Y ] = [X × Y ] for any two finite G-set X and Y . The
identity element is the (isomorphism class of a) G-set of cardinality 1.

The additive group B(G) is free with basis the set of isomorphism classes
of transitive G-sets. Each transitive G-set is isomorphic to a G-set of the form
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G/H, where H is a subgroup of G. The transitive G sets G/H and G/K are
isomorphic if and only if the subgroups H and K of G are conjugate. For
sake of simplicity, we denote by G/H instead of [G/H] the image in B(G)
of the transitive G-set G/H. With this abuse of notation, the abelian group
B(G) has a basis consisting of the elements G/H, where H runs through a
set of representatives of conjugacy classes of subgroups of G.

The commutative Q-algebra QB(G) = Q⊗ZB(G) is split semisimple. Its
primitive idempotents (see [12] or [19]) are indexed by the subgroup of G,
up to conjugation. The idempotent eGH indexed by H ≤ G is equal to

eGH =
1

|NG(H)|

∑

L≤H

|L|µ(L,H)G/L ,

where µ is the Möbius function of the poset of subgroups of G. Its defining
property is that

∀K ≤ G, |(eGH)
K | =

{
1 if K =G H,
0 otherwise.

Here the map α ∈ QB(G) 7→ |αK | ∈ Q is the linear form sending (the class
of a finite) G-set X to the cardinality |XK | of the set XK | of K-fixed points
in X.

2.2. Biset functors. (see [7] for details) For finite groups G and H, an
(H,G)-biset is a H ×Gop-set, i.e. a set U endowed with a left H-action and
a right G-action which commute. The Burnside group B(H×Gop) of (finite)
(H,G)-bisets is denoted by B(H,G).

Let C denote the following category:

� The objects of C are all the finite groups.

� For finite groups G and H, the set of morphisms HomC(G,H) is equal
to B(H,G).

� The composition of morphisms in C is defined by bilinearity from the
standard “tensor product” (also called composition) of bisets: for finite
groups G, H and K, for a (K,H)-biset V and an (H,G)-biset U , set

V ×H U = (V × U)/H ,

where H acts on the right on (V × U) by (v, u)h = (vh, h−1u). Then
V ×H U is a (K,G)-biset in the obvious way.

� The identity element of G is (the class of) the set G, viewed as a
(G,G)-biset by left and right multiplication.
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A biset functor is an additive functor from C to the category of all Z-modules.
Biset functors, together with natural transformations between them, form an
abelian category F . More generally, for a commutative (unital) ring k, one
can consider the k-linearization kC of C, i.e. the category with the same
objects, and such that

HomkC(G,H) = k ⊗Z HomC(G,H) = kB(H,G) ,

the composition in kC being defined as the k-bilinear extension of the compo-
sition in C. A biset functor over k is a k-linear functor from kC to the category
k-Mod of all k-modules. These functors, together with natural transforma-
tions between them, form an abelian category Fk.

There is a one to one parametrization (H, V ) 7→ SH,V of simple bisets
functors over k (up to isomorphism of functors) by pairs (H, V ) of a finite
group H and a simple kOut(H)-module V (up to isomorphism of such pairs).
If G is a finite group, and if SH,V (G) 6= {0}, then H is isomorphic to a
subquotient of G.

Let F be a biset functor, and let G, H be finite groups. We define the
opposite biset U op as the (G,H)-biset U , where the action of (g, h) ∈ G×H
on u ∈ U is defined by

g · u · h = h−1ug−1 .

This definition extends uniquely to a k-linear map α 7→ αop from kB(H,G)
to kB(G,H).

For α ∈ kB(H,G) and m ∈ F (G), we denote by α(m) or simply αm the
image of m by the map F (α). In particular, when U is a finite (H,G)-biset,
we set U m = F

(
[U ]

)
(m).

When F is a biset functor over k, and M is a k-module, the M -dual of F
is the functor Homk(F,M) defined by

{
∀G, Homk(F,M)(G) = Homk

(
F (G),M

)

∀G,H, ∀α ∈ kB(H,G), Homk(F,M)(α) = tF (αop) .

When p is a prime number, let kCp denote the full subcategory of kC con-
sisting of finite p-groups. A k-linear functor from kCp to k-Mod is called a
p-biset functor (over k). The abelian category of p-biset functors over k is
denoted by Fp,k.

More generally, if T is a class of finite groups closed under taking subquo-
tients, one can consider the full subcategory kT of kC consisting of groups
in T . The abelian category of k-linear functors from kT to k-Mod is denoted
by FT ,k.

Let F be an object of FT,k. An element of F is a pair (R, v), where
R ∈ T and v ∈ F (R). For a set G of elements of F , the subfunctor 〈G〉 of F
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generated by G is defined as the intersection of all subfunctors L of F such
that v ∈ L(R) for all (R, v) ∈ G. Its evaluation at a group H ∈ T is given
by

〈G〉(H) =
∑

(R,v)∈G
α∈kB(H,R)

F (α)(v) .

The functor F is finitely generated if there exists a finite set G of elements
of F such that 〈G〉 = F . The functor F is finitely presented if there exists
an exact sequence Q → P → F → 0 in FT ,k, where P and Q are finitely
generated projective functors.

Let F be an object of FT,k, and H ∈ T . The residue (or Brauer quotient)
F (H) of F at H is the k-module defined by

F (H) = F (H)
/ ∑

T∈T
|T |<|H|

α∈kB(H,T )

F (α)
(
F (T )

)
.

2.3. Elementary bisets. Bisets of one of the following forms are called
elementary bisets:

� Let H be a subgroup of a finite group G. The set G, viewed as a
(G,H)-biset (by multiplication), is called induction (from H to G),
and denoted by IndG

H . The set G, viewed as an (H,G)-biset (by multi-
plication), is called restriction (from G to H), and denoted by ResGH .

� Let N be a normal subgroup of a finite group G. The set G/N , viewed
as a (G,G/N)-biset (by multiplication on the right, and projection
followed by multiplication on the left), is called inflation (from G/N
to G) and denoted by InfGG/N . The set G/N , viewed as a (G/N,G)-biset
(by multiplication on the left, and projection followed by multiplication
on the right), is called deflation (from G to G/N), and denoted by
DefGG/N .

� Let ϕ : G→ G′ be an isomorphism of groups. The set G′, viewed as a
(G′, G)-biset (by multiplication on the left, and multiplication by the
image under ϕ on the right), is called transport by isomorphism (by ϕ),
and denoted by Iso(ϕ) or IsoG

′

G if ϕ is clear from the context.

In addition to these elementary bisets, it is convenient to distinguish the
following ones, when (T, S) is a section of a finite group G, i.e. a pair of
subgroups of G with SET :

� The set G/S, viewed as a (G, T/S)-biset, is called induction-inflation
(from T/S to G), and denoted by IndinfGT/S. It is isomorphic to the

composition IndG
T ×T InfTT/S.
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� The set S\G, viewed as a (T/S,G)-biset, is called deflation-restriction
(from G to T/S), and denoted by DefresGT/S. It is isomorphic to the

composition DefTT/S ×T ResGT .

For finite groups G and H, any transitive (H,G)-biset is isomorphic to a
biset of the form (H×G)/X, where X is a subgroup of H×G, and the biset
structure is given by h · (a, b)X · g = (ha, g−1b)X for h, a in H and g, b in G.
We set

p1(X) = {h ∈ H | ∃g ∈ G, (h, g) ∈ X}

k1(X) = {h ∈ H | (h, 1) ∈ X}

p2(X) = {g ∈ G | ∃h ∈ H, (h, g) ∈ X}

k2(X) = {g ∈ G | (1, g) ∈ X} .

With this notation, we have k1(X)E p1(X) and k2(X)E p2(X), and there
is a canonical group isomorphism f : p2(X)/k2(X) → p1(X)/k1(X) sending
gk2(X) to hk1(X) if (h, g) ∈ X. Moreover (see [7], Lemma 2.3.26), there is
an isomorphism of (H,G)-bisets

(2.4) (H ×G)/X ∼= IndinfHp1(X)/k1(X) Iso(f)Defres
G
p2(X)/k2(X)

where the concatenation on the right hand side denotes the composition of
bisets. In other words, any transitive biset is isomorphic to a composition of
elementary bisets.

It follows that if T is a class of finite groups closed under taking subquo-
tients, if F ∈ FT ,k and H ∈ T , then

F (H) = F (H)
/ ∑

AEB≤H
(B,A) 6=(H,1)

IndinfHB/AF (B/A)

= F (H)
/( ∑

B<H
Bmaximal

IndH
BF (B) +

∑

1<AEH
Aminimal

InfHH/AF (H/A)
)
.

2.5. Faithful elements. (see [7], Section 6.3) Let F be a biset functor over
a commutative ring k. For a finite group G, let

∂F (G) = {u ∈ F (G) | ∀1 6= N EG, DefGG/Nu = 0} .

The k-submodule ∂F (G) is called the submodule of faithful elements of F (G).
If is always a direct summand of F (G). More precisely, the element

fG
1
=

∑

N EG

µEG(1, N) [(G×G)/L]
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of kB(G,G) is an idempotent endomorphism of G in the category kC, and
one can show that ∂F (G) = F (fG

1
)
(
F (G)

)
.

2.6. Genetic bases of p-groups. ([7] Definition 6.4.3, Lemma 9.5.2 and
Theorem 9.6.1) Let p be a prime number, and P be a finite p-group. For a
subgroup Q of P , let ZP (Q) ≥ Q denote the subgroup of NP (Q) defined by

ZP (Q)/Q = Z
(
NP (Q)/Q

)
.

The subgroup Q is a genetic subgroup of P if the two following properties
hold:

� The group NP (Q)/Q is a Roquette p-group, i.e. it has normal p-rank 1.
Recall that the Roquette p-groups of order pn are the cyclic p-groups
Cpn (n ≥ 0), and in addition when p = 2, the generalized quaternion
groups Q2n (n ≥ 3), the dihedral groups D2n (n ≥ 4) and the semidi-
hedral groups SD2n (n ≥ 4).

� For any x ∈ G, the intersection xQ ∩ ZP (Q) is contained in Q if and
only if xQ = Q.

For two genetic subgroups Q and R of P , write

Q ̂P
R⇔ ∃x ∈ P such that xQ ∩ ZP (R) ≤ R and Rx ∩ ZP (Q) ≤ Q .

One can show that this defines an equivalence relation on the set of genetic
subgroups of P . A genetic basis of P is a set of representatives of equivalence
classes of genetic subgroups of P for the relation ̂P

.

2.7. Rational p-biset functors. ([7] Theorem 10.1.1, Definition 10.1.3
and Theorem 10.1.5) Let p be a prime number, and F be a p-biset functor
over a commutative ring k. If P is a finite p-group and B is a genetic basis
of P , the map

IB :
⊕

Q∈B

IndinfPNP (Q)/Q :
⊕

Q∈B

∂F
(
NP (Q)/Q

)
→ F (P )

is split injective, with left inverse

DB :
⊕

Q∈B

f
NP (Q)/Q
1

◦DefresPNP (Q)/Q : F (P )→
⊕

Q∈B

∂F
(
NP (Q)/Q

)
.

The functor F is called rational if for any finite p-group P , the map IB
is an isomorphism for some - equivalently for any - genetic basis B of P .
Rational p-biset functors form a Serre subcategory of Fp,k. Moreover, for
any k-module M , the M -dual Homk(F,M) of a rational p-biset functor F is
rational.

7



3. The main theorem

3.1. Notation: Let R denote the class of finite groups which are isomor-
phic to one of the following groups:

� A cyclic group Cp of odd prime order p.

� A cyclic group C4 of order 4.

� An elementary abelian group (C2)
2 of order 4.

� A dihedral 2-group D2n of order 2n ≥ 8.

� A semidihedral 2-group SD2n of order 2n ≥ 16.

For each group R in R, let εR denote the element of B(R) defined by:

� εR = R/1−R/R if R ∼= Cp.

� εR = R/1−R/S if R ∼= C4, where S is the unique subgroup of order 2
of R.

� εR = R/1− (R/A+R/B+R/C) + 2R/R if R ∼= (C2)
2, where A,B,C

are the the three subgroups of order 2 of R.

� εR = (R/I − R/IZ) − (R/J − R/JZ), if R ∼= D2n, where I and J
are non conjugate non central subgroups of order 2 of R, and Z is the
center of R.

� εR = R/I − R/IZ if R ∼= SD2n, where I is a non central subgroup of
order 2 of R, and Z is the center of R.

Let moreover εR denote the image of εR in F2B(G).

3.2. Remark: When R is cyclic, elementary abelian of order 4, or dihe-
dral, the elements εR ∈ B(R) already appear in [9] (Notation 3.6) and [5]
(Corollary 6.5 and Notation 6.9, where εD2n

is denoted δn). Also observe
that ε = fR

1
R/1 ∈ B(R) if R is neither dihedral nor semidihedral. Moreover

εR = fR
1
(R/I −R/J) if R ∼= D2n , and εR = fR

1
R/I when R ∼= SD2n . Hence

fR
1
εR = εR for any R ∈ R.

3.3. Notation: Let F2,+ denote the additive group of F2, and

s ∈ {±1} 7→ s+ ∈ F2,+

be the group isomorphism is defined by (−1)+ = 1F2
and (+1)+ = 0F2

. Let
t ∈ F2,+ 7→ t× ∈ {±1} denote the inverse group isomorphism.
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Recall that for a finite group G, any unit element u ∈ B×(G) in the
Burnside ring of G defines a linear form ıG(u) on B(G), with values in F2,
by

ıG(u)(G/H) = |uH |+ .

When G runs through finite groups, these maps ıG form an injective mor-
phism of biset functors ı : B× → HomZ(B,F2) ([6], Proposition 7.2).

Moreover, by a theorem of Yoshida ([20], Proposition 6.5), a linear form
ϕ : B(G)→ F2 lies in the image of ıG if and only if for any subgroup H of G,
the map

ϕ̃H : x ∈ NG(H)/H 7→ ϕ
(
G/H〈x〉

)
− ϕ(G/H)

is a group homomorphism from NG(H)/H to F2,+.

3.4. Theorem: Let G be a finite group, and ϕ ∈ HomZ

(
B(G),F2

)
. The

following assertions are equivalent:

1. ϕ lies in the image of the natural map ıG : B×(G)→ HomZ

(
B(G),F2

)
.

2. (DefresGT/Sϕ)(εT/S) = 0F2
for every section (T, S) of G such that

T/S ∈ R.

Proof: 1⇒ 2 We check that if ϕ ∈ Im ıG, then (DefresGT/Sϕ)(εT/S) = 0F2
for

each section (T, S) of G such that T/S ∈ R. Since DefresGT/Sϕ ∈ Im ıT/S as ı
is a morphism of biset functors, we can assume that G ∈ R, and check that
ϕ(εG) = 0F2

when ϕ = ıG(u) for some u ∈ B×(G). In this case ϕ(G/H) =
|uH |+ for any subgroup H of G.

But since fG
1
εG = εG by Remark 3.2, and since fG

1
= (fG

1
)op, we have

ϕ(εG) = iG(u)(f
G
1
εG)

=
(
fG
1
iG(u)

)
(εG)

= iG(f
G
1
u)(εG) .

Moreover fG
1
u ∈ ∂B×(G) by definition. But ∂B×(G) = {0} if |Z(G)| > 2 by

Lemma 6.8 of [6], and ∂B×(G) also vanishes if G is generalized quaternion
or semidihedral, by Corollary 6.10 there. It follows that ∂B×(G) = {0} if
G ∈ R, unless perhaps if G ∼= D2n for some n ≥ 3. In particular ϕ(εG) = 0F2

if G ∈ R, unless G is a dihedral 2-group of order at least 8.
Now by Corollary 6.12 of [6] (and its proof), if G ∼= D2n for n ≥ 3, the

group ∂B×(G) has order 2, generated by the element

υG = 1− 2(eGI + eGJ ) = G/G+G/1− (G/I +G/J)
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of B(G). Moreover εG = fG
1
(G/I −G/J) by Remark 3.2. Thus

ϕ(εG) = iG(u)
(
fG
1
(G/I −G/J)

)

=
(
fG
1
iG(u)

)
(G/I −G/J)

= iG(f
G
1
u)(G/I −G/J)

= |(fG
1
u)I |+ − |(f

G
1
u)J |+ .

We can moreover assume that fG
1
u is the generator υG of ∂B×(G), i.e. that

fG
1
u = 1 − 2(eGI + eGJ ). Then clearly |(fG

1
u)I | = |(fG

1
u)J |, so ϕ(εG) = 0F2

also in this case, as was to be shown.

2⇒ 1 We prove the converse by induction on the order of G: we consider
ϕ ∈ HomZ

(
B(G),F2

)
such that (DefresGT/Sϕ)(εT/S) = 0F2

for every section
(T, S) of G such that T/S ∈ R. Assuming the result holds for groups of or-
der smaller than |G|, by transitivity of deflation-restrictions, we can assume
that DefresGT/Sϕ lies in the image of B×(T/S) for any section (T, S) such
that |T/S| < |G|, in other words any section (T, S) different from (G, 1). By
Yoshida’ theorem above, it follows that the map ϕ̃H is a group homomor-
phism for any H 6= 1. So proving that ϕ lies in the image of ıG amounts to
proving that the map ϕ̃1 : G→ F2 is a group homomorphism.

Equivalently, all we have to show is that the map

ψ : x ∈ G 7→ ϕ̃1(x)× ∈ {±1}

is a group homomorphism. Now ψ is a central function on G, with values
in {±1}, and moreover ψ(1) = 1 since ϕ̃1(1) = 0F2

. Hence all we have to
show is that ψ is a generalized character of G. Indeed in this case, there
exist integers nχ ∈ Z, indexed by the irreducible complex characters of G
such that ψ =

∑
χ∈Irr(G)

nχχ. Moreover

∑

χ∈Irr(G)

n2
χ =

1

|G|

∑

x∈G

|ψ(x)|2 = 1 ,

so nχ = 0, except for a single irreducible character χ for which nχ = ±1.
Since ψ(1) = 1, it follows that ψ = χ, so ψ is a character of G, of degree 1,
hence a group homomorphism from G to {±1}.

Now by Brauer’s induction theorem, the map ψ is a generalized character
of G if and only if its restriction to any Brauer elementary subgroup H of G
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is a generalized character of H. But for x ∈ H

(ResGHψ)(x) = ϕ̃1(x)× = ϕ(G/〈x〉)×/ϕ(G/1)×

= ϕ
(
IndG

H

(
H/〈x〉 −H/1

))
×

=
(
(ResGHϕ)

(
H/〈x〉 −H/1

))
×
.

It follows that if H is a proper subgroup of G, since ResGHϕ ∈ Im ıH , the map
ResGHψ is a generalized character of H. In other words we can assume that
G itself is Brauer elementary.

Then there exists a prime number p such that G = C×P , where P is a p-
group, and C is a p′-cyclic group. In particular G is nilpotent, so G = Q×R,
where Q is a 2-group and R is nilpotent of odd order. Then any subgroup
T of G is equal to A× B, for some subgroup A of Q and some subgroup B
of R. If B is non trivial, there exists a normal subgroup C of B of (odd)
prime index l. Set S = A×C. Then (T, S) is a section of G, and T/S ∼= Cl.
Thus

(DefresGT/Sϕ)(εT/S) = 0F2
= ϕ

(
IndinfGT/S(T/S−T/T )

)
= ϕ(G/S)−ϕ(G/T ) .

It follows by induction that ϕ
(
G/(A×B)) = ϕ

(
G/(A×1)

)
for any subgroup

A of Q and any subgroup B of R. In particular, for x ∈ Q and y ∈ R, the
subgroup 〈(x, y)〉 of G = Q×R is equal to 〈x〉 × 〈y〉, and

ψ(x, y) = ϕ
(
G/(〈x〉 × 〈y〉)

)
×
/ϕ(G/1)×

= ϕ
(
G/(〈x〉 × 1〉)

)
×
/ϕ(G/1)×

= ψ(x, 1) .

In other words it is enough to prove that the restriction of ψ to Q × 1 is a
generalized character. Equivalently, all we have to do is consider the case
where G = Q× 1, i.e. we can assume that G is a 2-group.

We consider the linearization morphism B(G) → RQ(G), which is sur-
jective by the Ritter-Segal theorem ([15], [16], [4]), and hence fits in a short
exact sequence

0 //K(G) // B(G) // RQ(G) // 0 .

By Corollary 6.16 of [5], the kernel K(G) of the linearization morphism is
linearly generated by the elements of the form IndinfGT/SεT/S, where (T, S) is
a section of G such that T/S is elementary abelian of order 4 or dihedral of
order at least 8. Since

ϕ(IndinfGT/SεT/S) = (DefresGT/Sϕ)(εT/S) = 0F2
,

11



the linear form ϕ vanishes on K(G), so we can consider ϕ as an element of
HomZ

(
RQ(G),F2

)
.

Now the functor RQ is a rational 2-biset functor (see Definition 10.1.3
and Proposition 9.6.12 of [7]), so its F2-dual HomZ(RQ,F2) is also rational.
It follows that if G is a genetic basis of G, we have

(3.5) ϕ =
∑

S∈G

IndinfGNG(S)/Sf
NG(S)/S
1

DefresGNG(S)/S ϕ .

For each S ∈ G, the group NG(S)/S is a Roquette 2-group, i.e. it is
cyclic, generalized quaternion of order at least 8, dihedral or semidihedral
of order at least 16. Recall moreover that Im ıR = HomZ

(
RQ(R),F2

)
if

R is trivial, of order 2, or dihedral of order at least 16. If we show that
f
NG(S)/S
1

DefresGNG(S)/S ϕ = 0 when NG(S)/S is not one of these Roquette
2-groups, then Equation 3.5 shows that ϕ ∈ Im ıG, and we are done.

So all we have to do is to show that f
NG(S)/S
1

DefresGNG(S)/S ϕ = 0 when
R = NG(S)/S is cyclic of order at least 4, generalized quaternion, or semi-
dihedral. In each of these cases R has a unique central subgroup Z of order 2,
and fR

1
= R/1−R/Z ∈ B(R,R).

Let X be any subgroup of R. Then

(f
NG(S)/S
1

DefresGNG(S)/S ϕ)(R/X) = (DefresGNG(S)/S ϕ)
(
fR
1
×R (R/X)

)

= (DefresGNG(S)/S ϕ)(R/X −R/ZX) .

This is zero if Z ≤ X, so we can assume Z � X, that is Z ∩X = 1.
If R is cyclic or generalized quaternion, this implies X = 1. Then

(fR
1
DefresGR ϕ)(R/X) = (DefresGR ϕ)(R/1−R/Z)

= (DefresGR ϕ)
(
IndR

D(D/1−D/Z)
)

= (ResRDDefres
G
Rϕ)(D/1−D/Z)

= (DefresGDϕ)(εD) ,

where D is a cyclic subgroup of order 4 of R. By assumption, this is equal
to 0F2

, hence f
NG(S)/S
1

DefresGNG(S)/S ϕ = 0 in these cases, as was to be shown.
Now if R ∼= SD2n with n ≥ 4, the same argument shows that

(fR
1
DefresGR ϕ)(R/X) = 0F2

if Z ≤ X or X = 1. Up to conjugation, the only remaining subgroup X of G
is X = I, and then

(fR
1
DefresGR ϕ)(R/X) = (DefresGR ϕ)(R/I −R/IZ)

= (DefresGR ϕ)(εR) = 0F2
.
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This completes the proof of Theorem 3.4.

3.6. Corollary: Let G be a finite group. Then the kernel of the natural map
G : F2B(G) → HomF2

(
B×(G),F2

)
is the group generated by the elements

IndinfGT/SεT/S, for all sections (T, S) of G such that T/S ∈ R.

Proof: This is just a dual reformulation of Theorem 3.4, since the natural
map G : F2B(G) → HomF2

(
B×(G),F2

)
is the transposed map of ıG, up to

the identification of F2B(G) with the F2-bidual of B(G).

For a finite group R, let BR = HomC(R,−) = B(−, R) denote the repre-
sentable biset functor defined by R, and let F2B = F2⊗ZBR

∼= HomF2C(R,−).

3.7. Corollary: Let S be the set of finite groups defined by

S = {Cp | p odd prime} ∪ {C4} ∪ {SD2n | n ≥ 4} ,

(by which we mean that S contains exactly one group of order p for each
odd prime p, one cyclic group of order 4, and one semidihedral group of each
order 2n ≥ 16), and let GS = {(R, εR) | R ∈ S} be the associated set of
elements of F2B.

1. Let L be the biset subfunctor of F2B generated by GS . Then there is an
exact sequence of biset functors

0 // L // F2B


// HomF2
(B×,F2) // 0 .

2. When R ∈ R, let dR : F2BR → F2B be the morphism of biset functors
induced by adjunction from εR ∈ F2B(R). Then the sequence

⊕
R∈S

F2BR
d
// F2B


// HomF2

(B×,F2) // 0

is exact, where d is the sum of all the maps dR, for R ∈ S.

3. For R ∈ R, let F2BRf
R
1

be the direct summand of F2BR equal to the
image of the idempotent endomorphism fR

1
∈ B(R,R) = EndF(BR).

Then the morphism dR : F2BR → F2B factors through a morphism
d̂R : F2BRf

R
1
→ F2B, and this yields an exact sequence of functors

⊕
R∈S

F2BRf
R
1

d̂
// F2B


// HomF2

(B×,F2) // 0 .

where d̂ is the sum of the morphisms d̂R, for R ∈ S.
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Proof: For Assertion 1, all we need to show is that the element εR belongs
to L(R), when R is elementary abelian of order 4 or dihedral of order at
least 8. But one checks easily that ResSD2n

D
2n−1

εSD2n
= εD

2n−1
for n ≥ 4, and

that ResD8

(C2)2
εD8

= ε(C2)2 . Now Assertion 2 follows from the fact that L is

equal to the image of d, and Assertion 3 from the fact that fR
1
εR = εR by

Remark 3.2.

4. Extensions

4.1. Notation: Let T denote the class of finite groups which are subquo-
tient of some group in S, that is the class of groups isomorphic to a group
in the following set

{
{Cp | p odd prime} ∪ {C2n | n ≥ 0} ∪ {Q2n | n ≥ 3}

∪ {(C2)
2} ∪ {D2n | n ≥ 3} ∪ {SD2n | n ≥ 4}

In other words T is the class of groups which are cyclic of odd prime order,
elementary abelian of order 4, dihedral of order 8, or a Roquette 2-group.

4.2. Proposition:

1. Set B̂× = HomF2
(B×,F2). If S be a biset functor over F2, such

that S(1) = {0}, then Ext1FF2

(B̂×, S) is isomorphic to a subspace of∏
R∈S

∂S(R), where S is the set defined in Corollary 3.7.

2. Let H be a finite group. If there exists a simple F2Out(H)-module V
such that Ext1FF2

(SH,V , B
×) 6= {0}, then H ∈ T .

Proof: The functor L of Corollary 3.7 is equal to Im d = Imd̂ = Ker , so we
have an exact sequence

0 // L // F2B


// B̂× // 0 ,

and a surjective morphism
⊕
R∈S

F2BRf
R
1

d̂
// // L . Let M be any biset func-

tor over F2. Applying first the functor HomFF2
(−,M) to the short exact
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sequence, we get the beginning of a long exact sequence

0 // Hom(B̂×,M) // Hom(F2B,M) // Hom(L,M) // Ext1(B̂×,M) // 0 ,

where Hom and Ext1 are taken in the category FF2
. Indeed Ext1(F2B,M)

is equal to zero as F2B = HomFF2
(1,−) is representable, hence projective in

FF2
. Moreover Hom(F2B,M) ∼= M(1), so we get an exact sequence

(4.3) 0 // Hom(B̂×,M) //M(1) // Hom(L,M) // Ext1(B̂×,M) // 0 .

In the caseM = S, since S(1) = {0}, this gives an isomorphism Hom(L, S) ∼=

Ext1(B̂×, S). On the other hand, since L is a quotient of
⊕
R∈S

F2BRf
R
1
, we get

an inclusion

Hom(L, S) �
�

// Hom(
⊕
R∈S

F2BRf
R
1
, S) ∼=

∏
R∈S

Hom(F2BRf
R
1
, S) .

Moreover Hom(F2BRf
R
1
, S) ∼= fR

1
S(R) = ∂S(R). This proves Assertion 1.

For Assertion 2, we take M = SH,W in the exact sequence 4.3, where
W = V ∗ is the dual module. If H 6= 1, then SH,W (1) = {0}. And if H = 1,
then W = F2, and by duality

Hom(B̂×, S1,F2
) ∼= Hom(S1,F2

, B×) ∼= F2
∼= S1,F2

(1) .

In both cases, we get an isomorphism

Hom(L, SH,W ) ∼= Ext1(B̂×, SH,W ) .

Now by duality, this is isomorphic to Ext1(SH,V , B
×). As before, it embeds

into
∏
R∈S

∂SH,W (R). Hence if Ext1(SH,V , B
×) 6= {0}, then there exists some

R in S such that ∂SH,W (R) 6= {0}. In particular SH,W (R) 6= {0}, so H is a
subquotient of R. This completes the proof.

5. Sectional characterization

Let OT denote the forgetful functor Fk → FT ,k. It was shown in Section 5
of [8] that the functor OT has a right adjoint RT defined as follows1. For

1The construction in [8] actually dealt only with p-biset functors, for a fixed prime
number p, and their restriction to a class of finite p-groups closed under taking subquo-
tients. But it extends verbatim to the categories Fk and FT ,k, for any class T of finite
groups closed under taking subquotients.
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a finite group G, let T (G) denote the set of sections (T, S) of G such that
T/S ∈ T . If F ∈ FT ,k, then

RT (F )(G) = lim
←−

(T,S)∈T (G)

F (T/S) ,

that is the set of sequences of elements lT,S ∈ F (T/S), for (T, S) ∈ T (G),
subject to the following conditions:

1. If (T, S) and (T ′, S ′) are elements of T (G) such that S ≤ S ′ ≤ T ′ ≤ T ,
then

Defres
T/S
T ′/S′lT,S = lT ′,S′ ,

2. If (T, S) ∈ T (G) and x ∈ G, then

xlT,S = lxT,xS .

The biset functor structure on RT (F ) is obtained as follows. For a finite
group H and a finite (H,G)-biset U , the image v = U l of l ∈ RT (F )(G)
by U is the sequence mT,S, for (T, S) ∈ T (H), defined by

mT,S =
∑

u∈[T\U/G]

(S\Tu) lTu,Su ,

where for a subgroup X of H, we set Xu = {g ∈ G | ∃x ∈ X, xu = ug}.
This makes sense as one can show that (T u, Su) is a section of G, and that
T u/Su is isomorphic to a subquotient of T/S, hence in T if T/S ∈ T .

The unit η : Id → RT ◦ OT of the adjunction between OT and RT ,
evaluated for N ∈ Fk at a finite group G, is the map ηN,G from N(G)
to RTOT (N)(G) sending n ∈ N(G) to the sequence of elements lT,S ∈
OT (N)(T/S) = N(T/S), for (T, S) ∈ T (G), defined by

lT,S = DefresGT/Sn .

5.1. Theorem: The unit of the adjunction between OT : FF2
→ FT ,F2

and
RT : FT ,F2

→ FF2
induces an isomorphism of biset functors over F2

ηB× : B× → RTOT (B
×) .

In other words, for any finite group G, the map

ηB×,G : B×(G)→ lim
←−

(T,S)∈T (G)

B×(T/S)

is an isomorphism.
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Proof: Set B̂ = HomZ(B,F2), and let C denote the cokernel of the morphism

ı : B× → B̂. The functor OT is exact, so its right adjoint RT is left exact.
Hence we get a commutative diagram

(5.2) 0 // B× ı
//

η
B×

��

B̂ π
//

η
B̂

��

C //

ηC

��

0

0 //RTOT (B
×)

f
//RTOT (B̂)

g
//RTOT (C)

with exact rows, where π is the projection morphism, f = RTOT (ı), and
g = RTOT (π).

We first claim that the vertical morphism ηB̂ is an isomorphism. Indeed,

let G be a finite group. The map ηB̂,G : B̂(G) → lim
←−

(T,S)∈T (G)

B̂(T/S) is the

map sending the linear form ϕ : B(G) → F2 to the sequence of linear forms
dT,S = DefresGT/Sϕ : B(T/S)→ F2, for (T, S) ∈ T (G). Since

dT,S
(
(T/S)

/
(T/S)

)
= ϕ

(
IndinfGT/S(T/S)

/
(T/S)

)
= ϕ(G/T ) ,

and since (T, T ) ∈ T for any subgroup T of G, we see that ηB̂,G is injective.

Now let l = (ψT,S)(T,S)∈T (G) be an element of lim
←−

(T,S)∈T (G)

B̂(T/S). So for

each (T, S) ∈ T (G), we get a linear map ψT,S : B(T/S)→ F2. For a subgroup
U of G, we set ϕ(G/U) = ψU,U

(
(U/U)

/
(U/U)

)
. Then for any x ∈ G, we

have ϕ(G/xU) = ϕ(G/U), since

ϕ(G/xU) = ψxU,xU

(
(xU/xU)

/
(xU/xU)

)

= (xψU,U)
(
(xU/xU)

/
(xU/xU)

)

= ψU,U

(
(U/U)

/
(U/U)

)

because xψT,S = ψxT,xS for any (T, S) ∈ T (G). It follows that ϕ extends

linearly to an element of B̂(G). Moreover, for any (T, S) ∈ T (G) and any

subgroup U/S of T/S, we have ψU,U = Defres
T/S
U/UψT,S, so

DefresGT/Sϕ
(
(T/S)

/
(U/S)

)
= ϕ

(
IndinfGT/S

(
(T/S)

/
(U/S)

))

= ϕ(G/U) = ψU,U

(
(U/U)

/
(U/U)

)

= (Defres
T/S
U/UψT,S)

(
(U/U)

/
(U/U)

)

= ψT,S

(
Indinf

T/S
U/U

(
(U/U)

/
(U/U)

)

= ψT,S

(
(T/S)

/
(U/S)

)
.
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Hence DefresGT/Sϕ = ψT,S, for any (T, S) ∈ T (G), so the map ηB̂,G is sur-
jective. Hence it is an isomorphism, for any finite group G, and ηB̂ is an
isomorphism, as claimed.

Now the Snake’s lemma, applied to Diagram 5.2, shows that the morphism
ηB× is injective, and that its cokernel is isomorphic to the kernel of ηC .
For a finite group G, an element ϕ of Ker ηC,G is represented by a linear
form ϕ : B(G) → F2 such that DefresGT/Sϕ belongs to ı

(
B×(T/S)

)
, for any

(T, S) ∈ T (G), hence in particular for any section (T, S) of G such that
T/S ∈ R. By Theorem 3.4, it follows that (DefresGT/Sϕ)(ǫT,S) = 0. As this
holds for any section (T, S) of G with T/S ∈ R, the form ϕ lies in the image
of ıG, by Theorem 3.4 again. In other words the element ϕ is equal to zero.
Hence Ker ηC,G = {0} for any G, so ηC is injective. It follows that ηB× is
surjective. Hence it is an isomorphism. This completes the proof of the
theorem.

6. Finite generation and presentation

In this section, we show that the biset functor B× is not finitely generated,
and that its dual B̂× is finitely generated (by a single element!), but not
finitely presented. Recall that k is a commutative ring, and that kBR =
k ⊗Z B(−, R) is the representable functor HomkC(R,−).

6.1. Lemma: Let R and H be finite groups. If kBR(H) 6= {0}, then H is
a subquotient of R.

Proof: Recall that kBR(H) = kB(H,R) has a k-basis consisting of the
transitive bisets (H × R)/X, for X in a set of representatives of conjugacy
classes of subgroups of H×R. Let X be one of these groups, and Y = p1(X)
be its first projection. Then (H × R)/X = kBR(Ind

H
Y )

(
(Y × R)/X

)
, where

we abuse notation in the right hand side by viewing X as a subgroup of
Y × R, and (Y × R)/X as an element of kBR(Y ). Hence if the image of
(H ×R)/X in kBR(H) is non zero, then Y = H.

In this case let N = k1(X). Then N is a normal subgroup of H = p1(X),

and (H ×R)/X = kBR(Inf
H
H/N)

((
(H/N)×R

)
/X

)
, where

X = {(hN, g) | (h, g) ∈ X} .

Hence if the image of (H×R)/X in kBR(H) is non zero, we also have N = 1.
Then H ∼= Y/N ∼= T/S, where T = p2(X) and S = k2(X). In particular H
is a subquotient of R. This completes the proof.
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6.2. Proposition: Let k be a commutative ring and T be a class of
finite groups closed under taking subquotients. Let F ∈ FT ,k. The following
conditions are equivalent:

1. The functor F is finitely generated.

2. There exists a finite family E of groups in T and an epimorphism
⊕
R∈E

kBR → F .

3. For any H ∈ T , the k-module F (H) is finitely generated, and there
exists an integer n ∈ N such that F (H) = {0} whenever |H| > n.

Proof: The equivalence of 1 and 2 is classical. If 1 holds, then there is a
finite set G of elements of F such that 〈G〉 = F . For each (R, v) ∈ G, we get
a morphism ṽ : kBR → F associated to v ∈ F (R) by Yoneda’s lemma. The
sum of these morphisms

⊕
(R,v)∈G

ṽ : ⊕
(R,v)∈G

kBR → F

is surjective if 〈G〉 = F , so 2 holds. Conversely, each representable functor
kBR is generated by the single element (R, IdR), where IdR ∈ kB(R,R) is
the identity endomorphism of R. Hence if 2 holds, then F is a quotient of
a finite sum of finitely generated functors, so F is finitely generated, and 1
holds.

Now if 2 holds, then for each H ∈ T , the k-module F (H) is a quo-
tient of ⊕

R∈E
kB(H,R), and each kB(H,R) is a finitely generated k-module.

Hence F (H) is a finitely generated k-module. Moreover F (H) is a quo-
tient of ⊕

R∈E
kBR(H), and kBR(H) = {0} unless H is a subquotient of R, by

Lemma 6.1. In particular kBR(H) = {0} if |H| > |R|, so F (H) = {0} if
|H| > n, where n = max{|R| | R ∈ E}. Hence 3 holds.

Now if 3 holds, there is a finite set of isomorphism classes of finite groups
R such that F (R) 6= {0}. Let U be a set of representatives of this set. For
each R ∈ U , we can lift to F (R) a finite generating set of the k-module F (R).
We get a finite subset VR of F (R), and this gives a finite set

G = {(R, v) | R ∈ U , v ∈ VR}

of elements of F , which in turns gives a morphism

π : P = ⊕
(R,v)∈G

kBR → F .
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Our choice of U and VR, for R ∈ U , shows that the induced morphism
πH : P (H)→ F (H) is surjective for any H ∈ T : if H is not isomorphic to a
group in U , then this is trivially true because F (H) = {0}. And otherwise,
we can assume H ∈ U , and then πH is surjective because πH(VH) generates
F (H) by construction.

We deduce by induction on n = |H| that πH : P (H)→ F (H) is surjective
for any H ∈ T . For n = 1, this is clear, since

π1 = π1 : P (1) = P (1)→ F (1) = F (1)

is surjective. Now assume πK is surjective for anyK ∈ T with |K| < n = |H|,
and let v ∈ F (H). Since πH is surjective, there is an element w ∈ P (H), a set
Σ of proper sections of H (i.e. sections different from (H,1)), and elements
vT,S ∈ F (T/S), for (T, S) ∈ Σ, such that

v = πH(w) +
∑

(T,S)∈Σ

IndinfHT/SvT,S .

Since |T/S| < n for any (T, S) ∈ Σ, the map πT/S : P (T/S) → F (T/S)
is surjective, and there is an element wT,S ∈ P (T/S) such that vT/S =
πT/S(wT,S). It follows that

v = πH(w) +
∑

(T,S)∈Σ

IndinfHT/SπT/S(wT,S)

= πH(w) +
∑

(T,S)∈Σ

πH
(
IndinfHT/SwT,S

)
= πH

(
w +

∑

(T,S)∈Σ

IndinfHT/SwT,S

)
.

Hence πH is surjective, and this completes the inductive step.
It follows that π is an epimorphism, so 3 implies 2, completing the proof

of Proposition 6.2.

6.3. Corollary: The biset functor B× is not finitely generated.

Proof: It has been show by Barsotti ([1], Proposition 6.8) that if p is a prime
number congruent to 1 mod 4, then B×(D2p) 6= {0}, where D2p is a dihedral
group of order 2p (in Barsotti’s terminology, the group D2p is residual). It
follows that there are arbitrary large finite groups H such that B×(H) 6= {0}.
By Proposition 6.2, the functor B× is not finitely generated.

Recall from Corollary 3.7 that there is an exact sequence of biset functors

(6.4) 0 // L // F2B


// B̂× // 0 ,
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where
S = {Cp | p odd prime} ∪ {C4} ∪ {SD2n | n ≥ 4} ,

and L is the biset subfunctor of F2B generated GS = {(R, εR) | R ∈ S}.

6.5. Proposition:

1. Let G = {(1, u)}, where u is the non zero element of B̂×(1) ∼= F2.

Then 〈G〉 = B̂×.

2. The functor L is not finitely generated.

3. The functor B̂× is not finitely presented.

Proof: (1) This follows from the fact that B̂× is a quotient of F2B, and that
F2B is generated by (1, e), where e ∈ F2B(1) is the class of a set of cardinality
one, endowed with the trivial action of the trivial group. Indeed if K ≤ H
are finite groups, then H/K = IndinfHK/KIso(fK)(e), where fK : 1 → K/K
is the unique group isomorphism.

(2) The exact sequence (6.4) shows that if p is an odd prime number, then
L(Cp) ∼= F2 and L(1) = {0}. Hence L(Cp) ∼= L(Cp) ∼= F2, so there exist
arbitrary large finite groups H such that L(H) 6= {0}. By Proposition 6.2,
the functor L is not finitely generated.

(3) Suppose that there exists an exact sequence in FF2

(6.6) N //M // B̂× // 0 ,

where M is projective and N is finitely generated. This gives an exact
sequence

0 // K //M // B̂× // 0 ,

where K is the image of N in M . In particular K is finitely generated.
Then, since M and F2B are projective in FF2

, Shanuel’s lemma gives an
isomorphism of functors

L⊕M ∼= K ⊕ F2B .

Then L is a quotient of K ⊕ F2B, which is finitely generated. Hence L is
finitely generated, contradicting 2. So no short exact sequence like (6.6) can

exists, hence B̂× is not finitely presented.

Recall that in Corollary 3.7, the set

S = {Cp | p odd prime} ∪ {C4} ∪ {SD2n | n ≥ 4}
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was introduced. We finally prove that GS = {(R, εR) | R ∈ S} is a minimal
set of generators of L.

6.7. Theorem: Let S ′ be a proper subset of the set S introduced in Corol-
lary 3.7, and GS′ = {(R, εR) | r ∈ S

′}. Then 〈GS′〉 is a proper subfunctor of
〈GS〉 = L.

Proof: It suffices to show that for any R ∈ S, if we set GRS = GS −{(R, εR)}
and LR = 〈GRS 〉, then εR /∈ LR(R). So we assume that εR ∈ LR(R), for
contradiction, i.e. that there exists a finite set E of pairs (H,X), where
H ∈ S − {R} and X is a subgroup of R×H, such that

(6.8) εR =
∑

(H,X)∈E

(
(R×H)/X

)
εH .

Since fR
1
εR = εR for any R, by Remark 3.2, this also reads

εR =
∑

(H,X)∈E

fR
1

(
(R×H)/X

)
fH
1
εH .

We now observe that each element H of S has a unique minimal normal
(hence central of prime order) subgroup ZH . And if k1(X) ≥ ZR, then

fR
1

(
(R×H)/X

)
= fR

1
InfRR/ZR

DefRR/ZR

(
(R×H)/X

)
= 0

by Lemma 6.3.2 of [7]. Similarly
(
(R×H)/X

)
fH
1

= 0 if k2(X) ≥ ZH . So we
can assume that k1(X) ∩ ZR = 1 and k2(X) ∩ ZH = 1 for any (H,X) ∈ E .

This forces k1(X) = k2(X) = 1, unless R is semidihedral and k1(X) is a
non central subgroup of order 2 of R, or H is semidihedral and k2(X) is a non
central subgroup of order 2 of H (both cases may occur simultaneously). In
the first case p1(X) ≤ NR

(
k1(X)

)
= k1(X)ZR, and p1(X)/k1(X) has order

1 or 2. Similarly, in the second case p2(X)/k2(X) has order 1 or 2. In any
of these two cases, the morphism fR

1

(
(R×H)/X

)
fH
1

of CF2
factors through

a group of order 1 or 2 (see 2.4). Since L(1) = L(C2) = {0}, it follows that
fR
1

(
(R×H)/X

)
fH
1
εH = 0.

So we can assume that k1(X) = k2(X) = 1 for any (H,X) ∈ E . In this
case X is a twisted diagonal subgroup of R×H, that is, there is a subgroup
K of H, a subgroup S of R, and a group isomorphism f : K → S, such that

(6.9) (R×H)/X ∼= IndR
S Iso(f) ResHK .

We can also assume that ResHKεH 6= 0, and in particular that L(K) 6= {0}.
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Suppose first that R = Cp for an odd prime number p. Then S = 1 or
S = R. Since L(1) = {0}, we have S = R. Then K ∼= S = Cp is a subgroup
of H ∈ S. The only element H of S admitting a subgroup of odd prime order
p is Cp itself. But H ∈ S − {Cp} by assumption, so we get a contradiction.

Suppose now that R = C4. Again, since L(1) = L(C2) = {0}, we have
S = R, and H ≥ K ∼= C4. Since H ∈ S − {C4}, it follows that H = SD2n

for some n ≥ 4. Then K is contained in the unique generalized quaternion
subgroup Q of index 2 of H. One checks easily that ResHQεH = Q/1−Q/ZH ,

and it follows that ResHKεH = 0. We get a contradiction also in this case.

We are left with the case R = SD2n , for some n ≥ 4. Then if (H,X) ∈ E ,
the first projection S of the twisted diagonal subgroup X of R×H is a proper
subgroup of R: otherwise indeed, its second projection K is a semidihedral
subgroup of H ∈ S, which can only occur if H itself is semidihedral and
isomorphic, hence equal, to R. This is a contradiction, since H ∈ S − {R}.

It follows from (6.8) and (6.9) that εR is a sum of elements of the form
IndR

SuS, for proper subgroups S of R and elements uS of L(S). Let D, C,
and Q be the subgroups of index 2 of R, where D is dihedral, C is cyclic,
and Q is generalized quaternion. We can write

εR = IndR
DvD + IndR

CvC + IndR
QvQ ,

for some vD ∈ L(D), vC ∈ L(C), and vQ ∈ L(Q). We set Z = ZR for
simplicity. If M ∈ {D,C,Q}, then M ≥ Z, and one checks easily that
fR
1
IndR

M = IndR
Mf

M
1
. It follows that

εR = IndR
Df

D
1
vD + IndR

Cf
C
1
vC + IndR

Qf
Q
1
vQ .

Moreover fM
1
M/N = 0 if N ∩ Z(M) 6= 1. It follows that fC

1
vC is a multiple

of C/1− C/Z, and that fQ
1
vQ is a multiple of Q/1−Q/Z. Hence

εR = IndR
DwD + λ(R/1−R/Z) ,

for some λ ∈ F2 and some wD(= fD
1
vD) ∈ ∂L(D).

Now cutting the exact sequence

0 // L(D) // F2B(D) // B̂×(D) // 0

by the idempotent fD
1

gives the exact sequence

0 // ∂L(D) // ∂F2B(D) // ∂B̂×(D) // 0 .

The vector space ∂F2B(D) has a basis consisting of the elements D/1−D/Z,
D/I −D/IZ, and D/J −D/JZ, where I and J are two non conjugate non
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central subgroups of order 2 of D. The vector space ∂B̂×(D) is isomorphic to
the dual of ∂B×(D), which is one dimensional (see e.g. Corollary 6.12 of [6],
or the proof of Theorem 3.4). It follows that ∂L(D) has dimension 2. Now
∂L(D) contains the two elements εD = (D/I−D/IZ)− (D/J −D/JZ) and
D/1 − D/Z = IndD

C4
εC4

, which are obviously linearly independent. Hence
these two elements form a basis of ∂L(D). It follows that

εR = αIndR
DεD + βIndR

C4
εC4

+ λ(R/1−R/Z) ,

for some α, β in F2. But one checks easily that IndR
DεD = 0, for I and J are

conjugate in R. Moreover IndR
C4
εC4

= R/1− R/Z. Thus εR = R/I − R/IZ
is a scalar multiple of R/1 − R/Z, which is obviously wrong. This final
contradiction completes the proof of Theorem 6.7.

6.10. Corollary: Let 2S be the set of subsets of S, ordered by inclusion
of subsets, and [0, L] be the poset of subfunctors of L, ordered by inclusion
of subfunctors. Let g : 2S → [0, L] be the map sending A ⊆ S to

g(A) =
〈
{(H, εH) | H ∈ A}

〉
⊆ L ,

and f : [0, L]→ 2S be the map sending the subfunctor M of L to

f(M) = {H ∈ S | εH ∈M(H)} ⊆ S .

Then:

1. Let A,A′ be subsets of S, and M,M ′ be subfunctors of L. Then

g(A ∪ A′) = g(A) + g(A′) and f(M ∩M ′) = f(M) ∩ f(M ′) .

In particular f and g are maps of posets.

2. f ◦ g = Id2S .

3. The poset [0, L] is uncountable.

Proof: Assertion 1 is straightforward. For Assertion 2, let A ⊆ S and
A′ = f ◦g(A). Then clearly A ⊆ A′. If this inclusion is strict, let S ∈ A′−A.
Then

(S, εS) ∈ g(A) =
〈
{(H, εH) | H ∈ A}

〉
⊆ g(S ′) ,

where S ′ = S −{S}. Then g(S ′) = g(S) = L, and by Theorem 6.7, it follows
that S ′ = S, a contradiction. Hence A = A′, and f ◦ g = Id2S . In particular
g is injective, and Assertion 3 follows, since the set of subsets of the (infinite)
countable set S is uncountable.

24



6.11. Remark: The map g is not surjective, and not a map of lattices (that
is, the image by g of an intersection of subsets need not be the intersection
of the images of the subsets). Indeed, if S is any semidihedral group in S,
and C its cyclic subgroup of index 2, we have

ResSCεS = C/1− C/Z = IndC
C′εC′ ,

where Z is the center of S and C ′ the subgroup of order 4 of C. It follows that
u = C/1−C/Z is a non-zero element of M(C), where M is the intersection
of the subfunctors of L generated by {(S, εS)} and {(C4, εC4

)}. In other
words if A = {S} and A′ = {C4}, we have 0 6= u ∈

(
g(A) ∩ g(A′)

)
(C), so

g(A) ∩ g(A′) 6= {0}. Now if g(A) ∩ g(A′) belongs to the image of g, there is
a subset A′′ of S such that g(A) ∩ g(A′) = g(A′′), and then

A′′ = fg(A′′) = f
(
g(A) ∩ g(A′)

)
= fg(A) ∩ fg(A′) = A ∩ A′ = ∅ .

This is a contradiction since g(A′′) 6= {0} but g(∅) = {0}. It follows that g
is not surjective, and not a map of lattices, since g(A) ∩ g(A′) 6= g(A ∩A′).
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[9] S. Bouc and E. Yalçın. Borel-Smith functions and the Dade group. J.
Algebra, 311:821–839, 2007.

[10] A. Dress. A characterization of solvable groups. Math. Zeit., 110:213–
217, 1969.

[11] W. Feit and J. G. Thompson. Solvability of groups of odd order. Pacific
J. Math., 13:775–1029, 1963.

[12] D. Gluck. Idempotent formula for the Burnside ring with applications
to the p-subgroup simplicial complex. Illinois J. Math., 25:63–67, 1981.

[13] T. Matsuda. On the unit group of Burnside rings. Japan. J. Math.,
8(1):71–93, 1982.

[14] T. Matsuda and T. Miyata. On the unit groups of the Burnside rings
of finite groups. J. Math. Soc. Japan, 35(1):345–354, 1983.

[15] J. Ritter. Ein Induktionssatz für rational Charaktere von nilpotenten
Gruppen. J. f. reine u. angew. Math., 254:133–151, 1972.

[16] G. Segal. Permutation representations of finite p-groups. Quart. J.
Math. Oxford, 23:375–381, 1972.

[17] T. tom Dieck. Transformation groups and representation theory, volume
766 of Lecture Notes in Mathematics. Springer-Verlag, 1979.
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