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1. Introduction

Let R be a commutative ring. The biset category RC over R has finite groups
as objects, with morphisms HomRC(G,H) = R ⊗Z B(H,G), where B(H,G)
is the Burnside group of (H,G)-bisets. The composition of morphisms is
induced by the usual tensor product of bisets. A biset functor over R is an
R-linear functor from RC to the category R-Mod of R-modules. Biset func-
tors over R form an abelian category, where morphisms are natural transfor-
mations of functors. They have proved a useful tool in various aspects of the
representation theory of finite groups (see [12], [7], [8], [9]), and they are still
the object of active research ([15], [1], [10], [16], [13], [14], [5], [4], [2], . . . ).

The simple biset functors over R are parametrized ([6], Proposition 2)
by equivalence classes of pairs (H,W ), where H is a finite group, and W
is a simple ROut(H)-module - the simple functor parametrized by (H,W )
being denoted SH,W . However for a finite group G, the computation of the
evaluation SH,W (G) is generally quite hard: in Theorem 4.3.20 of [9], this
evaluation is shown to be equal to the image of a complicated linear map.
Assuming that R is a field - which is always possible when dealing with simple
functors - the dimension of SH,W (G) is given by Theorem 7.1 of [11], as the
rank of a yet complicated bilinear form with values in R.

Let F be a field of characteristic 0, let p be a prime number, and H be
a finite p-group. The present paper is mainly devoted to the computation
of the dimension of the evaluation SH,F(G), where G is an arbitrary finite
group, and F is the trivial FOut(H)-module. The result is as follows:
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Theorem: Let F be a field of characteristic 0, let p be a prime number,
and H be a finite p-group. Let moreover G be a finite group.

1. If H = 1, the dimension of SH,F(G) is equal to the number of conjugacy
classes of cyclic subgroups of G.

2. If H ∼= Cp × Cp, the dimension of SH,F(G) is equal to the number of
conjugacy classes of non-cyclic p-elementary subgroups of G.

3. If H is any other finite p-group, the dimension of SH,F(G) is equal
to the number of conjugacy classes of sections (T, S) of G such that
T/S ∼= H and T is p-elementary.

In the last section of this paper, for each prime number p, we introduce
a Green biset functor Ep, closely related to the two first assertions of the
above theorem. Green biset functors have been defined in [9], Section 8.5.
They are ring objects in the category of biset functors. For a finite group G,
we denote by Fp(G) the set of elements of the Burnside group B(G) which
vanish when restricted to all p-elementary subgroups of G, and we show that
this actually defines a biset subfunctor Fp of B. The functor Ep is defined
as the quotient B/Fp, and it then inherits from B a Green biset functor
structure (over Z). We show moreover that its evaluation Ep(G) at a finite
group G is a free abelian group of rank equal to the number of conjugacy
classes of p-elementary subgroups of G. We also show that the biset functor
FEp = F⊗Z Ep fits in a non split short exact sequence

0 → S(Cp)2,F → FEp → S1,F → 0

of biset functors over F. In the case F = Q, the restriction of this sequence
to p-groups is the short exact sequence of Theorem D of [12], involving the
Dade functor QD, the Burnside functor QB, and the functor of rational
representation QRQ.

2. Preliminary results

The basic definitions and notation on (double) Burnside algebras and their
idempotents from Chapters 2.4 and 2.5 of [9] will be freely used throughout
this paper.

Recall (Sections 5.3 and 5.4 of [9]) that for a normal subgroup N of a
finite group G, the rational number mG,N is defined by

mG,N =
1

|G|

∑

X≤G

XN=G

|X|µ(X,G) ,
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where µ is the Möbius function of the poset of subgroups of G. The group G
is called a B-group if mG,N = 0 for any non-trivial normal subgroup N
of G. Any finite group G has a largest quotient B-group β(G), unique up to
isomorphism. If N EG, then mG,N = 0 if and only if β(G) ∼= β(G/N).

2.1. Lemma: [M. Baumann [3] - See also [6], 8), p 713] Let L be a finite
group, let p be a prime, and let E be an elementary abelian p-group on which
L acts irreducibly, faithfully, and such that H1(L,E) = {0}. Then the group
G = E ⋊ L is a B-group.

Proof : First as E is L-simple, it follows that E is a minimal normal subgroup
of G. Let N be any normal subgroup of G. Then N∩E is equal to E or 1. So
ifN � E, thenN∩E = 1, andN centralizes E. But CG(E) = E·CL(E) = E,
since L acts faithfully on E. Thus N ≤ E, hence N = 1.

It follows that E is the unique minimal normal subgroup of G. By Propo-
sition 5.6.4 of [9], since E is abelian,

(2.2) mG,E = 1−
|KG(E)|

|E|
,

where KG(E) is the set of complements of E in G. The group E acts by
conjugation onKG(E), and the normalizer in E ofK ∈ KG(E) is equal to the
group EK of fixed points ofK on E. Since E isK-simple, andK-faithful, this
is equal to 1. Thus E acts freely on KG(E). Since H1(L,E) = {0}, the set
KG(E) is a single conjugacy class, i.e. a single E-orbit. Thus |KG(E)| = |E|,
and mG,E = 0. It follows that G is a B-group.

2.3. Recall that a finite group G is called cyclic modulo a prime number p
if G/Op(G) is cyclic, and that G is called p-elementary if G ∼= P ×C, where
P is a p-group and C is a cyclic group.

2.4. Lemma: Let p be a prime number, and G be a finite group.

1. [M. Baumann [3]] The group β(G) is cyclic modulo p if and only if G
is cyclic modulo p.

2. The group β(G) is a p-group if and only if G is p-elementary.

Proof : For Assertion 1, use the fact that by a theorem of Conlon, the
subspaceNCp(G) ofQB(G) generated by the idempotents eGH , whereH is not
cyclic modulo p, is equal to the kernel of the morphism QB(G) → Qppk(G),
where Qppk(G) is the ring of p-permutation kG-modules. In particular, the
correspondence G 7→ NCp(G) is a biset subfunctor of QB. It follows that
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there exists a family B of B-groups such that for any group G, the space
NCp(G) is the Q-vector subspace of QB(G) generated by the idempotents
eGH , where β(H) ∈ B. The family B consists of those B-groups H for which
eHH ∈ NCp(H), i.e. the B-groups which are not cyclic modulo p. Now for
any group G, and any subgroup H of G, the idempotent eGH is in NCp(G) if
and only if β(H) ∈ B, on the one hand, but also if and only if H is not cyclic
modulo p. Hence β(H) is not cyclic modulo p if and only if H is not cyclic
modulo p. This proves Assertion 1.

For Assertion 2, clearly, if G-is p-elementary, one can assume G ∼= P ×C,
where P is a p-group, and C is a cyclic p′-group. By Proposition 5.6.6 of [9],
this implies β(G) ∼= β(P )× β(C) ∼= β(P ), since β(C) = 1. Hence β(G) is a
p-group.

Conversely, suppose that β(G) is a p-group. In particular, it is cyclic
modulo p, hence G is cyclic modulo p, by Assertion 1. The Frattini subgroup
Φ(P ) of P is a normal subgroup of G, and G/Φ(P ) ∼= P ⋊C, where P is the
elementary abelian group P/Φ(P ). Suppose that the FpC-module P admits
a simple quotient E with non-trivial C-action (that is, not isomorphic to Fp).
Then the action of C on E has a kernel D < C, and the group E ⋊ (C/D)
is a quotient of P ⋊ C, hence a quotient of G. But E ⋊ (C/D) is a B-group
by Lemma 2.1: Indeed E is (C/D)-simple and faithful by construction, and
H1(C/D,E) = {0}, since C/D is a p′-group.

Now E⋊(C/D) is a B-group, which is not a p-group, since D 6= C, and it
is a quotient of G, hence of β(G), which is a p-group. This is a contradiction.

Hence C acts trivially on P . But for any p-group P , the kernel of the
morphism Aut(P ) → Aut

(
P/Φ(P )

)
is a p-group. As C is a p′-group, and

acts trivially on P , it acts trivially on P . Thus G ∼= P × C, as was to be
shown.

2.5. Lemma: Let p be a prime number, and P be a finite p-group.

1. Let Q be a normal subgroup of P . Then Q ∩ Φ(P ) = 1 if and only if
Q is elementary abelian and central in P , and admits a complement
in P .

2. Let Q and R be normal subgroups of P , such that |Q| = |R|. Then
Q ∩ Φ(P ) = 1 = R ∩ Φ(P ) if and only if Q and R are elementary
abelian and central in P , and admit a common complement in P .

In this case, set H = P/R ∼= P/Q, and denote by γ the rank of the
group H/Φ(H). If Q and R have rank m, and if Q ∩ RΦ(P ) has rank
m− s, the number of common complements of Q and R in P is equal
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to
(ps − 1)(ps−1 − 1) · · · (p− 1)p(

s

2
)+s(m−s)+m(γ−s) .

Proof : For Assertion 1, if Q is elementary abelian and central in P , and
admits a complement L, then P = Q × L. Thus Φ(P ) = 1 × Φ(L), hence
Q ∩ Φ(P ) = 1. Conversely, if Q ∩ Φ(P ) = 1, then Q maps injectively into
P/Φ(P ), so Q is elementary abelian. Let L ≥ Φ(P ) be a subgroup of P
such that L/Φ(P ) is a complement of QΦ(P )/Φ(P ) in the Fp-vector space
P/Φ(P ). Then QΦ(P )L = P , thus QL = P , and QΦ(P ) ∩ L = Φ(P ),
i.e. Q ∩ L ≤ Q ∩ Φ(P ) = 1. Since L ≥ Φ(P ), it follows that LEP , thus
[L,Q] ≤ L ∩Q = 1, and Q is central in P .

For Assertion 2, let Q and R be normal subgroups of P with |Q| = |R|.
If Q and R are elementary abelian central subgroups of P with a common
complement in P , then Q∩Φ(P ) = R∩Φ(P ) = 1 by Assertion 1. Conversely,
if Q∩Φ(P ) = 1 and R∩Φ(P ) = 1, then Q and R are elementary abelian and
central in P by Assertion 1. If L is a complement of Q in P , then P = Q×L
for Q is central in P , thus LEP , and P/L ∼= Q is elementary abelian.
Thus L ≥ Φ(P ), and L/Φ(P ) is a complement of QΦ(P )/Φ(P ) in P/Φ(P ).
Conversely if L/Φ(P ) is a complement of QΦ(P )/Φ(P ) in P/Φ(P ), then L
is a complement of Q in P , by the argument used in the proof of Assertion 1.

So finding a common complement to Q and R in P amounts to finding
a common complement of Q̃ = QΦ(P )/Φ(P ) and R̃ = RΦ(P )/Φ(P ) in

P̃ = P/Φ(P ). Moreover |Q̃| = |Q| = |R| = |R̃|. The Fp-vector space P̃ can

be split as P̃ = I⊕E⊕F⊕V , where I = Q̃∩R̃, where E is a complement of I
in Q̃ and F is a complement of I in R̃, and V is a complement of Q̃+ R̃ in P̃ .
Then L = F ⊕ V is a complement of Q̃ in P̃ , and all the other complements
of Q̃ are of the form {

(
ϕ(x), x

)
| x ∈ L}, where ϕ : L → Q̃ is a group

homomorphism. In other words, any complement L′ of Q̃ is of the form

L′ = {
(
a(f) + b(v), c(f) + d(v), f, v

)
| f ∈ F, v ∈ V } ,

where a : F → I, b : V → I, c : F → E and d : V → E are group homo-
morphisms. The group L′ is a complement of R̃ if and only if its intersection
with R̃ is trivial, or equivalently if c is injective, hence an isomorphism, since
|E| = |F |.

It follows that the number of common complements of Q̃ and R̃ in P̃ is
equal to the number of 4-tuples (a, b, c, d), where c is an isomorphism. Hence

|KP (Q) ∩KP (R)| = |Aut(E)||Hom(F, I)||Hom(V, I)||Hom(V,E)|

= |Aut(E)||Hom(F, I)||Hom(V, Q̃)| .
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Moreover

I =
(
QΦ(P ) ∩RΦ(P )

)
/Φ(P ) =

(
Q ∩RΦ(P )

)
Φ(P )/Φ(P ) ∼= Q ∩RΦ(P )

has rank m− s, and F ∼= E ∼= Q̃/I has rank s. Finally

V ∼= P̃ /(Q̃R̃) ∼=
(
P/RΦ(P )

)/(
QRΦ(P )/RΦ(P )

)

has rank γ − s, since P/RΦ(P ) ∼= H/Φ(H), as Φ(P/R) = RΦ(P )/R, and
since QRΦ(P )/RΦ(P ) ∼= Q/

(
Q ∩RΦ(P )

)
. This completes the proof.

2.6. Corollary: Let P be a finite p-group, and M be a normal subgroup
of P . Then

P/
(
M ∩ Φ(P )

)
∼= E × (P/M) ,

where E = M/
(
M ∩ Φ(P )

)
is elementary abelian.

Proof : The normal subgroup M = M/
(
M ∩ Φ(P )

)
of P = P/

(
M ∩ Φ(P )

)

intersects the Frattini subgroup Φ(P ) = Φ(P )/
(
M ∩ Φ(P )

)
trivially, hence

there exists a subgroup L of P such that P = M×L. Moreover L ∼= P/M ∼=
P/M .

3. Simple biset functors and bilinear forms

Let F be any field. Recall (see [11]) that, given a finite group H, we defined,
for any finite group G

FB(G,H) = FB(G,H)/
∑

|K|<|H|

FB(G,K) ◦ FB(K,H) ,

and that the correspondence G 7→ FB(G,H) is a quotient biset functor of
the Yoneda functor G 7→ FB(G,H) at the group H.

When V is a FOut(H)-module, we defined an F-valued bilinear form
〈 , 〉V,G on FB(G,H) by

∀α, β ∈ FB(G,H), 〈α, β〉V,G = χV

(
πH(α̂

op ◦ β̂)
)
,

where α̂, β̂ are elements of FB(G,H) lifting α, β ∈ FB(G,H), respectively,
where πH : FB(H,H) → FB(H,H) ∼= FOut(H) is the projection map, and
χV is the character of V , i.e. the trace function EndF(V ) → F. The main
property of these constructions is that

FB(G,H)/Rad〈 , 〉V,G ∼= SH,V (G)dimF V .
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Moreover, if L is a finite group, then for any γ ∈ B(L,G), any α ∈ B(G,H),
and any β ∈ B(L,H),

(3.1) 〈γ(α), β〉V,L = 〈α, γop(β)〉V,G .

3.2. Suppose from now on that F is a field of characteristic 0. Observe that
ẽGK = (ẽGK)

op for any subgroup K of a finite group G. By (3.1), this implies
that the decomposition

FB(G,H) =
⊕

K∈[sG]

ẽGKFB(G,H) ,

where [sG] is a set of representatives of conjugacy classes of subgroups of G,
is an orthogonal decomposition with respect to the form 〈 , 〉V,G. Moreover

ẽGGSH,V (G)dimF V ∼= ẽGGFB(G,H)/Rad〈 , 〉V,G ,

and the isomorphism

FB(G,H) ∼=
⊕

K∈[sG]

(
ẽKKFB(K,H)

)NG(K)

given by Proposition 6.5.5 of [9] induces an isomorphism

(3.3) SH,V (G)dimF V ∼=
⊕

K∈[sG]

(
ẽKKFB(K,H)/Rad〈 , 〉V,K

)NG(K)
.

Now B(K,H) is generated by the images of the elements (K×H)/L, where
L is a subgroup of K × H. If this image is non-zero, then L is of the form
L = {

(
x, s(x)

)
| x ∈ X}, where X is a subgroup of K and s : X ։ H is a

surjective group homomorphism.
The (K,G)-biset U = (K ×H)/L factors as U = IndK

X ◦ V , for a suitable
(X,H)-biset V ([9], Lemma 2.3.26), and by [9], Corollary 2.5.12

ẽKK ◦ IndK
X = IndK

X ◦ R̃esKXe
K
K .

Now ResKXe
K
K = 0 ifX is a proper subgroup ofK. It follows that ẽKKFB(K,H)

is generated by the images us of the elements

us = ẽKK ×K (K ×H)/∆⋄
s(K) ,

where ∆⋄
s(K) = {

(
x, s(x)

)
| x ∈ K}, for a surjective group homomorphism

s : K ։ H.
Let ̟H : Aut(H) → Out(H) denote the projection map. Then:
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3.4. Proposition: Let s, t : K ։ H be two surjective group homomor-
phisms. Let M = Ker s, and N = Ker t. Then

〈us, ut〉V,K = mK,M∩N
µEK(M∩N,M)

|M :M∩N |
χV

( ∑

Y ∈K(K,M,N)

̟H([s, Y, t])
)

= mK,M∩N
µEK(M∩N,M)

|M :M∩N |
χV

( ∑

θ∈Aut(H)
∆θ(H)≤(s×t)(K)

̟H(θ)
)
,

where µEK is the Mbius function of the poset of normal subgroups of K, and

K(K,M,N) = {Y ≤ K | Y N = YM = K, Y ∩N = Y ∩M = M ∩N}

is the set of subgroups Y of K, containing M ∩ N , such that Y/(M ∩ N)
is a common complement of M/(M ∩ N) and N/(M ∩ N) in K/(M ∩ N).
Moreover for Y ∈ K(K,M,N), the symbol [s, Y, t] denotes the automorphism
of H defined by [s, Y, t]

(
t(y)

)
= s(y), ∀y ∈ Y .

Proof : By definition, and since ẽKK is an idempotent

〈us, ut〉V,K = χV

(
πH(u

op
s ◦ ut)

)

= χV

(
πH

(
(H ×K)/∆s(K)×K ẽKK ×K (K ×H)/∆⋄

t (K)
))

,

where ∆s(K) = {
(
s(x), x

)
| x ∈ K}. Set

as,t = (H ×K)/∆s(K)×K ẽKK ×K (K ×H)/∆⋄
t (K) .

Then

as,t =
1

|K|

∑

L≤K

|L|µ(L,K)(H ×H)/∆s,t(L) ,

where ∆s,t(L) = {
(
s(l), t(l)

)
| l ∈ L}.

This subgroup of H × H is equal to ∆θ(H), for some automorphism θ
of H, if and only if

(3.5) L ∩M = L ∩N and LM = K = LN ,

where M = Ker s and N = Ker t. In this case the automorphism θ is defined
by θ

(
t(l)

)
= s(l), for any l ∈ L. The two conditions 3.5 and the automor-

phism θ remain unchanged when L is replaced by L(M ∩ N). Moreover
the conditions 3.5 are equivalent to saying that the group Y = L(M ∩ N)
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is in K(K,M,N), and in this case θ = [s, Y, t]. Conversely, fix some Y ∈
K(K,M,N), and consider all the subgroups L of K such that L(M∩N) = Y .
Recall that ∑

L≤Y
L(M∩N)=Y

|L|µ(L,K) = mK,M∩N |Y |µ(Y,K) .

This gives:

πH(as,t) = mK,M∩N

∑

Y ∈K(K,M,N)

|Y |

|K|
µ(Y,K)̟([s, Y, t]) .

Now if Y/(M ∩ N) is a complement of M/(M ∩ N) in K/(M ∩ N), and if
K/M ∼= H, it follows that |Y | = |M ∩ N ||H|. Moreover the poset ]Y,K[
is isomorphic to the poset ]M ∩ N,M [Y . But since M and N are normal
subgroups of K, the commutator group [M,N ] is contained in M ∩ N . It
follows that ]M ∩N,M [Y=]M ∩N,M [Y N=]M ∩N,M [K , and that µ(Y,K) =
µEK(M ∩N,M). This completes the proof of the first equality of the propo-
sition. The second one follows from the observation that the correspondences

Y 7→ [s, Y, t] and θ 7→ {k ∈ K | θ
(
t(k)

)
= s(k)}

are mutual inverse bijections between K(K,M,N) and the set of automor-
phisms θ of H such that ∆θ(H) ≤ (s× t)(K) (see Section 8.3 of [6]).

3.6. Corollary:

1. If ẽKKSH,V (K) 6= {0}, the group β(K) is isomorphic to β(L), where L
is a subgroup of H ×H with the following properties:

(a) p1(L) = p2(L) = H.

(b) k1(L) and k2(L) are direct products of minimal normal subgroups
of H.

(c) There exist an automorphism θ of H such that θ
(
k2(L)

)
= k1(L).

2. In particular, if H is a p-group for some prime p, then K is p-
elementary. If K = P × C, where P is a p-group and C is a cyclic
p′-group, then

ẽKKSH,V (K) ∼= ẽPPSH,V (P ) ,

and this isomorphism is compatible with the action of Aut(K).

Proof : Indeed, if ẽKKSH,V (K) 6= {0}, then the bilinear form 〈 , 〉V,K is not
identically zero on ẽKKFB(K,H). It follows that there exist surjective group
homomorphisms s, t : K ։ H such that 〈us, ut〉V,K 6= 0.
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Then mK,M∩N 6= 0, µEK(M ∩ N,M) 6= 0, and K(K,M,N) 6= ∅, where
M = Ker s and N = Ker t. Hence β(K) ∼= β

(
K/(M ∩N)

)
. Now K/(M ∩N)

is isomorphic to L = (s × t)(K), which is a subgroup of H × H such that
p1(L) = p2(L) = H. Moreover k1(L) = s(Ker t) ∼= N/(M ∩N) and k2(L) =
t(Ker s) ∼= M/(M ∩N). Then µEK(M ∩N,M) = µEH

(
1, t(Ker s)

)
, and this

is non zero if and only if the lattice [1, t(Ker s)]H of normal subgroups of
H contained in t(Ker s) is complemented, i.e. if t(Ker s) is a direct product
of minimal normal subgroups of H. Finally, let Y ∈ K(K,M,N) and θ =
[s, Y, t]. If u ∈ k2(L) = t(Ker s), then there exist v ∈ Ker s and y ∈ Y such
that u = t(v) = t(y). Then v−1y ∈ Ker t, and θ(u) = s(y) = s(v−1y) ∈
s(Ker t) = k1(L). In other words θ

(
k2(L)) = k1(L), which completes the

proof of Assertion 1.
The first part of Assertion 2 follows from Assertion 2 of Lemma 2.4. Now

if H is a p-group, if K = P×C, where P is a p-group and C is a p′-group, and
if s : K ։ H is a surjective group homomorphism, then C ≤ Ker s. In other
words, there is a surjective homomorphism s : P ։ H such that s = s ◦ π,
where π : K → P is the projection map. Moreover Ker s = Ker s× C.

So with the notation of Proposition 3.4, M = M ×C, where M = Ker s.
Similarly N = N×C, where N = Ker t, and t : P ։ H is such that t = t◦π.
Clearly |M : M ∩N | = |M : M ∩N |. Moreover, one checks easily that

mK,M∩N = mP×C,(M∩N)×C = mP,M∩NmC,C = mP,M∩N

φ(|C|)

|C|
,

since P and C have coprime orders, and C is cyclic.
Also

µEK(M ∩N,M) = µEP (M ∩N,M) .

Finally, the maps Q 7→ Q × 1 and Y 7→ (Y ∩ P ) induce inverse bijections
from K(P,M,N) to K(K,M,N), and for any Y ∈ K(K,M,N),

[s, Y, t] = [ s, Y ∩ P, t ] .

It follows that the matrix of the form 〈 , 〉V,K on ẽKKFB(K,H) is equal to
the matrix of the form 〈 , 〉V,P on ẽPPFB(P,H), multiplied by the non-zero

scalar φ(|C|)
|C|

. Hence the two forms define isomorphic quadratic spaces. As

all the above bijections are obviously compatible with the action of Aut(K)
and the canonical group homomorphism Aut(K) → Aut(P ), the induced
isomorphism

ẽKKSH,V (K) ∼= ẽPPSH,V (P )

is compatible with the action of Aut(K).
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3.7. Notation: Let H and P be finite p-groups.

1. Let QH(P ) denote the F-vector space with basis the set

ΣH(P ) = {s | s : P ։ H}

of surjective group homomorphisms from P to H, endowed with the
F-valued bilinear form 〈 , 〉V,P defined as follows: For s, t ∈ ΣH(P ), set
M = Ker s and N = Ker t. If M ∩Φ(P ) 6= N ∩Φ(P ), set 〈s, t〉V,P = 0.
And if M ∩ Φ(P ) = N ∩ Φ(P ), then the groups M/(M ∩ N) and
N/(M ∩N) are central elementary abelian subgroups of the same rank
of P/M ∩N . In this case, set

〈s, t〉V,P = mP,M∩N
µ(M∩N,M)

|M :M∩N |
χV

( ∑

Y ∈K(P,M,N)

̟H([s, Y, t])
)
.

2. Let Q♯
H(P ) be the subspace of QH(P ) with basis the subset

Σ♯
H(P ) = {s | s : P ։ H, Ker s ∩ Φ(P ) = 1}

of ΣH(P ).

3. Set
NH(P ) = {N | N EP, N ∩ Φ(P ) = 1} .

4. Denote by EH(P ) the set of normal subgroups R of P , contained in
Φ(P ), and such that P/R ∼= E × H, for some elementary abelian p-
group E.

3.8. Proposition: Let H be a p-group, and K be a p-elementary group.
Set P = Op(K). Then:

1. There is an isomorphism of FAut(K)-modules

ẽKKSH,V (K) ∼= QH(P )/Rad〈 , 〉V,P .

2. Let Γ be a finite group acting on the group K. Then Γ acts on the set
EH(P ), and there is an isomorphism of FΓ-modules

ẽKKSH,V (K) ∼= ⊕
R∈[Γ\EH(P )]

IndΓ
ΓR

(
Q♯

H(P/R)/Rad〈 , 〉V,P/R

)
,
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where [Γ\EH(P )] is a set of representatives of Γ-orbits on EH(P ), and
ΓR denotes the stabilizer of R in Γ.

Proof : The map s ∈ ΣH(P ) 7→ us ∈ ẽPPFB(P,H) induces a surjective linear
map QH(P ) → ẽPPFB(P,H). Let s, t ∈ ΣH(P ), and set M = Ker s and
N = Ker t. Then |M | = |N |. It follows from Lemma 2.5 that K(P,M,N) 6= ∅
if and only if M/(M ∩ N) and N/(M ∩ N) are central elementary abelian
subgroups of P/(M ∩ N), which intersect trivially the Frattini subgroup of
P/(M ∩N). But

Φ
(
P/(M ∩N)

)
= Φ(P )(M ∩N)/(M ∩N) .

Hence M/(M ∩N)∩Φ
(
P/(M ∩N)

)
=

(
M ∩Φ(P )

)
(M ∩N)/(M ∩N). This

group is trivial if and only ifM∩Φ(P ) ≤ M∩N , i.e. ifM∩Φ(P ) ≤ N∩Φ(P ).
Hence K(P,M,N) 6= ∅ if and only if M ∩ Φ(P ) = N ∩ Φ(P ).

This holds in particular if 〈us, ut〉 6= 0. In this case, by Proposition 3.4

〈us, ut〉V,P = mP,M∩N
µEP (M∩N,M)

|M :M∩N |
χV

( ∑

Y ∈K(P,M,N)

̟H([s, Y, t])
)
.

But µEP (M ∩ N,M) = µ(M ∩ N,M), since P/(M ∩ N) centralizes both
M/(M ∩N) and N/(M ∩N). Hence

〈us, ut〉V,P = 〈s, t〉V,P

in this case, and Assertion 1 follows.
Since 〈s, t〉V,P = 0 if M ∩ Φ(P ) 6= N ∩ Φ(P ), the quadratic space Q =(

QH(P ), 〈 | 〉V,P
)
splits as the orthogonal sum of the subspaces QR generated

by the elements s ∈ ΣH(P ) such that Ker s ∩ Φ(P ) = R. These subspaces
are permuted by the action of Aut(K), and the space QR is invariant by
Aut(K)R.

Let πR : P → P/R be the canonical projection. The map

θR : s ∈ Σ♯
H(P/R) 7→ s ◦ πR

is a bijection from Σ♯
H(P/R) to the set {s ∈ ΣH(P ) | Ker s∩Φ(P ) = R}, and

the map Y 7→ Y/R is a bijection from K(P,M,N) to K(P/R,M/R,N/R),
such that

[s, Y/R, t ] = [θR(s), Y, θR( t )] ,

for any s, t ∈ Σ♯
H(P/R).

Moreover, if M ∩ Φ(P ) = N ∩ Φ(P ) = R, then

mP,M∩N = mP,RmP/R,(M∩N)/R = mP/R,(M∩N)/R ,
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as R ≤ Φ(P ). Also

M/(M ∩N) ∼= (M/R)/
(
(M/R) ∩ (N/R)

)
.

It follows that

∀s, t ∈ Σ♯
H(P/R), 〈θR(s), θR( t )〉V,P = 〈s, t 〉V,P/R .

Hence there is an isomorphism

QR/Rad〈 , 〉V,P ∼= Q♯
H(P/R)/Rad〈 , 〉V,P/R ,

of FΓR-modules.
To complete the proof of Assertion 2, it remains to observe that if Q is a

p-group, the set Σ♯
H(Q) is non-empty if and only if the group Q is isomorphic

to E × H, for some elementary abelian p-group E: Indeed, if Q = E × H,
where E is elementary abelian, then Φ(Q) = 1 × Φ(H), and the projection
map s : Q → H = Q/E is an element of Σ♯

H(Q). Conversely, if s ∈ Σ♯
H(Q),

then E = Ker s is an elementary abelian central subgroup of Q, which admits
a complement L in Q, by Lemma 2.5. Thus Q = E×L, and L ∼= Q/E ∼= H.
Hence Q ∼= E ×H.

3.9. Theorem: Let G be a finite group, let H be a finite p-group, and let
V be a simple FOut(H)-module. Then

SH,V (G)dimF V ∼= ⊕
(K,R)

(
Q♯

H(Kp/R)/Rad〈 , 〉V,Kp/R

)NG(K,R)

.

where (K,R) runs through a set of G-conjugacy classes of pairs consisting
of a p-elementary subgroup K of G, and a p-subgroup R in EH(Kp), where
Kp = Op(K), and NG(K,R) = NG(K) ∩NG(R).

Proof : This follows from Equation 3.3, Corollary 3.6 and Proposition 3.8.

4. Proof of the theorem

This section is devoted to the proof of the following theorem, announced in
the introduction:

4.1. Theorem: Let F be a field of characteristic 0, let p be a prime number,
and H be a finite p-group. Let moreover G be a finite group.

1. If H = 1, the dimension of SH,F(G) is equal to the number of conjugacy
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classes of cyclic subgroups of G.

2. If H ∼= Cp × Cp, the dimension of SH,F(G) is equal to the number of
conjugacy classes of non-cyclic p-elementary subgroups of G.

3. If H is any other finite p-group, the dimension of SH,F(G) is equal
to the number of conjugacy classes of sections (T, S) of G such that
T/S ∼= H and T is p-elementary.

Proof : Step 1: Let K be a subgroup of G. Then ẽKKSH,F(K) = {0}, by
Corollary 3.6, unless K ∼= P × C, where P is a p-group and C is a cyclic
p′-group, and in this case ẽKKSH,F(K) ∼= ẽPPSH,F(P ) as FAut(K)-modules.

By Proposition 3.8, there is an isomorphism of FAut(P )-modules

ẽPPSH,F(P ) ∼= ⊕
R
Ind

Aut(P )
Aut(P )R

(
Q♯

H(P/R)/Rad〈 , 〉F,P/R

)
,

where R runs through a set of representatives of Aut(P )-orbits of normal
subgroups of P contained in Φ(P ), such that P/R ∼= E × H, for some ele-
mentary abelian p-group E. So the computation of ẽPPSH,F(P ) comes down
to the computation of the FAut(Q)-module

VH(Q) = Q♯
H(Q)/Rad〈 , 〉F,Q ,

for a p-group Q = P/R of the form E×H, where R is some normal subgroup
of P contained in Φ(P ). Recall that Q♯

H(Q) is the F-vector space with basis

Σ♯
H(Q) = {s | s : Q ։ H, Ker s ∩ Φ(Q) = 1} ,

and that the bilinear form 〈 , 〉F,Q is defined for s, t ∈ Σ♯
H(Q) by

〈s, t〉F,Q = mQ,M∩N
µ(M∩N,M)

|M :M∩N |
|K(Q,M,N)| ,

where M = Ker s and N = Ker t.
This shows that 〈s, t〉F,Q depends only on M and N . It follows that

Q♯
H(Q)/Rad〈 , 〉F,Q is also isomorphic to the quotient of the F-vector space

with basis the set NH(Q) = {N EQ | P/N ∼= H, N ∩Φ(Q) = 1} introduced
in Notation 3.7, by the radical of the bilinear form 〈 , 〉♮F,Q defined by

〈M,N〉♮F,Q = mQ,M∩N
µ(M∩N,M)

|M :M∩N |
|K(Q,M,N)| ,

for M,N ∈ NH(Q) .

Step 2: Now Assertion 1 is well known (see e.g. Proposition 4.4.8 [9]), but
it can also be recovered from the argument of Step 1: Indeed, if H = 1, there
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is a unique normal subgroup N of Q such that Q/N ∼= H, namely Q itself. If
moreover N∩Φ(Q) = 1, then Φ(Q) = 1, and Q is elementary abelian. But as
Q = P/R, for some R ≤ Φ(P ), it follows that R = Φ(P ), and Q = P/Φ(P ).
Moreover NH(Q) = {Q}, and

〈Q,Q〉♮F,Q = mQ,Q ,

which is equal to 0 if Q is non-cyclic, and to 1 − 1/p otherwise. Hence
VH(Q) = {0} if Q is non-cyclic, and VH(Q) is one dimensional if Q = P/Φ(P )
is cyclic, i.e. if P is cyclic. But P = Op(K) for some p-elementary subgroup
K of G. Hence P is cyclic if and only if K itself is cyclic, and this leads to
Assertion 1.

We can now assume that H is a non-trivial p-group, of order ph, and
make a series of observations:

• Let P be a p-group, and Q be a normal subgroup of P . Example 5.2.3
of [9] shows that mP,Q = mP,Φ(P )Q. By Proposition 5.3.1 of [9], it
follows that

(4.2) mP,Q = mP,Φ(P )mP/Φ(P ),QΦ(P )/Φ(P ) = mE,F ,

where E is the elementary abelian p-group P/Φ(P ), and F its subgroup
QΦ(P )/Φ(P ). If E has rank n ≥ 2 and F has rank k, then

(4.3) mE,F = (1− pn−2)(1− pn−3) · · · (1− pn−k−1) ,

(which is equal to 0 if k ≥ n−1, and non-zero otherwise). This follows
from an easy induction argument on k, using Proposition 5.3.1 of [9],
and starting with the case k = 1, which is a special case of Equation 2.2.

If E has rank 1 and F = 1, then mE,F = 1. In this case mE,E = 1− 1
p
.

This is the only case where mE,F is not an integer.

• Let M,N ∈ NH(Q). Then in particular M and N have the same order.
Recall that mQ,M∩N is non-zero if and only if β(Q) ∼= β

(
Q/(M ∩N)).

So either Q and Q/(M∩N) are both cyclic, or they are both non-cyclic.
Equivalently, either Q is cyclic, or Q/(M ∩ N) is non-cyclic. If H is
non-cyclic, then Q/(M ∩ N) is non-cyclic, as it maps surjectively on
Q/M ∼= H.

So if mQ,M∩N = 0, then H is cyclic, Q is non-cyclic, and Q/(M ∩ N)
is cyclic. But then M/(M ∩N) = N/(M ∩N), since the cyclic group
Q/(M ∩N) admits a unique subgroup of a given order. Thus M = N .
Conversely, if H is cyclic, if Q is non-cyclic, and if M = N , then
mQ,M∩N = 0 since Q/(M ∩N) ∼= H is cyclic.
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• If M,N ∈ NH(Q), then the subgroups M = M/(M ∩ N) and N =
N/(M ∩N) are central elementary abelian subgroups of the same order
of Q = Q/(M ∩N). If M has rank m, then

µ(M ∩N,M) = (−1)mp(
m

2
) .

Now by Lemma 2.5, the product

(4.4) αM,N = µ(M ∩N,M)|K(Q,M,N)|

is equal to

αM,N = (−1)m(ps − 1)(ps−1 − 1) · · · (p− 1)p(
m

2
)+(s

2
)+s(m−s)+m(γ−s)

= (−1)m+s(1− ps)(1− ps−1) · · · (1− p)p(
m

2
)+(s

2
)+s(m−s)+m(γ−s) ,

where γ is the rank ofH/Φ(H), and s is the rank ofM/
(
M∩NΦ(Q)

)
∼=

M/
(
M ∩NΦ(Q)

)
.

Step 3: Finally 〈M,N〉♮F,Q = 0 if and only if mQ,M∩N = 0, i.e. H is cyclic,

M = N , and Q is not cyclic. In all other cases, the groups M = M/(M ∩N)
and N = N/(M∩N) are elementary abelian, and central in Q = Q/(M∩N).
Moreover M ∩ N = 1. Let m be the rank of M , let s denote the rank
of M/

(
M ∩NΦ(Q)

)
, and let γ denote the rank of H/Φ(H). Then

〈M,N〉♮F,Q =mQ,M∩N
αM,N

|M :M∩N |

=mQ,M∩N
αM,N

|M |

=(−1)mmQ,M∩N(p
s−1)(ps−1−1) · · · (p−1)p(

m

2
)−m+(s

2
)+s(m−s)+m(γ−s) ,

i.e. finally
(4.5)

〈M,N〉♮F,Q = (−1)mmQ,M∩N(p
s−1)(ps−1−1) · · · (p−1)p

1

2
(m−s)(m+s+1)+m(γ−2) .

Let n denote the rank of Q/Φ(Q). By Equation 4.3

mQ,M∩N = (1− pn−2)(1− pn−3) · · · (1− pn−k−1) ,

where k is the rank of (M ∩ N)Φ(Q)/Φ(Q) ∼= M ∩ N . Since Q/MΦ(Q) ∼=
H/Φ(H) has rank γ, it follows that MΦ(Q)/Φ(Q) ∼= M has rank n − γ.
Since M/(M ∩N) has rank m, it follows that k = n−m− γ. Thus

mQ,M∩N = (1− pn−2)(1− pn−3) · · · (1− pm+γ−1) .
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It follows that

(4.6) 〈M,N〉♮F,Q = AM,N(−1)m+sp
1

2
(m−s)(m+s+1)+m(γ−2) ,

where

AM,N = (1− pn−2)(1− pn−3) · · · (1− pm+γ−1)(1− ps)(1− ps−1) · · · (1− p)

is an integer congruent to 1 modulo p.

Step 4: Assume first that H is non-cyclic, i.e. that γ ≥ 2. In this case
〈M,N〉♮F,Q is non-zero. If M = N , then m = s = 0, and 〈M,N〉♮F,P = AM,M

is congruent to 1 modulo p. And if M 6= N , then m ≥ 1. As γ ≥ 2 and
m ≥ s, the exponent

1

2
(m− s)(m+ s+ 1) +m(γ − 2)

of p in the right hand side of 4.6 is non-negative. It is equal to 0 if and
only if m = s and γ = 2. In this case M ∩ NΦ(Q) = 1, so M maps into
Q/NΦ(Q) ∼= H/Φ(H), which has rank γ = 2. It follows that m ≤ 2.

If m = 2, then MNΦ(Q) = Q, thus MN = Q, and H ∼= Q/N ∼= M
(since M ∩N = 1), so H is elementary abelian of rank 2.

If m = 1, then as M ∼= Cp maps into Q/NΦ(Q) ∼= Cp × Cp, the group
Q/

(
MNΦ(Q)

)
is cyclic, so Q/MN is cyclic. But MN is a central subgroup

of Q. It follows that Q is abelian, so H ∼= Q/M is abelian. Hence Q/M
is non-cyclic, and it has a subgroup MN/M of order p such that the corre-
sponding quotient Q/MN is cyclic. It follows that Q/M ∼= H ∼= Cp ×Cph−1 ,
for some h ≥ 2.

Step 5: Assume that H is neither cyclic nor isomorphic to Cp × Cph−1 , for

some h ≥ 2. Then the matrix of the bilinear form 〈 , 〉♮F,Q is congruent to the
identity matrix modulo p. In particular, it is non-singular, and the FAut(Q)-
module VH(Q) = Q♯

H(Q) is isomorphic to the permutation module on the
set NH(Q).

It follows that the Aut(P )-module ẽPPSH,F(P ) is isomorphic to the permu-
tation module on the set of normal subgroups M of P such that P/M ∼= H.
Going back to Step 1 and to the p-elementary subgroup K = P × C of G,
it follows that the space ẽKKSH,F(K)NG(K) has a basis in one to one corre-
spondence with the NG(K)-orbits of normal subgroups M of K such that
K/M ∼= H. Now the isomorphism (3.3) shows that SH,F(G) has a basis in
one to one correspondence with the G-conjugacy classes of sections (K,M)
of G such that K is p-elementary and K/M ∼= H. This proves the theorem,
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in the case where H is neither cyclic nor isomorphic to Cp ×Cph−1 , for some
h ≥ 2.

Step 6: Suppose now that H is cyclic, of order ph > 1. Assume first that
Q is cyclic. Then since Q ∼= E × H for some elementary abelian p-group
E, it follows that E = 1, i.e. Q ∼= H. In this case NH(Q) = {1}, and
〈1,1〉♮H,F = 1. Hence VH(Q) is isomorphic to the trivial FAut(Q)-module in
this case.

If Q is non-cyclic, let M,N ∈ NH(Q). Recall that

〈M,N〉♮F,Q = mQ,M∩N
αM,N

|M :M∩N |
,

where αM,N is defined in (4.4).
The groups M = M/(M ∩ N) and N = N/(M ∩ N) are non-trivial

elementary abelian central subgroups ofQ = Q/(M∩N), and have a common
complement in Q. As M is isomorphic to the subgroup MN/N of the cyclic
group Q/N ∼= H, it follows that M ∼= Cp. Moreover M has a complement
in Q, so Q ∼= Cp×Cph . Hence if Q/Φ(Q) has rank n, then Φ(Q)(M∩N)/Φ(Q)
has rank n− 2 since

Q/
(
Φ(Q)(M ∩N)

)
∼= Q/Φ(Q) ∼= Cp × Cp .

By Equations 4.3 and 4.2, it follows that

mQ,M∩N = (1− pn−2)(1− pn−3) · · · (1− p) .

Moreover since m = 1 and γ = 1, Equation 4.5 gives

〈M,N〉♮F,Q = −mQ,M∩N(p
s−1)(ps−1−1) · · · (p−1)p

1

2
(1−s)(2+s)−1 .

Since 0 ≤ s ≤ m = 1, there are two cases:

• If s = 1, then M maps into Q/NΦ(Q) ∼= H/Φ(H) ∼= Cp, hence MN =
Q as above, and Q/N ∼= Cph

∼= M ∼= Cp, so h = 1. In this case

〈M,N〉♮F,Q = −(1− pn−2)(1− pn−3) · · · (1− p)(p− 1)/p

= (1− pn−2)(1− pn−3) · · · (1− p2)(1− p)2/p .

• If s = 0. Then M ≤ NΦ(Q), so MΦ(Q) = NΦ(Q). If h = 1, then
Q/M ∼= Cp, so M ≥ Φ(Q), and it follows that M = N , a contradiction.
Thus h > 1 in this case. Moreover

〈M,N〉♮F,Q = −(1− pn−2)(1− pn−3) · · · (1− p) .
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So in any case, there is a non-zero rational number ρ, depending only on
Q (and H), such that 〈M,N〉♮F,Q = ρ when 〈M,N〉♮F,Q 6= 0. Moreover

〈M,N〉♮F,Q 6= 0 if and only if M 6= N .

So the matrix of the form 〈 , 〉♮F,P is equal to ρJ , where J is a matrix of
size |NH(Q)|, with zero diagonal, and non-diagonal coefficients equal to 1.
Hence this matrix is non-singular if and only if |NH(Q)| > 1.

But Q = E × L, where L ∼= H and E is a non-trivial elementary abelian
p-group. The elements of NH(Q) are exactly the groups

Eϕ = {
(
e, ϕ(e)

)
| e ∈ E} ,

where ϕ is a group homomorphism from E to L. There are |E| such homo-
morphisms, hence |NH(Q)| = |E| > 1.

It follows that the matrix of the form 〈 , 〉♮F,Q is non-singular, hence the

form 〈 , 〉♮F,Q is non-degenerate.

So either when Q is cyclic, or when it is not, the form 〈 , 〉♮F,Q is non-
degenerate. By the same argument as at the end of Step 4, this proves
that SH,F(G) has a basis in one to one correspondence with the G-conjugacy
classes of sections (K,M) of G for which K is p-elementary and K/M ∼= H.
This proves the theorem in the case where H is cyclic.

Step 7: Suppose now that H ∼= Cp × Cph−1 , for some h ≥ 2. Note that if
h = 2, then H is elementary abelian, so Q = P/R ∼= E × H is elementary
abelian. Since R ≤ Φ(P ), this forces R = Φ(P ).

Now if M,N ∈ NH(Q), since γ = 2 in this case,

〈M,N〉♮F,Q = (−1)mmQ,M∩N(p
s−1)(ps−1−1) · · · (p−1)p

1

2
(m−s)(m+s+1) ,

and moreover

mQ,M∩N = (1− pn−2)(1− pn−3) · · · (1− pm+1) ,

where n is the rank of Q/Φ(Q), wherem is the rank of the elementary abelian
subgroups M = M/(M ∩N) and N = N/(M ∩N) of Q = Q/(M ∩N), and
s is the rank of M/

(
M ∩NΦ(Q)

)
∼= M/

(
M ∩NΦ(Q)

)
. Since the exponent

1
2
(m−s)(m+s+1) of p is non-negative, it follows that 〈M,N〉♮F,Q is an integer.

Moreover, if m > s, this integer is a multiple of p. On the other hand m = s
if and only if M ∩ NΦ(Q) = 1, or equivalently if M ∩ NΦ(Q) = M ∩ N .
Since M ∩ Φ(Q) = N ∩ Φ(Q) = 1, this is equivalent to MN ∩ Φ(Q) = 1. In
this case

(4.7) 〈M,N〉♮F,Q = (1− pn−2)(1− pn−3) · · · (1− p)
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is congruent to 1 modulo p. It follows that the matrix of the form 〈 , 〉♮F,Q
is congruent modulo p to the incidence matrix of the relation ∼ on NH(Q)
defined by M ∼ N if and only if MN ∩Φ(Q) = 1. There are now two cases:

• Case 1: Assume first that h ≥ 3, i.e. that H is not elementary abelian of
rank 2.

4.8. Lemma: Let H = Cp ×Cph−1, for h ≥ 3, and Q = E ×H, where E is
an elementary abelian p-group of rank e. Let S denote the incidence matrix
of the relation ∼ on NH(Q) defined by

M ∼ N ⇔ MN ∩ Φ(Q) = 1 .

Then:

1. if e = 0, the matrix S is the matrix (1).

2. if e ≥ 1, the eigenvalues of S are pe+1 − p + 1, pe − p + 1, and 1 − p,
with respective multiplicities 1, pe+1 − p, and p2e − pe+1 + p− 1.

In both cases M is invertible modulo p.

Proof : If e = 0, then E = 1 and Q ∼= H, so NH(Q) consists of the trivial
subgroup E of Q. Since E ∼ E, Assertion 1 follows.

If e ≥ 1, then NH(Q) consists of the subgroups

Eϕ = {
(
x, ϕ(x)

)
| x ∈ E} ,

where ϕ : E → H is a group homomorphism. Since E is elementary abelian,
the image of ϕ is contained in the subgroup Cp × Cp of H = Cp × Cph−1 .
So there are group homomorphisms a, b : E → Cp such that ϕ = (a, b), i.e.
ϕ(x) =

(
a(x), b(x)

)
for any x ∈ E.

Let ϕ = (a, b) and ϕ′ = (a′, b′) be two group homomorphisms from E
to H. Then, with an additive notation

EϕEϕ′ = {
(
x− x′, a(x)− a′(x′), b(x)− b′(x′)

)
| x, x′ ∈ E} ≤ E × Cp × Cp .

The element
(
x− x′, a(x)− a′(x′), b(x)− b′(x′)

)
is in Φ(Q) = 1× 1× Cph−2

if and only if x = x′ and a(x) = a′(x′). Thus

Eϕ ∼ Eϕ′ ⇔ Ker(a− a′) ≤ Ker(b− b′) .

Identifying E with the vector space (Fp)
e, and Cp with Fp, the homomor-

phisms a, b, a′, b′ become elements of the dual vector space E∗, and the con-
dition Ker(a−a′) ≤ Ker(b− b′) means that there is a scalar λ ∈ Fp such that
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b − b′ = λ(a − a′). Hence the incidence matrix S is the matrix indexed by
pairs

(
(a, b), (a′, b′)

)
of pairs of elements of E∗, defined by

S
(
(a, b), (a′, b′)

)
=

{
1 if ∃λ ∈ Fp, b− b′ = λ(a− a′)
0 otherwise

.

Let T be the rectangular matrix indexed by the set of pairs
(
(a, b), (c, λ)

)
,

where a, b, c ∈ E∗, and λ ∈ Fp, defined by

T
(
(a, b), (c, λ)

)
=

{
1 if c = b− λa
0 otherwise

.

Then for a, b, a′, b′ ∈ E∗, consider the sum

s =
∑

c∈E∗

λ∈Fp

T
(
(a, b), (c, λ)

)
T
(
(a′, b′), (c, λ)

)
.

The non-zero terms in this summation correspond to pairs (c, λ) such that
c = b − λa = b′ − λa′. Hence s is equal to the number of λ ∈ Fp such that
b− λa = b′ − λa′. This is equal to 1 if a′ 6= a and if b′ − b is a scalar multiple
of a′ − a, to p if a = a′ and b = b′, and to 0 if a = a′ and b 6= b′. In other
words

T · tT = S + (p− 1)Id .

Since T · tT is symmetric, it is diagonalizable over C, with real eigenvalues.
Let µ be an eigenvalue of T · tT , and u be a corresponding eigenvector. Then
T · tTu = µu, thus tT · T · tTu = µtTu. So either tTu = 0, and then µ = 0.
And if µ 6= 0, then tTu is an eigenvector of tT · T for the eigenvalue µ.
Moreover, the map u 7→ tTu is an injection of the µ-eigenspace of T · tT into
the µ-eigenspace of tT · T . The same argument applied to tT · T instead of
T · tT shows that these two matrices have the same non-zero eigenvalues, and
the same multiplicities.

Now for c, c′ ∈ E∗ and λ, λ′ ∈ Fp

tT · T
(
(c, λ), (c′, λ′)

)
=

∑

a,b∈E∗

T
(
(a, b), (c, λ)

)
T
(
(a, b), (c′, λ′)

)
.

The right hand side is the number of pairs (a, b) of elements of E∗ such that
c = b − λa and c′ = b − λ′a, i.e. the number of elements a ∈ E∗ such that
c+ λa = c′ + λ′a, or c− c′ = (λ− λ′)a. This is equal to 1 if λ 6= λ′, to |E| if
λ = λ′ and c = c′, and to 0 if λ = λ′ and c 6= c′. Hence the matrix tT · T is a

21



block matrix of the following form

tT · T =




|E|Id Ω · · · Ω
Ω |E|Id · · · Ω
...

...
. . .

...
Ω Ω . . . |E|Id


 ,

where all the p2-blocks are square matrices of size |E|, and Ω is a matrix
with all entries equal to 1. Let µ be an eigenvalue of this matrix, and

v =




X1

X2
...
Xp




be a corresponding eigenvector, where X1, . . . , Xp are column vectors of
size |E|. Equivalently, for each i ∈ {1, . . . , p}

|E|Xi +
∑

j 6=i

ΩXj = µXi .

But ΩX = s(X)ω for any column vector X of size |E|, where s(X) denotes
the sum of the entries of X, and ω is a column vector of size |E| with all
entries equal to 1. Setting σ =

∑p
j=1 s(Xj), this gives, since |E| = pe

peXi +
(
σ − s(Xi)

)
ω = µXi .

Hence if µ 6= pe, the vector Xi is a multiple of ω, i.e. Xi = αiω for some
scalar αi. Then s(Xi) = αip

e, thus σ = τpe, where τ =
∑p

j=1 αj. Finally

peαi +
(
τ − αi)p

e = τpe = µαi .

Thus if µ 6= 0, all the αi’s are equal to α, say, and then τ = pα, thus
µ = pe+1. Conversely, if Xi = ω for all i, then v is an eigenvector of tT · T
with eigenvalue pe+1. So pe+1 is an eigenvalue of tT · T , with multiplicity 1.

If µ = 0, then the vector v corresponding to Xi = αiω for i ∈ {1, . . . p} is
in the kernel of tT · T if and only if

∑p
j=1 αi = 0. Hence 0 is an eigenvalue of

tT · T with multiplicity p− 1.
Finally, if µ = pe, then s(Xi) = σ for i ∈ {1, . . . p}, hence σ = pσ = 0.

The vector v is in the pe-eigenspace of tT ·T if and only if s(Xi) = 0 for all i.
Thus pe is an eigenvalue of tT · T , with multiplicity p(pe − 1).
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It follows that T · tT has eigenvalues pe+1, pe, and 0, with respective
multiplicities 1, pe+1 − p, and p2e − pe+1 + p − 1. This completes the proof,
since S = T · tT − (p− 1)Id.

Lemma 4.8 shows that the form 〈 , 〉♮F,Q is non-degenerate whenever H is
a quotient of Q. By the argument of the end of Step 4, or the end of Step 6,
this shows that SH,F(G) has a basis in bijection with the G-conjugacy classes
of sections (T, S) of G such that T is p-elementary and T/S ∼= H.

•Case 2: Suppose finally thatH = Cp×Cp. As observed earlier, in this case,
if R is a normal subgroup of P contained in Φ(P ) such that P/R ∼= E ×H
for some elementary abelian p-group E, then in fact R = Φ(P ). The group
Q = P/R is elementary abelian, and decomposes as Q = E×L, where L ∼= H
is elementary abelian of rank 2. The set NH(Q) is the set of complements
M of L in Q, and MN ∩ Φ(Q) = 1 for any M,N ∈ NH(Q). Equation 4.7
shows that

〈M,N〉♮F,Q = (1− pn−2)(1− pn−3) · · · (1− p) ,

where n is the rank of P/Φ(P ). This is non-zero, and does not depend on
M,N ∈ NH(Q). Hence the form 〈 , 〉♮F,Q has rank 1 in this case. Thus

ẽPPSH,F(P ) is one dimensional if P is non-cyclic, and it is zero otherwise.
Saying that P is non-cyclic is equivalent to saying that the p-elementary
group K = P × C of Step 1 is non-cyclic. Hence SH,F(G) has a basis in
bijection with the conjugacy classes of non-cyclic p-elementary subgroups
of G. This completes the proof of Theorem 4.1.

4.9. Remark: As Cp × Cp is a B-group, Case 2 above also follows from
Proposition 11 of [6]: for a B-group H and a finite group G, the dimension
of SH,F(G) is equal to the number of conjugacy classes of subgroups K of G
such that β(K) ∼= H. Now by Lemma 2.4, if β(K) ∼= Cp × Cp, then K is
p-elementary, and non cyclic (for otherwise β(K) = 1). Conversely, if K is
p-elementary and non cyclic, then β(K) is a non trivial p-group, and also a
B-group, hence β(K) ∼= Cp × Cp.

5. A Green biset functor for p-elementary groups

The following theorem is closely related to Theorem 4.1. In particular, it
yields an alternative proof of its Assertions 1 and 2. We refer to Section 8.5
of [9] for the basic definitions on Green biset functors.

5.1. Theorem: Let p be a prime number.

1. For a finite group G, let E lp(G) denote the set of p-elementary sub-
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groups of G. Set

Fp(G) = {u ∈ B(G) | ∀H ∈ E lp(G), ResGHu = 0} .

Then the assignment G 7→ Fp(G) is a biset subfuntor of the Burnside
functor B, and the quotient functor

Ep = B/Fp

is a Green biset functor (over Z).

2. For a finite group G, the evaluation Ep(G) is a free abelian group of
rank equal to the number of conjugacy classes of p-elementary subgroups
of G.

3. Let F be a field of characteristic 0. Then the biset functor FEp =
F ⊗Z Ep has a unique non zero proper subfunctor I, isomorphic to
S(Cp)2,F, and the quotient FEp/I is isomorphic to S1,F

∼= FRQ. In other
words there is a non split short exact sequence

(5.2) 0 → S(Cp)2,F → FEp → S1,F → 0

of biset functors over F.

Proof : Let FB = F⊗Z B be the Burnside functor over F. If we forget the
F-structure on FB, we get an inclusion B → FB of biset functors over Z. In
particular, for each finite group G, we get an inclusion

fp : Fp(G) → FB(G) .

Now saying that u ∈ B(G) lies in Fp(G) amounts to saying that the re-
striction of fp(u) to any p-elementary subgroup of G is equal to 0. Since
any subgroup of a p-elementary group is again p-elementary, this amounts
to saying that |fp(u)

H | = 0 for any H ∈ E lp(G). In other words fp(u) is a
linear combination of idempotents eGK of FB(G), where K is a subgroup of G
which is not p-elementary. By Lemma 2.4, we get that u ∈ Fp(G) if and only
if fp(u) is a linear combination of idempotents eGK , for subgroups K such
that β(K) is not a p-group, that is β(K) is non trivial and not isomorphic
to (Cp)

2.
Let Gp be the class of B-groups which are non trivial, and not isomorphic

to (Cp)
2. Then Gp is a closed class of B-groups ([9], Definition 5.4.13), that is,

if a B-group L admits a quotient in Gp, then actually L ∈ Gp (this is because
the only quotient B-groups of (Cp)

2 are the trivial group and (Cp)
2, up to

isomorphism). By Theorem 5.4.14 of [9], this closed class Gp is associated to
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a subfunctor Np of the Burnside functor FB, defined for a finite group G by

Np(G) =
∑

K≤G
β(K)∈Gp

FeGK .

This shows that fp
(
Fp(G)

)
= fp

(
B(G)

)
∩ Np(G), and since Np is a biset

subfunctor of FB, it follows that Fp is a biset subfunctor of B. As biset sub-
functors of B are also ideals of the Green biset functor B (see Lemma 2.5.8,
Assertion 4 in [9]), we get that Fp is an ideal of B. It follows that the quotient
Ep = B/Fp is a Green biset functor. This completes the proof of Assertion 1.

Moreover, the ghost map

ΦG : B(G) →
∏

K≤G
mod. G

Z

sending u ∈ B(G) to the sequence |uK |, is injective by Burnside’s theorem.
The above discussion shows that Φ induces an injective map

Ep(G) = B(G)/Fp(G) →
∏

K∈Elp(G)
mod. G

Z ,

which becomes an isomorphism after tensoring with F. Assertion 2 follows.
Finally, it follows from Theorem 5.4.14 of [9] that the lattice [0,FEp] of

biset subfunctors of FEp is isomorphic to the set of closed classes of B-groups
which contain Gp. There are exactly three such classes: the class Gp, the class
of non-trivial B-groups, and the class of all B-groups. So [0,FEp] is a totally
ordered set of cardinality 3. Hence FEp admits a unique non zero proper
subfunctor I. The quotient FEp/I is the unique simple quotient of FB,
hence it is isomorphic to S1,F

∼= FRQ. Now I is a simple biset functor, which
is a subquotient of FB. By Proposition 5.5.1 of [9], it follows that I ∼= SH,F

for some B-group H. Since the group K = (Cp)
2 has a unique non cyclic

subgroup, it follows that I(K) is one dimensional, and a trivial FOut(K)-
module. Moreover K is a group of minimal order such that I(K) 6= {0}.
Hence H ∼= K, and I ∼= S(Cp)2,F. This completes the proof of Assertion 3,
and the proof of Theorem 5.1.

5.3. Remark: One can show that the exact sequence (5.2) is essentially
unique as a non split exact sequence in the category FF of biset functors
over F: more precisely, one can show that Ext1FF

(S1,F, S(Cp)2,F)
∼= F.

5.4. Remark: If G is a p-group (or even if G is p-elementary), then Fp(G) =
{0}, so Ep(G) ∼= B(G). So if we restrict the exact sequence (5.2) to finite
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p-groups, we get an exact sequence

0 → S(Cp)2,F → FB → FRQ → 0

of p-biset functors over F. This (restricted) exact sequence was introduced
in [12], where is was shown that for a finite p-group P , the evaluation
S(Cp)2,F(P ) is isomorphic to FD(P ), where D(P ) is the Dade group of endop-
ermutation modules. It was also shown that the dimension of S(Cp)2,F(P ) is
equal to the number of conjugacy classes of non cyclic subgroups of P , which
is also the number of conjugacy classes of non-cyclic p-elementary subgroups
of P . So this agrees with Assertion 2 of Theorem 4.1.

5.5. Remark: For a finite group G, let Mp(G) be the Z-submodule of
B(G) generated by the classes of the transitive G-sets G/H, where H is a p-
elementary subgroup of G. One can check easily that Mp(G)∩Fp(G) = {0},
so comparing ranks, one might hope that B(G) = Mp(G) ⊕ Fp(G). This is
false in general: for p = 2, when G is the symmetric group S3, there are
three p-elementary subgroups in G, up to conjugation, namely the proper
subgroups of G (that is the trivial group, the alternating subgroup A = A3,
and the subgroup C of order 2). Hence if B(G) = Mp(G) ⊕ Fp(G), then
in particular G/G ∈ Mp(G) ⊕ Fp(G) so there exist integers a, b, c such that
the element u = G/G− (bG/1 + aG/A + cG/C) is in Fp(G). Taking fixed
points by A then gives |uA| = 0 = 1 − 2a, a contradiction. One can show
more precisely that Mp(G)⊕ Fp(G) has index 2 in B(G) in this case.
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[4] R. Boltje and O. Coşkun. Fibered biset functors. Adv. Math., 339:540–
598, 2018.

[5] R. Boltje, G. Raggi-Cárdenas, and L. Valero-Elizondo. The −+ and −+

constructions for biset functors. J. Algebra, 523:241–273, 2019.

26



[6] S. Bouc. Foncteurs d’ensembles munis d’une double action. J. Algebra,
183(0238):664–736, 1996.

[7] S. Bouc. The Dade group of a p-group. Invent. Math., 164:189–231,
2006.

[8] S. Bouc. The functor of units of Burnside rings for p-groups. Comment.
Math. Helv., 82:583–615, 2007.

[9] S. Bouc. Biset functors for finite groups, volume 1990 of Lecture Notes
in Mathematics. Springer-Verlag, Berlin, 2010.

[10] S. Bouc and N. Romero. The center of a Green biset functor. Pacific
Journal of Mathematics, 303:459–490, 2019.
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