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Abstract: Let B* be the biset functor over Fs sending a finite group G to the group
B*(G) of units of its Burnside ring B(G), and let BX be its dual functor. The main
theorem of this paper gives a characterization of the cokernel of the natural injection from
B> in the dual Burnside functor IF/Q\B, or equivalently, an explicit set of generators Gs
of the kernel L of the natural surjection Fo B — BX. This yields a two terms projective
resolution of E;, leading to some information on the extension functors Ext'(—, B*). For
a finite group G, this also allows for a description of B*(G) as a limit of groups B> (T/.S)
over sections (7, .5) of G such that T'/S is cyclic of odd prime order, Klein four, dihedral of
order 8, or a Roquette 2-group. Another consequence is that the biset functor B* is not
finitely generated, and that its dual BX is finitely generated, but not finitely presented.
The last result of the paper shows in addition that Gs is a minimal set of generators of L,

and it follows that the lattice of subfunctors of L is uncountable.
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1. Introduction

The Burnside ring B(G) is a fundamental invariant attached to a finite
group G. It is a commutative (unital) ring, and most of its structural prop-
erties have been described several decades ago, e.g. the prime spectrum by
Dress ([10]), or the primitive idempotents of the algebra QB(G) by Gluck
([12]) and Yoshida ([19]).

An important missing item in this list is the group of multiplicative units
B(G)*. More precisely, it follows from Burnside’s theorem that B(G)* is a
finite elementary abelian 2-group, but the rank of this group is known only
under additional assumptions on G, by the work of many different people
([13], [14], [20], [18], [6], [1]). A very efficient algorithm for computing this
rank has also been obtained in [2]. However, no general formula for the rank
of B(G)* is known so far. Let us recall that, according to an observation
of tom Dieck ([17], Proposition 1.5.1) based on a theorem of Dress ([10]),
Feit-Thompson’s theorem ([11]) is equivalent to the assertion that B*(G)
has order 2 if |G| is odd.

It was observed in [6] that the assignment G +— B(G)* is a biset func-
tor B* with values in Fo-vector spaces, and that B* embeds in the -



dual functor Homy(B,Fs) of the Burnside functor. In the present paper,
we give (Theorem 3.4) a characterization of the image of this embedding
1: B* — Homy(B, Fy), or equivalently, we describe generators for the kernel
L of the natural transposed surjection 7 : Fo B — Homgz(B*,Fs). This yields
a functorial presentation

0 L FyB —'> Homy(B*,Fy) — 0

of the (dual) functor Homyz(B*,Fy). Unfortunately, the generators we obtain
for L are not linearly independent, so at least at this stage, the previous
exact sequence doesn’t provide any obvious formula for the Fy-dimension of
the evaluations of the functor B*.

It still admits some interesting consequences, that we develop in the three
last sections. Section 4 is concerned with the extension groups Ext' (M, B*)
for some biset functors M over Fy. In Section 5, we give a sectional charac-
terization of B*(G) as a limit of groups B*(T'/S), where (T, S) runs through
sections (7, 5) of G such that T'/S is cyclic of odd prime order, Klein four,
dihedral of order 8, or a Roquette 2-group. Finally, in Section 6, it is shown
that the biset functor B> is not finitely generated, and that its dual is finitely
generated (by a single element), but not finitely presented. We also show that
the generating set we obtain for the above functor L is minimal, and that
the lattice of subfunctors of L is uncountable. These last results may be seen
as another sign of the difficulty of determining B*(G) for an arbitrary finite
group G, at least with our present methods.

2. Review of Burnside rings and biset functors

2.1. Burnside rings. We quickly recall first some basic definitions on
Burnside rings. Missing details can be found in [3].

Let G be a finite group. The Burnside ring B(G) of G is the Grothendieck
ring of the category of finite (left) G-sets, for relations given by disjoint union
decompositions. In other words B(G) is the quotient of the free abelian group
on the set of isomorphism classes of finite G-sets by the subgroup generated
by all the elements of the form [X UY] — [X] — [Y], where [X] denote the
isomorphism class of the G-set X.

The multiplication in B(G) is induced by the cartesian product of G-sets.
In other words [X][Y] = [X x Y] for any two finite G-set X and Y. The
identity element is the (isomorphism class of a) G-set of cardinality 1.

The additive group B(G) is free with basis the set of isomorphism classes
of transitive G-sets. Each transitive G-set is isomorphic to a G-set of the form



G/H, where H is a subgroup of G. The transitive G sets G/H and G/K are
isomorphic if and only if the subgroups H and K of G are conjugate. For
sake of simplicity, we denote by G/H instead of [G/H]| the image in B(G)
of the transitive G-set G/H. With this abuse of notation, the abelian group
B(G) has a basis consisting of the elements G/H, where H runs through a
set of representatives of conjugacy classes of subgroups of G.

The commutative Q-algebra QB(G) = Q®z B(G) is split semisimple. Its
primitive idempotents (see [12] or [19]) are indexed by the subgroup of G,
up to conjugation. The idempotent e indexed by H < G is equal to

G = S 1L H) G

L<H

where p is the Mobius function of the poset of subgroups of G. Its defining
property is that

1 f K=¢H
G\K| __ G )
VK <G, [(ef)"] = { 0 otherwise.
Here the map o € QB(G) — |af| € Q is the linear form sending (the class
of a finite) G-set X to the cardinality | X | of the set X | of K-fixed points
in X.
2.2. Biset functors. (see [7] for details) For finite groups G and H, an
(H,G)-biset is a H x GP-set, i.e. a set U endowed with a left H-action and
a right G-action which commute. The Burnside group B(H x G) of (finite)
(H, G)-bisets is denoted by B(H, Q).

Let C denote the following category:

e The objects of C are all the finite groups.

e For finite groups G and H, the set of morphisms Hom¢(G, H) is equal
to B(H,G).

e The composition of morphisms in C is defined by bilinearity from the
standard “tensor product” (also called composition) of bisets: for finite
groups G, H and K, for a (K, H)-biset V' and an (H, G)-biset U, set

VxyU=(VxU)/H |

where H acts on the right on (V x U) by (v,u)h = (vh,h~'u). Then
V xg Uis a (K,G)-biset in the obvious way.

e The identity element of G is (the class of) the set G, viewed as a
(G, G)-biset by left and right multiplication.



A biset functoris an additive functor from C to the category of all Z-modules.
Biset functors, together with natural transformations between them, form an
abelian category F. More generally, for a commutative (unital) ring k, one
can consider the k-linearization kC of C, i.e. the category with the same
objects, and such that

Homye (G, H) = k ®z Home (G, H) = kB(H,G)

the composition in £C being defined as the k-bilinear extension of the compo-
sition in C. A biset functor over k is a k-linear functor from kC to the category
k-Mod of all k-modules. These functors, together with natural transforma-
tions between them, form an abelian category Fy.

There is a one to one parametrization (H,V) +— Sy of simple bisets
functors over k (up to isomorphism of functors) by pairs (H,V') of a finite
group H and a simple kOut(H )-module V' (up to isomorphism of such pairs).
If G is a finite group, and if Sy (G) # {0}, then H is isomorphic to a
subquotient of G.

Let F' be a biset functor, and let G, H be finite groups. We define the
opposite biset UP as the (G, H)-biset U, where the action of (g,h) € G x H
on u € U is defined by

g-u-h=h"ltugt .

This definition extends uniquely to a k-linear map o — o from kB(H, G)
to kB(G, H).

For o € kB(H,G) and m € F(G), we denote by a(m) or simply am the
image of m by the map F(«). In particular, when U is a finite (H, G)-biset,
we set Um = F([U])(m).

When F'is a biset functor over k, and M is a k-module, the M-dual of F’
is the functor Homy,(F, M) defined by

VG, Homy(F, M)(G) = Homy (F(G), M)
{ VG, H,Va € kB(H,G), Homy(F, M)(a) ="F(a?) .

When p is a prime number, let £C, denote the full subcategory of £C con-
sisting of finite p-groups. A k-linear functor from kC, to k-Mod is called a
p-biset functor (over k). The abelian category of p-biset functors over k is
denoted by F .

More generally, if 7 is a class of finite groups closed under taking subquo-
tients, one can consider the full subcategory k&7 of kC consisting of groups
in 7. The abelian category of k-linear functors from k7 to k-Mod is denoted
by fT,kz-

Let F' be an object of Fry. An element of F is a pair (R,v), where
R e T and v € F(R). For a set G of elements of I, the subfunctor (G) of F'
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generated by G is defined as the intersection of all subfunctors L of F' such
that v € L(R) for all (R,v) € G. Its evaluation at a group H € T is given
by

G H) = Y Fla)v) .

(Rw)€eG
ackB(H,R)

The functor F' is finitely generated if there exists a finite set G of elements
of F such that (G) = F. The functor F is finitely presented if there exists
an exact sequence Q — P — F' — 0 in F7j, where P and () are finitely
generated projective functors.

Let F be an object of Fry, and H € T. The residue (or Brauer quotient)
F(H) of F at H is the k-module defined by

F(H)=F(H)/ Y F()(F(T)) .
TeT
IT|<|H|
a€kB(H,T)

2.3. Elementary bisets. Bisets of one of the following forms are called
elementary bisets:

e Let H be a subgroup of a finite group GG. The set G, viewed as a
(G, H)-biset (by multiplication), is called induction (from H to G),
and denoted by Ind%. The set G, viewed as an (H, G)-biset (by multi-
plication), is called restriction (from G to H), and denoted by Res%.

e Let N be a normal subgroup of a finite group G. The set G/N, viewed
as a (G,G/N)-biset (by multiplication on the right, and projection
followed by multiplication on the left), is called inflation (from G/N
to G) and denoted by Infg/N. The set G/N, viewed as a (G/N, G)-biset
(by multiplication on the left, and projection followed by multiplication
on the right), is called deflation (from G to G/N), and denoted by
Defg IN-

e Let ¢ : G — G’ be an isomorphism of groups. The set G’, viewed as a
(G', G)-biset (by multiplication on the left, and multiplication by the
image under ¢ on the right), is called transport by isomorphism (by ),
and denoted by Iso(y) or Isog/ if ¢ is clear from the context.

In addition to these elementary bisets, it is convenient to distinguish the
following ones, when (T, S) is a section of a finite group G, i.e. a pair of
subgroups of G with S J7T"

e The set G/S, viewed as a (G,T/S)-biset, is called induction-inflation
(from T'/S to G), and denoted by Indinf%s. It is isomorphic to the
composition Ind% xp Infr, /s



e The set S\G, viewed as a (T/S, G)-biset, is called deflation-restriction
(from G to T'/S), and denoted by Defres%s. It is isomorphic to the

composition Def?. /s XT Res?.
For finite groups G and H, any transitive (H,G)-biset is isomorphic to a
biset of the form (H x G)/X, where X is a subgroup of H x GG, and the biset
structure is given by h - (a,0)X - g = (ha,g '0)X for h,a in H and ¢,b in G.
We set

m(X)={he H|3ge€qG, (h,g) € X}
ki(X)={he H|(h1) X}
p(X)={ge G|3heH, (h,g) € X}
ko(X)={9€G|(1,9) € X} .

With this notation, we have ki(X) <p;(X) and ko(X) Ipa(X), and there
is a canonical group isomorphism f : po(X)/ka(X) — p1(X)/k1(X) sending
gka(X) to hky(X) if (h,g) € X. Moreover (see [7], Lemma 2.3.26), there is
an isomorphism of (H, G)-bisets

(24) (H X G)/X = Indlnfﬁ(x)/kl(X) ISO(f) Defresg(X)/]Q(X)

where the concatenation on the right hand side denotes the composition of
bisets. In other words, any transitive biset is isomorphic to a composition of
elementary bisets.

It follows that if T is a class of finite groups closed under taking subquo-
tients, if ' € Fry and H € T, then

H)/ > Indinf] ,F(B/A)

A< B<H
(BAA(H,1)

:F(H)/< Y mdiFEB) + Y Infg/AF(H/A)>.
B masimal Al

2.5. Faithful elements. (see [7], Section 6.3) Let F' be a biset functor over
a commutative ring k. For a finite group G, let

OF(G) = {u € F(G) | Y1 # N <G, DefS yu =0} .

The k-submodule OF (G) is called the submodule of faithful elements of F'(G).
If is always a direct summand of F'(G). More precisely, the element

= 3 haa(1,N) (G x G)/1]

NG



of kB(G,G) is an idempotent endomorphism of G in the category kC, and
one can show that OF(G) = F(f{)(F(G)).

2.6. Genetic bases of p-groups. ([7] Definition 6.4.3, Lemma 9.5.2 and
Theorem 9.6.1) Let p be a prime number, and P be a finite p-group. For a
subgroup @ of P, let Zp(Q) > @ denote the subgroup of Np(Q) defined by

Zp(Q)/Q = Z(Np(Q)/Q) .

The subgroup @ is a genetic subgroup of P if the two following properties
hold:

e The group Np(Q)/Q is a Roquette p-group, i.e. it has normal p-rank 1.
Recall that the Roquette p-groups of order p" are the cyclic p-groups
Cpn (n > 0), and in addition when p = 2, the generalized quaternion
groups Qon (n > 3), the dihedral groups Da» (n > 4) and the semidi-
hedral groups SDan (n > 4).

e For any = € G, the intersection Q) N Zp(Q) is contained in @ if and
only if Q) = Q.
For two genetic subgroups () and R of P, write

Q =, R < Jx € P such that “Q N Zp(R) < Rand R* N Zp(Q) < Q .

One can show that this defines an equivalence relation on the set of genetic
subgroups of P. A genetic basis of P is a set of representatives of equivalence
classes of genetic subgroups of P for the relation —

=,
2.7. Rational p-biset functors. ([7] Theorem 10.1.1, Definition 10.1.3
and Theorem 10.1.5) Let p be a prime number, and F' be a p-biset functor
over a commutative ring k. If P is a finite p-group and B is a genetic basis

of P, the map

T : @ Indinfy, ()0 : P OF (Np(Q)/Q) — F(P)

QeB QeB

is split injective, with left inverse

Dg : @ /17 P7? 0 Defresy, )0 : F(P) = @D IF(Np(Q)/Q) -
QeB QeB

The functor F' is called rational if for any finite p-group P, the map Zp
is an isomorphism for some - equivalently for any - genetic basis B of P.
Rational p-biset functors form a Serre subcategory of F, ;. Moreover, for
any k-module M, the M-dual Homy(F, M) of a rational p-biset functor F' is
rational.



3. The main theorem

3.1. Notation: Let R denote the class of finite groups which are isomor-
phic to one of the following groups:

o A cyclic group C, of odd prime order p.
o A cyclic group Cy of order 4.
o An elementary abelian group (C2)?* of order 4.
A dihedral 2-group Dan of order 2" > 8.
A semidihedral 2-group SDaon of order 2™ > 16.
For each group R in R, let er denote the element of B(R) defined by:
e cp=R/1—-R/Rif R=C,.
e cx =R/1—R/S if R= Cy, where S is the unique subgroup of order 2
of R.
e cp=R/1—(R/A+ R/B+R/C)+2R/R if R~ (Cy)?, where A, B,C
are the the three subgroups of order 2 of R.
e cp = (R/I —R/IZ)— (R/J—R/JZ), if R = Dan, where I and J
are non conjugate non central subgroups of order 2 of R, and Z is the
center of R.

e cr=R/I — R/IZ if R = SDan, where I is a non central subgroup of
order 2 of R, and Z is the center of R.

Let moreover Er denote the image of eg in FoB(G).

3.2. Remark: When R is cyclic, elementary abelian of order 4, or dihe-
dral, the elements er € B(R) already appear in [9] (Notation 3.6) and [5]
(Corollary 6.5 and Notation 6.9, where ep,, is denoted §,). Also observe
that ¢ = ff R/1 € B(R) if R is neither dihedral nor semidihedral. Moreover
er= fE(R/I—R/J)if R Dyn, and eg = f* R/I when R = SDy.. Hence
flter =epg for any R e R.

3.3. Notation: Let Fy denote the additive group of Fy, and
se{tl} > sy elFy

be the group isomorphism is defined by (—1); = 1g, and (+1); = Op,. Let
t € Fyoy — ty € {1} denote the inverse group isomorphism.




Recall that for a finite group G, any unit element u € B*(G) in the
Burnside ring of G defines a linear form i (u) on B(G), with values in Fo,
by

16(u)(G/H) = [u]+ .
When G runs through finite groups, these maps 1 form an injective mor-
phism of biset functors 2 : B* — Homgy(B,Fs) ([6], Proposition 7.2).

Moreover, by a theorem of Yoshida ([20], Proposition 6.5), a linear form
¢ : B(G) — Ty lies in the image of 1 if and only if for any subgroup H of G,
the map

P w € No(H)/H — o(G/H(z)) — o(G/H)

is a group homomorphism from Ng(H)/H to Fy .

3.4. Theorem: Let G be a finite group, and ¢ € Homy (B(G),Fz). The
following assertions are equivalent:

1. ¢ lies in the image of the natural map 1 : B*(G) — Homy (B(G),Fs).

2. (Defres%sgo)(agp/s) = Op, for every section (T,S) of G such that
T/SeR.

Proof:[1 = 2| We check that if ¢ € Imu, then (Defres%sgo)(gT/S) = Op, for
cach section (7', S) of G such that 7'/S € R. Since Defres%sgo € Imup/s as e
is a morphism of biset functors, we can assume that G € R, and check that
v(eg) = Op, when ¢ = 15(u) for some u € B*(G). In this case o(G/H) =
lut?|, for any subgroup H of G.

But since f{ e = e¢ by Remark 3.2, and since f& = (f{)?, we have

o(ea) = ic(u)(fi c)
= (fYic(u))(cc)

=ig(fy u)(ea) -

Moreover f&u € OB*(G) by definition. But dB*(G) = {0} if | Z(G)| > 2 by
Lemma 6.8 of [6], and 0B*(G) also vanishes if G is generalized quaternion
or semidihedral, by Corollary 6.10 there. It follows that 0B*(G) = {0} if
G € R, unless perhaps if G = Dan for some n > 3. In particular ¢(eg) = Op,
if G € R, unless G is a dihedral 2-group of order at least 8.

Now by Corollary 6.12 of [6] (and its proof), if G = Dan for n > 3, the
group 0B*(G) has order 2, generated by the element

ve=1-2§+e9)=G/G+G/1—(G/I+G/J)



of B(G). Moreover eg = f&(G/I — G/J) by Remark 3.2. Thus

pleq) = ia(u)(f7 (G/I—G/J))
= (flic(u)(G/I = G/J)
= ia(fi w)(G/1—G/J)
= (ff )|+ = 1(ff )|+

We can moreover assume that f& u is the generator vg of 9B*(G), i.e. that
J9u =1 - 2(c§ + ¢§). Then dlearly |(f¢u)!| = (/€ )], s0 () = O,
also in this case, as was to be shown.

We prove the converse by induction on the order of G: we consider
¢ € Homgz(B(G),F,) such that (Defres%sgp)(eT/s) = Op, for every section
(T,5) of G such that T'/S € R. Assuming the result holds for groups of or-
der smaller than |G|, by transitivity of deflation-restrictions, we can assume
that Defres%sga lies in the image of B*(7'/S) for any section (7, S) such
that |7'/S| < |G|, in other words any section (7', 5) different from (G,1). By
Yoshida’ theorem above, it follows that the map @y is a group homomor-
phism for any H # 1. So proving that ¢ lies in the image of 1 amounts to
proving that the map ¢ : G — Fy is a group homomorphism.

Equivalently, all we have to show is that the map
vix e G o1(r)x € {£1}

is a group homomorphism. Now % is a central function on G, with values
in {+1}, and moreover (1) = 1 since ¢;(1) = Op,. Hence all we have to
show is that ¢ is a generalized character of G. Indeed in this case, there
exist integers n, € Z, indexed by the irreducible complex characters of G

such that v = >  n,x. Moreover
xE€Irr(G)

2 1 P2 =

x€lrr(G) z€G

so n, = 0, except for a single irreducible character x for which n, = £1.
Since ¥ (1) = 1, it follows that 1) = x, so v is a character of G, of degree 1,
hence a group homomorphism from G to {£1}.

Now by Brauer’s induction theorem, the map ) is a generalized character
of G if and only if its restriction to any Brauer elementary subgroup H of G
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is a generalized character of H. But for x € H
(Resfy)(2) = G1(2)« = 9(G/{x))/9(G/1)
- gp(lndg(H/(@ - H/l)) )

= <(Res§g0) (H/(x) - H/1)>>< '

It follows that if H is a proper subgroup of G, since Res$¢ € Im 1y, the map
Res% 1) is a generalized character of H. In other words we can assume that
G itself is Brauer elementary.

Then there exists a prime number p such that G = C' x P, where P is a p-
group, and C'is a p/-cyclic group. In particular G is nilpotent, so G = Q X R,
where @) is a 2-group and R is nilpotent of odd order. Then any subgroup
T of G is equal to A x B, for some subgroup A of () and some subgroup B
of R. If B is non trivial, there exists a normal subgroup C' of B of (odd)
prime index [. Set S = A x C. Then (T, S) is a section of G, and T'//S = ().
Thus

(Defres 50 (e1/s) = Ors = i (Indinf§ 5 (T/S—T/T)) = 9(G/S)~o(G/T) .

It follows by induction that ¢ (G/(A x B)) = ¢(G/(Ax 1)) for any subgroup
A of ) and any subgroup B of R. In particular, for x € () and y € R, the
subgroup ((z,y)) of G = @ x R is equal to (z) x (y), and

U(@,y) = o(G/((z) x (), /#(G/1)x
=¢(G/((z) x 1)), /o(G/1)
=Y(z,1) .
In other words it is enough to prove that the restriction of ¥ to @) x 1 is a

generalized character. Equivalently, all we have to do is consider the case
where G = () x 1, i.e. we can assume that G is a 2-group.

We consider the linearization morphism B(G) — Rg(G), which is sur-
jective by the Ritter-Segal theorem ([15], [16], [4]), and hence fits in a short
exact sequence

0 ——= K(G) —= B(G) —= Rg(G) —=0

By Corollary 6.16 of [5], the kernel K(G) of the linearization morphism is
linearly generated by the elements of the form Indinf% /sET/s, where (T,S) is
a section of G such that T'/S is elementary abelian of order 4 or dihedral of
order at least 8. Since

go(Indinf%S&tT/S) = (Defres%sgo) (er/s) = Or,
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the linear form ¢ vanishes on K(G), so we can consider ¢ as an element of
HOHIZ (RQ(G), ]FQ) .

Now the functor Rg is a rational 2-biset functor (see Definition 10.1.3
and Proposition 9.6.12 of [7]), so its Fy-dual Homgz(Rg, F2) is also rational.
It follows that if G is a genetic basis of G, we have

. Ng(S)/8
(3.5) w = ZlndlnfﬁG(S)/sfl a(5)/ Defres%c(s)/sso .
Seg

For each S € G, the group Ng(S)/S is a Roquette 2-group, i.e. it is
cyclic, generalized quaternion of order at least 8, dihedral or semidihedral
of order at least 16. Recall moreover that Imuz = Homy(Rg(R),Fs) if

R is trivial, of order 2, or dihedral of order at least 16. If we show that
{VG(S)/SDefreng(s)/sgp = 0 when Ng(S)/S is not one of these Roquette
2-groups, then Equation 3.5 shows that ¢ € Im1g, and we are done.

So all we have to do is to show that f{VG(S)/SDefreS%G(S)/S ¢ = 0 when
R = Ng(S)/S is cyclic of order at least 4, generalized quaternion, or semi-
dihedral. In each of these cases R has a unique central subgroup Z of order 2,
and f! = R/1 - R/Z € B(R,R).

Let X be any subgroup of R. Then

Na(S)/S
(1" Defres, /5 9)(R/X) = (Defres§ 5,5 0) (1 X (R/X))
= (Defresf )5 ¢)(R/X — R/ZX) .

This is zero if Z < X, so we can assume Z £ X, that is ZNX =1.
If R is cyclic or generalized quaternion, this implies X = 1. Then

(fEDefres p)(R/X) = (Defress ¢)(R/1 — R/Z)

= (Defres$; ) (Ind}(D/1 — D/Z))

= (ResPDefres$ o) (D/1 — D/ Z)

— (Defres$p)(ep) |

where D is a cyclic subgroup of order 4 of R. By assumption, this is equal

to Op,, hence f{VG(s)/SDefres%G(S)/S ¢ = 0 in these cases, as was to be shown.
Now if R = SDy» with n > 4, the same argument shows that

(fi'Defresf; ¢)(R/X) = O,
if Z < X or X =1. Up to conjugation, the only remaining subgroup X of GG
is X = I, and then

(fFDefres p)(R/X) = (Defres ) (R/I — R/12)
= (Defres% ¢)(cgr) = Og, .
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This completes the proof of Theorem 3.4. O

3.6. Corollary: Let G be a finite group. Then the kernel of the natural map
j : FoB(G) — Homy, (B*(G),Fy) is the group generated by the elements
Indinf%séT/S, for all sections (T, S) of G such that T/S € R.

Proof: This is just a dual reformulation of Theorem 3.4, since the natural
map J¢ : FoB(G) — Homyp, (BX(G),IFQ) is the transposed map of g, up to
the identification of Fy B(G) with the Fa-bidual of B(G). 0

For a finite group R, let Bgr = Hom¢(R, —) = B(—, R) denote the repre-
sentable biset functor defined by R, and let Fo B = Fo®7Br = Homp,¢(R, —).

3.7. Corollary: Let S be the set of finite groups defined by

S ={C, | podd prime} U{Cy} U{SDon | n >4} |

(by which we mean that S contains exactly one group of order p for each
odd prime p, one cyclic group of order 4, and one semidihedral group of each
order 2" > 16), and let Gs = {(R,ég) | R € S} be the associated set of
elements of FyB.

1. Let L be the biset subfunctor of FoB generated by Gs. Then there is an
exact sequence of biset functors

0 L Fy B —'> Homg, (B*,Fy) —=0 .

2. When R € R, let dg : F'oBr — FoB be the morphism of biset functors
induced by adjunction from ég € FoB(R). Then the sequence

@ FoBr -% FyB —’> Homg, (B*, Fy) — 0
ReS

is exact, where d is the sum of all the maps dg, for R € S.

3. For R € R, let FoBrfE be the direct summand of FoBgr equal to the
image of the idempotent endomorphism ff € B(R,R) = Endz(Bg).
Then the morphism dr : FoBr — FoB factors through a morphism
dp : FyBrff — FoB, and this yields an exact sequence of functors

@ FoBpff %~ TF,B L~ Homg,(B*,Fy) — 0 .
ReS

where d is the sum of the morphisms ch, for ReS.
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Proof: For Assertion 1, all we need to show is that the element £z belongs

to L(R), when R is elementary abelian of order 4 or dihedral of order at

least 8. But one checks easily that Res%l;fflég[)gn = €D, 4 for n > 4, and

that Resf)ciPé ps = &(cy)2- Now Assertion 2 follows from the fact that L is

equal to the image of d, and Assertion 3 from the fact that ffep = e by
Remark 3.2. 0

4. Extensions

4.1. Notation: Let T denote the class of finite groups which are subquo-
tient of some group in S, that is the class of groups isomorphic to a group
in the following set

{Cy | p odd prime} U {Con | n > 0} U{Q2n | n > 3}
U{(Co)2} U {Dye | 1> 3} U {SDye | 1 > 4}

In other words 7 is the class of groups which are cyclic of odd prime order,
elementary abelian of order 4, dihedral of order 8, or a Roquette 2-group.

4.2. Proposition:

1. Set BX = Hompy, (B*,Fy). If S be a biset functor over Fy, such
that S(1) = {0}, then Ext}_-IF2 (B*,S) is isomorphic to a subspace of

[1 9S(R), where S is the set defined in Corollary 3.7.
ReS

2. Let H be a finite group. If there exists a simple FoOut(H)-module V
such that ExtlfFQ(SH,V, B*) # {0}, then H € T.

Proof: The functor L of Corollary 3.7 is equal to Imd = Imd = Ker 7, SO wWe
have an exact sequence

7 —

0 L F,B Bx 0,

and a surjective morphism @ FoBpf —95 . Let M be any biset func-
ReS

tor over Fy. Applying first the functor Homz, (—, M) to the short exact
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sequence, we get the beginning of a long exact sequence
0 — Hom(B*, M) — Hom(F,B, M) — Hom(L, M) — Ext'(B*, M) —0 |,

where Hom and Ext' are taken in the category Fg,. Indeed Ext'(FyB, M)
is equal to zero as Fo B = Homg, (1, —) is representable, hence projective in
Fr,. Moreover Hom(FyB, M) = M (1), so we get an exact sequence

(4.3) 0—Hom(B*, M) — M(1) — Hom(L, M) — Ext!(B*, M) —0 .

In the case M = S, since S(1) = {0}, this gives an isomorphism Hom(L, S) =

Extl(é\x, S). On the other hand, since L is a quotient of @ FyBrfi, we get
ReS
an inclusion

Hom(L, S)— Hom( @ FoBrfR, S) 2 [] Hom(F2BrfR,S) .
ReS ReS

Moreover Hom(Fy BrfE, S) = fES(R) = 0S(R). This proves Assertion 1.

For Assertion 2, we take M = Sy w in the exact sequence 4.3, where
W = V* is the dual module. If H # 1, then Sy w(1) = {0}. And if H =1,
then W = Fy, and by duality

Hom(B*, Sy r,) 2 Hom(Sy r,, BX) = Fy 2 Sy 5, (1) .
In both cases, we get an isomorphism
HOHl(L, SH,W) = Eth(ét(, Sva) .

Now by duality, this is isomorphic to Ext!(S wyv,B*). As before, it embeds
into [ OSuw(R). Hence if Ext'(Syy, B*) # {0}, then there exists some

RES
R in S such that 0Syw(R) # {0}. In particular Sy w(R) # {0}, so H is a
subquotient of R. This completes the proof. O

5. Sectional characterization

Let O denote the forgetful functor 7, — Fr . It was shown in Section 5
of [8] that the functor O has a right adjoint Ry defined as follows'. For

!The construction in [8] actually dealt only with p-biset functors, for a fixed prime
number p, and their restriction to a class of finite p-groups closed under taking subquo-
tients. But it extends wverbatim to the categories Fj, and Fr, for any class 7 of finite
groups closed under taking subquotients.
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a finite group G, let T(G) denote the set of sections (7,S) of G such that
T/SeT.If Fe Frg, then

RAF)G)= Jm F(T/S) .

that is the set of sequences of elements lrs € F(T/S), for (T,S5) € T(G),
subject to the following conditions:

1. If (T,S) and (T",5") are elements of 7 (G) such that S < 8" <T" < T,
then
Defresg,//ss,lﬂg = lT’,S’ s

2. If (T,9) € T(G) and z € G, then
mlT7S - lzT7zS .

The biset functor structure on Ry (F') is obtained as follows. For a finite
group H and a finite (H,G)-biset U, the image v = Ul of | € R (F)(G)
by U is the sequence myg, for (17, S) € T(H), defined by

mr.s = Z (S\Tw) lpe su
we[T\U/G]
where for a subgroup X of H, we set X" = {g € G | I € X, zu = ug}.
This makes sense as one can show that (7%, S") is a section of GG, and that
T*/S" is isomorphic to a subquotient of 7'/S, hence in T if /S € T.

The unit 7 : Id — R7 o O7 of the adjunction between O and R,
evaluated for N € Fj at a finite group G, is the map ny¢ from N(G)
to RrO7(N)(G) sending n € N(G) to the sequence of elements lrg €
Or(N)(T/S) = N(T/S), for (T,S) € T(G), defined by

lrs = Defresg/sn .

5.1. Theorem: The unit of the adjunction between O : Fp, — Frr, and
R Frr, = Fr, induces an isomorphism of biset functors over Iy

NBx : B* — RTOT(BX) .
In other words, for any finite group G, the map

an’GiBX(G)—) (h_ BX<T/S)
(T,S)eT(Q)

18 an isomorphism.
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Proof: Set B = Homy(B, Fs), and let C' denote the cokernel of the morphism
1 : B* — B. The functor Or is exact, so its right adjoint Ry is left exact.
Hence we get a commutative diagram

~

(5.2) 0 BX : B i C 0

b

0 — RrOr(B*) —1= RrOr(B) —L= R 07(C)

with exact rows, where 7 is the projection morphism, f = RrO7 (1), and

g =RrOz(m).
We first claim that the vertical morphism 75 is an isomorphism. Indeed,
let G be a finite group. The map 7z : B(G) — Jim B(T/S) is the
(T,9)eT(G)
map sending the linear form ¢ : B(G) — Fy to the sequence of linear forms

drs = Defres%sap : B(T/S) — Fy, for (T,5) € T(G). Since
dr,s((T/8)/(T/S)) = ¢(Indint 5(T/S)/(T/S)) = (G/T) |

and since (T,T) € T for any subgroup T of GG, we see that Ng.q 1s injective.
Now let | = (Y¥1.5)(1,9)e7(c) be an element of (h_m B(T/S). So for
(T.5)eT (@)
each (T, 5) € T(G), we get alinear map Y7 g : B(T/S) — F,. For a subgroup
U of G, we set ¢(G/U) = ¢yu((U/U)/(UJU)). Then for any = € G, we
have p(G/*U) = ¢(G/U), since
p(G/*U) = beyu (("U/7U) /("U/7V))
= ("u) ((CU/7U)/("U/7V))
— o (U000

because “r,g = tereg for any (T,S) € T(G). It follows that ¢ extends
linearly to an element of B(G). Moreover, for any (7,5) € T(G) and any
subgroup U/S of T'/S, we have ¢y = Defresgégz/ms, SO
Defres§ s ((T/9)/(U/S)) = ¢ (Indinf§s ((T/8) /(U/9)) )

= o(G/U) = vy ((U/U)/(U/U))

= (Defres;)ior,s) ((U/U) /(U V)

= s (Indinfl5 (U/0) /(U/0)

=rs((T/S)/(U)S)) -
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Hence Defres%sgp = tYrg, for any (7,5) € T(G), so the map ng, is sur-
jective. Hence it is an isomorphism, for any finite group G, and ng is an
isomorphism, as claimed.

Now the Snake’s lemma, applied to Diagram 5.2, shows that the morphism
nNpx is injective, and that its cokernel is isomorphic to the kernel of 7.
For a finite group G, an element @ of Kernc s is represented by a linear
form ¢ : B(G) — Fy such that Defres%sgp belongs to +(B*(T'/S)), for any
(T,S) € T(G), hence in particular for any section (7,5) of G such that
T/S € R. By Theorem 3.4, it follows that (Defres%sw)(eﬂs) = 0. As this
holds for any section (7',S) of G with T'/S € R, the form ¢ lies in the image
of 1, by Theorem 3.4 again. In other words the element @ is equal to zero.
Hence Kerne e = {0} for any G, so n¢ is injective. It follows that npx is
surjective. Hence it is an isomorphism. This completes the proof of the
theorem. O

6. Finite generation and presentation

In this section, we show that the biset functor B* is not finitely generated,
and that its dual B* is finitely generated (by a single element!), but not
finitely presented. Recall that k£ is a commutative ring, and that kBr =
k ®z B(—, R) is the representable functor Homyc (R, —).

6.1. Lemma: Let R and H be finite groups. If kBr(H) # {0}, then H is
a subquotient of R.

f:

Proof: Recall that kBgr(H) = kB(H,R) has a k-basis consisting of the
transitive bisets (H x R)/X, for X in a set of representatives of conjugacy
classes of subgroups of H x R. Let X be one of these groups, and Y = p;(X)
be its first projection. Then (H x R)/X = kBg(Ind{})((Y x R)/X), where
we abuse notation in the right hand side by viewing X as a subgroup of
Y x R, and (Y x R)/X as an element of kBg(Y'). Hence if the image of
(H x R)/X in kBgr(H) is non zero, then Y = H.

In this case let N = k;(X). Then N is a normal subgroup of H = p;(X),

and (H x R)/X = kBp(Inf} y) (((H/N) x R) /)?), where

X ={(hN,g) | (h,g) € X} .
Hence if the image of (H x R)/X in kBgr(H) is non zero, we also have N = 1.

Then H =2 Y/N = T/S, where T' = py(X) and S = ky(X). In particular H
is a subquotient of R. This completes the proof. O
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6.2. Proposition: Let k be a commutative ring and T be a class of
finite groups closed under taking subquotients. Let F' € Fr . The following
conditions are equivalent:

1. The functor F s finitely generated.

2. There exists a finite family € of groups in T and an epimorphism

Re&

3. For any H € T, the k-module F(_H) 18 finitely generated, and there
exists an integer n € N such that F(H) = {0} whenever |H| > n.

Proof: The equivalence of 1 and 2 is classical. If 1 holds, then there is a
finite set G of elements of F' such that (G) = F. For each (R,v) € G, we get
a morphism v : kBr — F' associated to v € F(R) by Yoneda’s lemma. The
sum of these morphisms

© v: D kBR — F
(Rwv)EG (Ryv)EG

is surjective if (G) = F', so 2 holds. Conversely, each representable functor
kBp is generated by the single element (R,Idg), where Idg € kB(R, R) is
the identity endomorphism of R. Hence if 2 holds, then F' is a quotient of
a finite sum of finitely generated functors, so F' is finitely generated, and 1
holds.

Now if 2 holds, then for each H € T, the k-module F(H) is a quo-

tient of @ kB(H, R), and each kB(H, R) is a finitely generated k-module.
Reé

Hence F'(H) is a finitely generated k-module. Moreover F(H) is a quo-
tient of @® kBgr(H), and kBr(H) = {0} unless H is a subquotient of R, by
Re€
Lemma 6.1. In particular kBr(H) = {0} if |[H| > |R|, so F(H) = {0} if
|H| > n, where n = max{|R| | R € £}. Hence 3 holds.
Now if 3 holds, there is a finite set of isomorphism classes of finite groups
R such that FI(R) # {0}. Let U be a set of representatives of this set. For

each R € U, we can lift to F'(R) a finite generating set of the k-module F/(R).
We get a finite subset Vi of F(R), and this gives a finite set

G={(R,v)|ReU, veVg}
of elements of F'; which in turns gives a morphism

m:P= @& kBr—F .
(Rw)eg
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Our choice of U and Vg, for R € U, shows that the induced morphism
7 : P(H) — F(H) is surjective for any H € T if H is not isomorphic to a
group in U, then this is trivially true because F(H) = {0}. And otherwise,
we can assume H € U, and then 7y is surjective because 7 (Vy) generates
F(H) by construction.

We deduce by induction on n = |H| that 7y : P(H) — F(H) is surjective
for any H € T. For n = 1, this is clear, since

m =71: P(1) = P(1) = F(1) = F(1)
is surjective. Now assume 7 is surjective for any K € T with |K| < n = |H|,
and let v € F(H). Since 7y is surjective, there is an element w € P(H), a set
Y of proper sections of H (i.e. sections different from (H, 1)), and elements
vrs € F(T/S), for (T,S) € 3, such that

v=my(w)+ Z Indinff gvrs
(T,8)ex

Since |T'/S| < n for any (7T,5) € ¥, the map mr/g : P(T/S) — F(T/S)
is surjective, and there is an element wrs € P(T/S) such that vy =
mr/s(wr,s). It follows that

v=mg(w)+ Z Indinfg/SWT/s(wTys)

(T,8)ex
=7g(w) + Z TH (Indinfg/swﬂg) =Ty (w + Z Indinfg/swrﬂg) )
(T,5)ex (T,5)ex

Hence 7y is surjective, and this completes the inductive step.
It follows that 7 is an epimorphism, so 3 implies 2, completing the proof
of Proposition 6.2. O

[6.3. Corollary: The biset functor B* is not finitely generated.

Proof: It has been show by Barsotti ([1], Proposition 6.8) that if p is a prime
number congruent to 1 mod 4, then B*(Ds,) # {0}, where Dy, is a dihedral
group of order 2p (in Barsotti’s terminology, the group Ds, is residual). It
follows that there are arbitrary large finite groups H such that BX(H) # {0}.
By Proposition 6.2, the functor B* is not finitely generated. O

Recall from Corollary 3.7 that there is an exact sequence of biset functors

(6.4) 0 L——>TF,B—1> Bx 0,
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where

S ={C, | podd prime} U{C,} U{SDan | n >4} |
and L is the biset subfunctor of Fy B generated Gs = {(R,ér) | R € S}.

6.5. Proposition:

1. Let G = {(1,u)}, where u is the non zero element of B\X(l) >~ [F,.
Then (G) = B*.

2. The functor L is not finitely generated.
3. The functor B is not finitely presented.

Proof: (1) This follows from the fact that B* is a quotient of F,B, and that
Fy B is generated by (1, e), where e € Fo B(1) is the class of a set of cardinality
one, endowed with the trivial action of the trivial group. Indeed if K < H
are finite groups, then H/K = Indinf%/KIso(fK)(e), where fr : 1 - K/K
is the unique group isomorphism.

(2) The exact sequence (6.4) shows that if p is an odd prime number, then
L(C,) = Fy and L(1) = {0}. Hence L(C,) = L(C,) = Fy, so there exist
arbitrary large finite groups H such that L(H) # {0}. By Proposition 6.2,
the functor L is not finitely generated.

(3) Suppose that there exists an exact sequence in Fp,

(6.6) N—>M—~B* 0,

where M is projective and N is finitely generated. This gives an exact
sequence

0 K M Bx 0,

where K is the image of N in M. In particular K is finitely generated.
Then, since M and FyB are projective in Fp,, Shanuel’s lemma gives an
isomorphism of functors

LeM=EK®F,B .

Then L is a quotient of K & FyB, which is finitely generated. Hence L is
finitely generated, contradicting 2. So no short exact sequence like (6.6) can
exists, hence B* is not finitely presented. O

Recall that in Corollary 3.7, the set
S ={C, | podd prime} U{C,} U{SDan | n > 4}
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was introduced. We finally prove that Gs = {(R,&r) | R € S} is a minimal
set of generators of L.

6.7. Theorem: LetS’ be a proper subset of the set S introduced in Corol-
lary 3.7, and Gsr = {(R,€gr) | r € 8’}. Then (Gs/) is a proper subfunctor of
(Gs) = L.

Proof: It suffices to show that for any R € S, if we set GF = Gs — {(R,2R)}
and L = (GE) then ¢ ¢ LE(R). So we assume that g € L¥(R), for
contradiction, i.e. that there exists a finite set £ of pairs (H, X), where
H € S — {R} and X is a subgroup of R x H, such that

(6.8) er= Y. (RxH)/X)ey .

(H,X)e&

Since ffiér = &R for any R, by Remark 3.2, this also reads

er= Y M(RxH)/X)f{ey .

(H,X)e&

We now observe that each element H of S has a unique minimal normal
(hence central of prime order) subgroup Zy. And if k1 (X) > Zg, then

M((Rx H)/X) = f{Inf,, Deff , (Rx H)/X) =0

by Lemma 6.3.2 of [7]. Similarly ((Rx H)/X)f{f = 0if ko(X) > Zp. So we
can assume that k1 (X) N Zg =1 and ko(X) N Zy =1 for any (H,X) € £.

This forces k1(X) = k2(X) = 1, unless R is semidihedral and k;(X) is a
non central subgroup of order 2 of R, or H is semidihedral and k2(X) is a non
central subgroup of order 2 of H (both cases may occur simultaneously). In
the first case p1(X) < Ng(ki(X)) = ki1(X)Zg, and p1(X)/ki(X) has order
1 or 2. Similarly, in the second case py(X)/ke(X) has order 1 or 2. In any
of these two cases, the morphism f{*((R x H)/X) f{ of Cr, factors through
a group of order 1 or 2 (see 2.4). Since L(1) = L(Cy) = {0}, it follows that
(R x H)/X) flizy = 0.

So we can assume that ky(X) = ko(X) = 1 for any (H, X) € £. In this
case X is a twisted diagonal subgroup of R x H, that is, there is a subgroup
K of H, a subgroup S of R, and a group isomorphism f : K — S, such that

(6.9) (R x H)/X = Indf Iso( f) Rest: .

We can also assume that Resf &y # 0, and in particular that L(K) # {0}.
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Suppose first that R = C), for an odd prime number p. Then S =1 or
S = R. Since L(1) = {0}, we have S = R. Then K = S = C, is a subgroup
of H € §. The only element H of S admitting a subgroup of odd prime order
pis C, itself. But H € S — {C,} by assumption, so we get a contradiction.

Suppose now that R = Cy. Again, since L(1) = L(Cy) = {0}, we have
S=R,and H> K = (. Since H € § — {C,}, it follows that H = SDan
for some n > 4. Then K is contained in the unique generalized quaternion
subgroup @ of index 2 of H. One checks easily that Resg Eg=Q/1-Q/Zy,
and it follows that Resi &y = 0. We get a contradiction also in this case.

We are left with the case R = S Dan, for some n > 4. Then if (H, X) € &,
the first projection S of the twisted diagonal subgroup X of R x H is a proper
subgroup of R: otherwise indeed, its second projection K is a semidihedral
subgroup of H € &, which can only occur if H itself is semidihedral and
isomorphic, hence equal, to R. This is a contradiction, since H € S — {R}.

It follows from (6.8) and (6.9) that g is a sum of elements of the form
Ind?us, for proper subgroups S of R and elements ug of L(S). Let D, C,
and @ be the subgroups of index 2 of R, where D is dihedral, C' is cyclic,
and (@ is generalized quaternion. We can write

Ep = IndgvD + Indgvc + IndSvQ ,

for some vp € L(D), v € L(C), and vy € L(Q). We set Z = Zp for
simplicity. If M € {D,C,Q}, then M > Z, and one checks easily that
fEnd¥, = mdf . It follows that

Er = Ind} fPvp + Indf fCve + Indf fPvg

Moreover f{MM/N =0if NN Z(M) # 1. Tt follows that f{vc is a multiple
of C/1 — C/Z, and that fPvg is a multiple of Q/1 — Q/Z. Hence

ér = Ind¥wp + M(R/1 — R/Z) ,

for some \ € Fy and some wp(= fPvp) € OL(D).
Now cutting the exact sequence

0——> L(D) —>FyB(D) —= B*(D) —=0
by the idempotent f£ gives the exact sequence
0——= OL(D) —= 0F,B(D) —= 0B (D) —=0 .

The vector space OFyB(D) has a basis consisting of the elements D/1—D/Z,
D/I —D/1Z,and D/J — D/JZ, where I and J are two non conjugate non
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central subgroups of order 2 of D. The vector space 0B> (D) is isomorphic to
the dual of 0B*(D), which is one dimensional (see e.g. Corollary 6.12 of [6],
or the proof of Theorem 3.4). It follows that 0L(D) has dimension 2. Now
OL(D) contains the two elements ép = (D/I —D/1Z)—(D/J—D/JZ) and
D/1 — D/Z = Ind2 £c,, which are obviously linearly independent. Hence
these two elements form a basis of OL(D). It follows that

er = alndfep + BIndg éc, + AM(R/1 — R/Z) |

for some «, # in Fy. But one checks easily that Indgép =0, for I and J are
conjugate in R. Moreover Ind{} éc, = R/1 — R/Z. Thus ép = R/I — R/1Z
is a scalar multiple of R/1 — R/Z, which is obviously wrong. This final
contradiction completes the proof of Theorem 6.7. O

6.10. Corollary: Let 2° be the set of subsets of S, ordered by inclusion
of subsets, and [0, L] be the poset of subfunctors of L, ordered by inclusion
of subfunctors. Let g : 25 — [0, L] be the map sending A C S to

9(A) = ({(H,2n) | HE AP C L |
and f : [0, L] — 25 be the map sending the subfunctor M of L to
fIM)={HeS|égeMH)}CS .

Then:
1. Let A, A" be subsets of S, and M, M’ be subfunctors of L. Then

g(AUA) = g(A) + g(A") and f(M N M') = f(M) N f(M) .

In particular f and g are maps of posets.
2. fog=Idys.
3. The poset [0, L] is uncountable.

Proof: Assertion 1 is straightforward. For Assertion 2, let A C § and
A" = fog(A). Then clearly A C A’. If this inclusion is strict, let S € A’ — A.
Then
(S.€s) € g(A) = ({(H,en) | H € A}) C 9(8)

where &' = § — {S}. Then ¢(S’') = ¢g(S) = L, and by Theorem 6.7, it follows
that S’ = S, a contradiction. Hence A = A’, and f o g = Idys. In particular
g is injective, and Assertion 3 follows, since the set of subsets of the (infinite)
countable set § is uncountable. O
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6.11. Remark: The map g is not surjective, and not a map of lattices (that
is, the image by ¢ of an intersection of subsets need not be the intersection
of the images of the subsets). Indeed, if S is any semidihedral group in S,
and C' its cyclic subgroup of index 2, we have

Resgés = C/1 — C/Z = ndSécr

where Z is the center of S and C”’ the subgroup of order 4 of C'. It follows that
u=C/1—-C/Z is a non-zero element of M(C'), where M is the intersection
of the subfunctors of L generated by {(5,¢s)} and {(Cy,éc,)}. In other
words if A = {S} and A’ = {C4}, we have 0 # u € (g(A) N g(A"))(C), so
g(A)Ng(A") # {0}. Now if g(A) N g(A’) belongs to the image of g, there is
a subset A” of S such that g(A) Ng(A’) = g(A”), and then

A" = fg(A") = f(g(A) N g(A)) = fg(A) N fg(A) = ANA =0 .

This is a contradiction since g(A”) # {0} but g(@) = {0}. It follows that ¢
is not surjective, and not a map of lattices, since g(A) N g(A’) # g(ANA").
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