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Abstract : This paper introduces two new Burnside rings for a finite group G, called
the slice Burnside ring and the section Burnside ring. They are built as Grothendieck rings
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1. Introduction

This paper introduces two variations on Burnside rings of finite groups, called
the slice Burnside ring and the section Burnside ring. Both of them are built
as Grothendieck rings of some category of morphisms of finite G-sets, instead
of the category of finite G-sets used to build the usual Burnside ring. The
difference between these two new Burnside rings is that the slice Burnside
ring is built from arbitrary morphisms of finite G-sets, whereas the section
Burnside ring uses only Galois morphisms of finite G-sets.

It turns out that most of the well known properties of the Burnside ring
extend to the slice Burnside ring and to the section Burnside ring : both are
commutative rings, which are free of finite rank as Z-module. There is an
analogue of Burnside’s theorem : both of these rings embed in a product of
copies of the integers, via a ghost map, and this map has a finite cokernel.
After tensoring with Q, both rings become split semisimple Q-algebras, and
explicit formulas for their primitive idempotents can be stated. The prime
spectrum of both rings can also be described, and Dress’s characterization of
solvable groups in terms of the connectedness of the spectrum of the Burnside
ring can be generalized as well. Finally, both constructions have a natural
biset functor structure, for which they become Green biset functors.

A major exception in this list of generalizable properties concerns unit
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groups : it can be shown that, unlike the case of the usual Burnside ring, the
correspondence sending a finite group to the unit group of either the slice
or the section Burnside ring cannot be endowed with a structure of biset
functor. This is due to the lack of a suitable tensor induction for these rings.

The paper is divided in two parts, and an appendix : the first part is
devoted to the slice Burnside functor. It consists of Sections 2 to 7. Section 2
recalls the basic definitions and properties on the category of morphisms
of G-sets. Section 3 introduces the slice Burnside functor and its Green
biset functor structure. Section 4 is devoted to the definition and main
result on the ghost map. In Section 5, the explicit formulas for the primitive
idempotents of the slice Burnside algebra over Q are stated. Section 6 gives a
characterization of the image of the ghost map. Next Section 7 considers the
prime spectrum of the slice Burnside ring. Finally, in Section 8, it is shown
that tom Dieck’s theorem, building on Dress’s characterization of solvable
groups, can be extended to the slice Burnside ring : namely, Feit-Thompson’s
theorem is equivalent to the fact that the only units in the slice Burnside ring
of a group of odd order are ±1. But unlike the case of the usual Burnside
ring, the unit group of the slice Burnside ring cannot be endowed with a
structure of biset functor.

The second part of the paper is devoted to the section Burnside ring,
and it is organized similarly : Section 9 introduces Galois morphisms, and
states their general properties. In particular, a left adjoint functor to the
forgetful functor from Galois morphisms to arbitrary morphisms of G-sets
is described, which attaches to any morphism of G-sets a canonical Galois
morphism. Section 10 considers the section Burnside functor, with its Green
biset functor structure. Section 11 deals with the ghost map for the section
Burnside ring. Sections 12 states the formulas for the primitive idempotents
of the section Burnside Q-algebra, and Section 13 gives a characterization
of the ghost map. Section 14 considers the prime spectrum of the section
Burnside ring. In Section 15, the results about unit groups of Section 8 are
extended to the unit group of the section Burnside ring. In particular, it
is shown that this unit group cannot be endowed with a structure of biset
functor.

The appendix deals with the functorial structure of the unit group of the
slice Burnside ring and the section Burnside ring : it is possible to define
biset functor operations for these unit groups, but only for left inert bisets.
This gives two interesting examples of somehow natural biset functors without
induction. The last result of the appendix is the explicit computation of this
unit group in the case of an abelian group.
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I - The slice Burnside ring

2. Morphisms of G-sets

2.1. Definition : Let G be a group. If f : X → Y and f ′ : X ′ → Y ′

are morphisms of G-sets, a morphism from f to f ′ is a pair of morphisms
of G-sets α : X → X ′ and β : Y → Y ′ such that the diagram

X
f //

α

²²

Y

β
²²

X ′ f ′ // Y ′

is commutative.
Morphisms of morphisms of G-sets can be composed in the obvious way.

This composition endows the class of morphisms of G-sets with a structure
of category, denoted by G-Mor.

2.2. Proposition : The disjoint union of G-sets induces a coproduct

(X
f→ Y,X ′ f ′→ Y ′) 7→ (X tX ′ ftf ′−→ Y t Y ′)

in the category G-Mor.
Similarly, the direct product of G-sets, with diagonal G-action, induces

a product

(X
f→ Y,X ′ f ′→ Y ′) 7→ (X ×X ′ f×f ′−→ Y × Y ′)

in the category G-Mor.

Proof : For any morphism of G-sets, the bijections

HomG-Set(X tX ′, A) ∼= HomG-Set(X,A)× HomG-Set(X
′, A)

induce obvious bijections between

HomG-Mor

(
(X tX ′)

ftf ′−→ (Y t Y ′), A
α→ B

)

and

HomG-Mor(X
f→ Y,A

α→ B)× HomG-Mor(X
′ f ′→ Y ′, A

α→ B) .
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These bijections are obviously functorial in G-Mor.
Similarly, the bijections

HomG-Set(A,X ×X ′) ∼= HomG-Set(A,X)× HomG-Set(A,X
′)

induce obvious bijections between

HomG-Mor

(
A

α→ B, (X ×X ′)
f×f ′−→ (Y × Y ′)

)

and

HomG-Mor(A
α→ B,X

f→ Y )× HomG-Mor(A
α→ B,X ′ f ′→ Y ′) .

These bijections are obviously functorial in G-Mor.

3. The slice Burnside functor

3.1. Definition and Notation : Let G be a group. A slice of G is a pair
(T, S) of subgroups of G with T ≥ S. A section of G is a slice (T, S) with
SET .

Let Π(G) denote the set of slices of G, and Σ(G) denote the set of sections
of G.

When (T, S) ∈ Π(G), denote by G/S → G/T the projection morphism.

3.2. Definition : Let G be a finite group. The slice Burnside group
Ξ(G) of G is the quotient of the free abelian group on the set of isomorphism

classes [X
f−→ Y ] of morphisms of finite G-sets, by the subgroup generated

by elements of the form

[(X1 tX2)
f1tf2−→ Y ]− [X1

f1→ f(X1)]− [X2
f2→ f(X2)] ,

whenever X
f→ Y is a morphism of finite G-sets with a decomposition X =

X1 tX2 as a disjoint union of G-sets, where f1 = f|X1 and f2 = f|X2 .
When f : X → Y is a morphism of finite G-sets, let π(f) denote the

image in Ξ(G) of the isomorphism class of f . If S ≤ T are subgroups of G,
set 〈T, S〉G = π(G/S → G/T ).
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3.3. Lemma :

1. π(∅ → ∅) = 0.

2. Let X
f→ Y be a morphism of finite G-sets. Then

π(X
f→ Y ) = π

(
X

f→ f(X)
)
.

3. Let X
f→ Y and X ′ f ′→ Y ′ be morphisms of finite G-sets. Then

π
(
(X tX ′)

ftf ′−→ (Y t Y ′)
)

= π(X
f→ Y ) + π(X ′ f ′→ Y ′) .

Proof : For Assertion 1, set e = π(∅ → ∅). Since the morphism ∅ t ∅ → ∅ is
isomorphic to ∅ → ∅, it follows that e+ e = e, hence e = 0.

For Assertion 2, writing X = X t ∅ gives

π
(
X

f→ Y
)

= π
(
X

f→ f(X)
)

+ π(∅ → ∅) = π
(
X

f→ f(X)
)
.

For Assertion 3,

π
(
(X tX ′)

ftf ′−→ (Y t Y ′)
)

= π
(
X

f→ (Y t Y ′)
)

+ π
(
X ′ f ′→ (Y t Y ′)

)

= π
(
X

f→ f(X)
)

+ π
(
X ′ f ′→ f ′(X ′)

)

= π
(
X

f→ Y
)

+ π
(
X ′ f ′→ Y ′) ,

where the first equality follows from the defining relations of Ξ(G), and the
other ones from Assertion 2.

3.4. Lemma : Let f : X → Y be a morphism of finite G-sets. Then in
the group Ξ(G)

π(X
f→ Y ) =

∑

x∈[G\X]

〈Gf(x), Gx〉G

Proof : Indeed X ∼= t
x∈[G\X]

G/Gx, and the image f(G ·x) of the G-orbit of x

is equal to theG-orbit of f(x). Moreover the morphisms f|G·x : G·x→ G·f(x)
and G/Gx → G/Gf(x) are isomorphic. The claimed formula follows.
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3.5. Corollary : The group Ξ(G) is generated by the elements 〈T, S〉G,
where (T, S) runs through a set [Π(G)] of representatives of conjugacy classes
of slices of G.

Proof : Indeed, the morphisms G/gS → G/gT and G/S → G/T are isomor-
phic, for any g ∈ G, and any slice (T, S) of G.

3.6. Remark : It will be shown in Theorem 4.6 that this generating set is
actually a basis of Ξ(G).

3.7. Proposition : The product of morphisms induces a commutative
unital ring structure on Ξ(G). The identity element for multiplication is the
image of the class [• → •], where • denotes a G-set of cardinality 1.

Proof : If we can show that the product of morphisms induces a well defined
bilinear product Ξ(G) × Ξ(G) → Ξ(G), it will be clear that this product is
associative, commutative, and admits [• → •] as an identity element. Hence
the only point to check is that the product preserves the defining relations
of Ξ(G). This is clear, since if g : Z → T is a morphism of finite G-sets, and

if X1 t X2
f1tf2−→ Y is a morphism, setting X = X1 t X2, the domain of the

morphism

h : Z ×X
g×(f1tf2) // T × Y

has a disjoint union decomposition Z × X = (Z × X1) t (Z × X2), and
moreover the restriction of g × f to Z ×X1 is g × f1. Thus

π(h) = π
(
(Z ×X1)

g×f1−→ (
g(Z)× f1(X1)

))
+ π

(
(Z ×X2)

g×f2−→ (
g(Z)× f2(X2)

))

= π
(
(Z ×X1)

g×f1−→ (T × f1(X1))
)

+ π
(
(Z ×X2)

g×f2−→ (T × f2(X2))
)

where the last equality follows from Lemma 3.3.

3.8. Proposition : Let (T, S) and (Y,X) be slices of G. Then in Ξ(G)

〈T, S〉G〈Y,X〉G =
∑

g∈[S\G/X]

〈T ∩ gY , S ∩ gX〉G .

Proof : Indeed

(G/S)× (G/X) ∼= t
g∈[S\G/X]

G/(S ∩ gX) ,
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via the map (from right to left) sending u(S ∩ gX) to (uS, ugX), for u ∈ G.
The image of (S, gX) by the map (G/S)× (G/X) → (G/T )× (G/Y ) is the
pair (T, gY ), whose stabilizer in G is T ∩ gY . The result now follows from
Lemma 3.4.

3.9. Theorem :

1. Let G and H be finite groups, and let U be a finite (H,G)-biset. The
functor

(X
f→ Y ) 7→ (U ×G X

U×Gf−→ U ×G Y )

from G-Mor to H-Mor induces a group homomorphism

Ξ(U) : Ξ(G) → Ξ(H) .

2. The correspondence G 7→ Ξ(G) is a Green biset functor.

Proof : For Assertion 1, the only thing to check is that the defining relations
of Ξ(G) are mapped to relations in Ξ(H). But if

X1 tX2
f1tf2−→ Y

is a morphism of finite G-sets, then

U ×G (X1 tX2) ∼= (U ×G X1) t (U ×G X2) .

Moreover the image of the map U ×G f1 is equal to U ×G f1(X1). It follows
that the relation

[X1 tX2
f1tf2−→ Y ]− [X1

f1→ f1(X1)]− [X2
f2→ f2(X2)]

in Ξ(G) is mapped to the relation

[UX1 tUX2
Uf1tUf2−→ UY ]− [UX1

Uf1→ (Uf1)(UX1)]− [UX2
Uf2→ (Uf2)(UX2)] ,

where U×G is abbreviated to U .
It is now clear that the correspondence sending a finite group G to Ξ(G)

and a finite (H,G)-biset U to Ξ(U) endows Ξ with a structure of biset functor
(see [4]).

Moreover if G, G′ are finite groups, if f : X → Y is a morphism of finite
G-sets and f ′ : X ′ → Y ′ is a morphism of finite G′-sets, then

f × f ′ : X ×X ′ → Y × Y ′
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is a morphism of G×G′-sets. This induces a product

Ξ(G)× Ξ(G′) → Ξ(G×G′) ,

which is associative in the obvious sense. Moreover, the morphism • → • of
1-sets is obviously an identity element for this product, up to identification
G× 1 = G.

Finally, if G, G′, H, H ′ are finite groups, if U is a finite (H,G)-biset, if
U ′ is a finite (H ′, G′)-biset, it is clear that the morphisms

(U × U ′)×G×G′ (f × f ′)

and
(U ×G f)× (U ′ ×G′ f

′)

are isomorphic morphisms of (H ×H ′)-sets. Thus Ξ is a Green biset functor
(see [4] Section 8.5).

3.10. Proposition : Let G and H be finite groups, and U be a finite
(H,G)-biset. If (T, S) ∈ Π(G), then

U ×G 〈T, S〉G =
∑

u∈[H\U/S]

〈uT , uS〉H .

(where uX = {h ∈ H | ∃x ∈ X, hu = ux}, for X ≤ G).

Proof : Indeed U ×G (G/S) ∼= U/S, and the stabilizer in H of uS is equal
to uS. The result follows from Lemma 3.4.

The following proposition clarifies the links existing between the usual
Burnside functor and the slice Burnside functor :

3.11. Proposition :

1. Let G be a finite group. The correspondence sending the morphism

X
f→ Y of finite G-sets to the G-set X induces a unital ring homomor-

phism sG from Ξ(G) to the Burnside ring B(G).

2. The correspondence sending the finite G-set X to the identity morphism
of X induces a unital ring homomorphism iG : B(G) → Ξ(G), such that
sG ◦ iG = IdB(G).

3. As G varies, the morphisms sG and iG define morphisms of Green biset
functors s : Ξ → B and i : B → Ξ, such that s ◦ i = IdB. In particular
i is injective, and s is surjective.

Proof : This is straightforward, from the definitions.
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4. Slices and ghost map

4.1. Notation : Let S ≤ T be subgroups of G. If X
f→ Y is a morphism

of finite G-sets, set

φT,S(X
f→ Y ) = |HomG-Mor

(
G/S → G/T,X

f→ Y )| .

4.2. Notation : Define a relation ¹ on the set Π(G) by

(T, S) ¹ (Y,X) ⇔ (T ≤ Y and S ≤ X) .

The relation ¹ is an order relation on Π(G).

4.3. Lemma : With this notation

φT,S(X
f→ Y ) = |f−1(Y T )S| .

In particular, for any A ≤ B ≤ G,

φT,S(G/A→ G/B) = |{g ∈ G/A | (T g, Sg) ¹ (B,A)}| .

Proof : The morphisms of G-sets from G/S toX are in one to one correspon-
dence with the set XS of fixed points of S on X : the morphism associated
to x ∈ XS is defined by gS 7→ gx. Similarly, the homomorphisms of G-sets
from G/T to Y are in one to one correspondence with Y T . Hence the set

HomG-Mor(G/S → G/T,X
f→ Y )

is in one to one correspondence with the set of pairs (x, y) ∈ XS × Y T such
that f(x) = y, i.e. with the elements x of f−1(Y T )S.

4.4. Corollary : Let (T, S) ∈ Π(G) and p be a prime number. If P is a
p-subgroup of NG(T, S), then

φT,S ≡ φPT,PS (mod. p) .
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Proof : Indeed for any morphism of finite G-sets X
f→ Y , the set f−1(Y T )S

is invariant by NG(T, S), thus, as P is a p-group,

|f−1(Y T )S| ≡ |f−1(Y T )PS| (mod. p) ,

and moreover f−1(Y T )PS = f−1(Y PT )PS.

4.5. Proposition : Let S ≤ T be subgroups of G. Then the map φT,S
induces a ring homomorphism Ξ(G) → Z, still denoted by φT,S.

Proof : Since the product of morphisms

(X
f→ Y,X ′ f ′→ Y ′) 7→ (

(X ×X ′)
f×f ′−→ (Y × Y ′)

)

is a product in the category G-Mor, it follows that

φT,S
(
(X ×X ′)

f×f ′−→ (Y × Y ′)
)

= φT,S(X
f→ Y )φT,S(X

′ f ′→ Y ′) .

Also φT,S(• → •) = 1. The only thing to check is that φT,S induces a well
defined map Ξ(G) → Z, i.e. that the defining relations of Ξ(G) are mapped
to 0 by φT,S. First, by Lemma 4.3, for any morphism of G-sets f : X → Y

φT,S(X
f→ Y ) = φT,S

(
X

f→ f(X)
)
.

Now
φT,S

(
(X1 tX2)

f1tf2−→ Y
)

= |(f1 t f2)
−1(Y T )S|

= |X1 ∩ (f1 t f2)
−1(Y T )S|+ |X2 ∩ (f1 t f2)

−1(Y T )S|
= |f−1

1 (Y T )S|+ |f−1
2 (Y T )S|

= φT,S(X1
f1→ Y ) + φT,S(X2

f2→ Y )

= φT,S
(
X1

f1→ f(X1)
)

+ φT,S
(
X2

f2→ f(X2)
)
.

This completes the proof.

4.6. Theorem : The group Ξ(G) is a free abelian group, with basis the set
of elements 〈T, S〉G, where (T, S) runs through a set [Π(G)] of representatives
of conjugacy classes of slices of G. Moreover, the map (called the ghost map
for Ξ(G))

Φ =
∏

(T,S)∈[Π(G)]

φT,S : Ξ(G) →
∏

(T,S)∈[Π(G)]

Z

is an injective ring homomorphism, with finite cokernel as morphism of
abelian groups.
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Proof : By Lemma 3.5, the elements 〈T, S〉G, for (T, S) ∈ [Π(G)], generate
Ξ(G). Suppose that there is a non zero linear combination in the kernel of Φ

Λ =
∑

(T,S)∈[Π(G)]

λT,S 〈T, S〉G

with integer coefficients λT,S ∈ Z, for (T, S) ∈ [Π(G)]. Extend λ to a function
Π(G) → Z, constant on conjugacy classes. Let (Y,X) be an element of Π(G),
maximal for the relation ¹, such that λY,X 6= 0. Then since by Lemma 4.3

φY,X(G/S → G/T ) = |{g ∈ G/S | (Y g, Xg) ¹ (T, S)}| ,

it follows that

φY,X(Λ) =
∑

(T,S)∈[Π(G)]

λT,SφY,X(G/S → G/T )

= λY,XφY,X(G/X → G/Y )

= λY,X |NG(X,Y )/X| = 0 .

Hence λY,X = 0, and this contradiction shows that Φ is injective. In particu-
lar, the elements 〈T, S〉G, for (T, S) ∈ [Π(G)], form a Z-basis of Ξ(G). Thus
Φ is an injective morphism between free abelian groups with the same finite
rank, hence it has finite cokernel.

4.7. Corollary : Set QΞ(G) = Q⊗Z Ξ(G), and QΦ = Q⊗Z Φ. Then

QΦ : QΞ(G) →
∏

(T,S)∈[Π(G)]

Q

is an isomorphism of Q-algebras.

5. Slices and idempotents

By Corollary 4.7, the commutative Q-algebra QΞ(G) is split semisimple. Its
primitive idempotents are indexed by slices of G, up to conjugation : they
are the inverse images under QΦ of the primitive idempotents of the algebra∏
(T,S)∈[Π(G)]

Q :
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5.1. Notation : If (T, S) ∈ Π(G), denote by ξGT,S the unique element of
Q⊗Z Ξ(G) such that

∀(Y,X) ∈ Π(G), QφY,X(ξGT,S) =

{
1 if (Y,X) =G (T, S)
0 otherwise

The set of elements ξGT,S, for (T, S) ∈ [Π(G)], is the set of primitive idempo-
tents of QΞ(G).

5.2. Theorem : Let (T, S) ∈ Π(G). Then

ξGT,S =
1

|NG(T, S)|
∑

(V,U)¹(T,S)

|U |µΠ

(
(V, U), (T, S)

)〈V, U〉G ,

where µΠ is the Möbius function of the poset (Π(G),¹).

Proof1 : Denote by Π(G) the set of orbits of G for its conjugacy action
on Π(G). Thus Π(G) is in one to one correspondence with [Π(G)], and the

map QΦ can also be viewed a Q-algebra isomorphism from QΞ(G) to QΠ(G).
The Q-vector space QΞ(G) has a basis consisting of the elements 〈V, U〉G,
for (V, U) ∈ [Π(G)]. Let QΠ(G) denote the Q-vector space with basis Π(G),
and let p : QΠ(G) → QΞ(G) denote the Q-linear map sending (V, U) ∈ Π(G)
to 〈V, U〉G.

Let βGT,S denote the vector of the canonical basis of QΠ(G) indexed by the

G-orbit of (T, S) ∈ Π(G), and let q : QΠ(G) → QΠ(G) denote the Q-linear
map sending (T, S) ∈ Π(G) to βGT,S.

With this notation, Lemma 4.3 shows that for any (V, U) ∈ Π(G)

Φ ◦ p((V, U)
)

=
∑

(T,S)∈[Π(G)]

φT,S(〈V, U〉G)βGT,S

=
∑

(T,S)∈[Π(G)]

1

|U |
∣∣{g ∈ G | (T, S) ¹ (gV , gU)}

∣∣ βGT,S

1As suggested by the referee, a direct computation using the formula for ξG
T,S in The-

orem 5.2 shows that if (Y,X) is a slice of G, then QφY,X(ξG
T,S) is equal to 0 if (Y, X) and

(T, S) are not G-conjugate, and to 1 otherwise. This gives a short proof of Theorem 5.2.
The proof given here is longer, but it may have the advantage of explaining the origin of
the formula for ξG

T,S , in particular why Möbius functions appear in this expression.
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Φ ◦ p((V, U)
)

=
∑

(T,S)∈Π(G)

|NG(T, S)|
|G||U |

∣∣{g ∈ G | (T g, Sg) ¹ (V, U)}
∣∣ βGT,S

=
∑

(T,S)∈Π(G)
g∈G

(T g ,Sg)¹(V,U)

|NG(T g, Sg)|
|G||U | βGT g ,Sg

But |NG(T g, Sg)| = |NG(T, S)| and βGT g ,Sg = βGT,S, for any g ∈ G. Thus

Φ◦p((V, U)
)

=
∑

(T,S)∈Π(G)
(T,S)¹(V,U)

|NG(T, S)|
|U | βGT,S =

∑

(T,S)∈Π(G)
(T,S)¹(V,U)

|NG(T, S)|
|U | q

(
(T, S)

)
.

This shows that if Φ̃ is the Q-endomorphism of QΠ(G) defined by

Φ̃
(
(V, U)

)
=

∑

(T,S)∈Π(G)
(T,S)¹(V,U)

|NG(T, S)|
|U | (T, S) ,

then Φ◦p = q ◦ Φ̃. The matrix of the map Φ̃ is equal to the product E ·J ·D,
whereD is a diagonal matrix with diagonal coefficients (|NG(T, S)|)(T,S)∈Π(G),
where E is a diagonal matrix with diagonal coefficients ( 1

|U |)(V,U)∈Π(G), and

J is the incidence matrix of the order relation ¹ on Π(G). It follows that Φ̃
is invertible, with inverse equal to D−1 · J−1 · E−1. Now the entries of the
matrix J−1 are precisely the values of the Möbius function µΠ of the poset(
Π(G),¹ )

. It follows that

ξGT,S = Φ−1(βGT,S)

= Φ−1 ◦ q((T, S)
)

= p ◦ Φ̃−1
(
(T, S)

)

=
1

|NG(T, S)|
∑

(V,U)∈Π(G)
(V,U)¹(T,S)

|U |µΠ

(
(V, U), (T, S)

) 〈V, U〉G ,

which completes the proof.

5.3. Proposition : Let (X ,≤) be a finite poset. Let Π(X ) denote the set
of pairs (y, x) of elements of X such that x ≤ y. Define a partial order ¹ on
Π(X ) by

∀(y, x), (t, z) ∈ Π(X ), (y, x) ¹ (t, z) ⇔ y ≤ t and x ≤ z .
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Then the Möbius function µΠ of the poset (Π(X ),¹) can be computed as
follows, for any (y, x), (t, z) ∈ Π(X ) :

(5.4) µΠ

(
(y, x), (t, z)

)
=

{
µX (x, z)µX (y, t) if x ≤ z ≤ y ≤ t

0 otherwise
,

where µX is the Möbius function of the poset (X ,≤).

Proof : Let m
(
(y, x), (t, z)

)
denote the expression defined by the right hand

side of Equation 5.4. Then if (y, x) ¹ (t, z), i.e. if y ≤ t and x ≤ z,
∑

(v,u)∈Π(X )
(y,x)¹(v,u)¹(t,z)

m
(
(y, x), (v, u)

)
=

∑
y≤v≤t
x≤u≤z
u≤v, u≤y

µX(x, u)µX(y, v)

=
∑
y≤v≤t
x≤u≤z
u≤y

µX(x, u)µX(y, v)

=
( ∑
y≤v≤t

µX (y, v)
)( ∑

x≤u≤z
u≤y

µX (x, u)
)
.

The first factor
∑

y≤v≤t
µX (y, v) is equal to 0 if y 6= t, and to 1 if y = t. In

this case, the second factor
∑

x≤u≤z
u≤y

µX (x, u) is equal to
∑

x≤u≤z
µX (x, u). This is

equal to zero if x 6= z, and to 1 if x = z.
It follows that

∑
(v,u)∈Π(X )

(y,x)¹(v,u)¹(t,z)

m
(
(y, x), (v, u)

)
is equal to 0 if (y, x) 6= (t, z)

and to 1 otherwise. The proposition follows.

Applying Proposition 5.3 to the poset of subgroups of G, ordered by
inclusion of subgroups, gives the following :

5.5. Corollary : Let (V, U) and (T, S) be slices of G. Then

(5.6) µΠ

(
(V, U), (T, S)

)
=

{
µ(U, S)µ(V, T ) if U ≤ S ≤ V ≤ T

0 otherwise
,

where µ is the Möbius function of the poset of subgroups of G. In particular
in Ξ(G)

ξGT,S =
1

|NG(T, S)|
∑

U≤S≤V≤T
|U |µ(U, S)µ(V, T ) 〈V, U〉G .
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6. The image of the ghost map

The following characterization of the image of the ghost map is the analogue
for the slice Burnside ring of a theorem of Dress ([6]) on the ordinary Burnside
ring :

6.1. Theorem : Let G be a finite group, and let m = (mT,S)(T,S)∈Π(G) be
a sequence of integers indexed by Π(G), constant on G-conjugacy classes of
slices. Then the sequence [m] = (mT,S)(T,S)∈[Π(G)] of representatives lies in
the image of the ghost map Φ if and only if, for any slice (T, S) of G

∑

g∈NG(T,S)/S

m<gT>,<gS> ≡ 0
(
mod. |NG(T, S)/S|) .

Proof : Saying that [m] lies in the image of Φ is equivalent to saying that
the element

sm =
∑

(T,S)∈[Π(G)]

mT,S ξ
G
T,S

of QΞ(G) lies in Ξ(G), i.e. that it is a linear combination with integer
coefficients of the elements 〈V, U〉G, for (V, U) ∈ [Π(G)]. Now by Theorem 5.2

sm =
∑

(T,S)∈Π(G)

|NG(T, S)|
|G| mT,S ξ

G
T,S

=
1

|G|
∑

(T,S)∈Π(G)

mT,S

∑

(V,U)¹(T,S)

|U |µΠ

(
(V, U), (T, S)

) 〈V, U〉G

=
1

|G|
∑

(V,U)∈Π(G)

|U |
( ∑

(V,U)¹(T,S)

µΠ

(
(V, U), (T, S)

)
mT,S

)
〈V, U〉G

=
∑

(V,U)∈[Π(G)]

1

|NG(V, U)/U |
( ∑

(V,U)¹(T,S)

µΠ

(
(V, U), (T, S)

)
mT,S

)
〈V, U〉G .

Hence sm ∈ Im Φ if and only if the number

βV,U =
1

|NG(V, U)/U |
( ∑

(V,U)¹(T,S)

µΠ

(
(V, U), (T, S)

)
mT,S

)

is an integer, for any slice (V, U) of G.
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With this notation, for any (Y,X) ∈ Π(G)

mY,X =
∑

(V,U)∈Π(G)
(Y,X)¹(V,U)

βV,U |NG(V, U)/U | .

Hence, setting σY,X =
∑

g∈NG(Y,X)/X

m<gY >,<gX> :

σY,X =
∑

g∈NG(Y,X)/X

∑

(V,U)∈Π(G)
(<gY >,<gX>)¹(V,U)

βV,U |NG(V, U)/U |

=
∑

g∈NG(Y,X)
(V,U)∈Π(G)

(<gY >,<gX>)¹(V,U)

1

|X|βV,U |NG(V, U)/U |

=
∑

(V,U)∈Π(G)
(Y,X)¹(V,U)
g∈U∩NG(Y,X)

1

|X|βV,U |NG(V, U)/U |

σY,X=
∑

(V,U)∈[NG(Y,X)\Π(G)]
(Y,X)¹(V,U)

|NG(Y,X)/X|
|NG(Y,X, V, U)|βV,U |NG(V, U)/U ||U ∩NG(Y,X)|

= |NG(Y,X)/X|
∑

(V,U)∈[NG(Y,X)\Π(G)]
(Y,X)¹(V,U)

βV,U
|NG(V, U)||U ∩NG(Y,X)|

|U ||NG(Y,X, V, U)|

= |NG(Y,X)/X|
∑

(V,U)∈[NG(Y,X)\Π(G)]
(Y,X)¹(V,U)

βV,U |NG(V, U) : U ·NG(Y,X, V, U)| .

Setting αY,X = σY,X/|NG(Y,X)/X|, it follows that

αY,X =
∑

(V,U)∈NG(Y,X)\Π(G)
(Y,X)¹(V,U)

βV,U |NG(V, U) : U ·NG(Y,X, V, U)| .

Since |NG(V, U) : U ·NG(Y,X, V, U)| = 1 if (Y,X) = (V, U), it follows that
the transition matrix from the βV,U ’s to the αY,X ’s is triangular, with integer
coefficients, and 1’s on the diagonal. Hence it is invertible over Z, and the
numbers βV,U are all integers, for (V, U) ∈ Π(G), if and only if the numbers
αY,X are all integers, for (Y,X) ∈ Π(G). This completes the proof.
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7. Prime spectrum

7.1. Notation : Let p denote either 0 or a prime number.

• If (T, S) ∈ Π(G), let IT,S,p be the prime ideal of Ξ(G) defined as the
kernel of the ring homomorphism

Ξ(G)
φT,S−→ Z→ Z/pZ ,

where the right hand side map is the projection.

• Let Θ(G) denote the set of triples (T, S, p), where (T, S) ∈ Π(G) is
such that |NG(T, S)/S| 6≡ 0 (mod. p).

The group G acts on Θ(G), by g(T, S, p) = (gT , gS, p), for g ∈ G, and the
ideal IT,S,p only depends on the G-orbit of (T, S, p). Conversely :

7.2. Proposition : Let I be a prime ideal of Ξ(G), and R = Ξ(G)/I.
Denote by φ : Ξ(G) → R the projection map, and denote by p ≥ 0 the
characteristic of R. Then R ∼= Z/pZ and :

1. If p = 0, there exists a slice (T, S) of G such that φ = φT,S, and (T, S)
is unique up to G-conjugation, with this property.

2. If p > 0, there exists a slice (T, S) of G such that φ is the reduction
modulo p of φT,S and NG(T, S)/S is a p′-group, and (T, S) is unique
up to G-conjugation, with these properties.

In particular, there exists a unique (T, S, p) ∈ Θ(G), up to conjugation, such
that I = IT,S,p.

Proof : Let (T, S) be a slice of G, minimal for the relation ¹, such that
〈T, S〉G /∈ I. Then by Proposition 3.8, for any (Y,X) ∈ Π(G)

〈T, S〉G〈Y,X〉G =
∑

g∈[S\G/X]

〈T ∩ gY , S ∩ gX〉G

≡
∑

g∈G/X
S≤gX
T≤gY

〈T, S〉G (mod. I)

= φT,S
(〈Y,X〉G

)〈T, S〉G .

Since I is prime, it follows that 〈Y,X〉G− φT,S(〈Y,X〉G)1Ξ(G) ∈ I. In partic-
ular R = Ξ(G)/I is generated by the image of 1Ξ(G), hence R ∼= Z/pZ, where
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p is the characteristic of R. Since R is an integral domain, the number p is
either 0 or a prime.

1. If p = 0, then R = Z, and φ = φT,S. And if (T ′, S ′) ∈ Π(G) is such that
φT,S = φT ′,S′ , then both φT,S

(〈T ′, S ′〉G
)

and φT ′,S′
(〈T, S〉G

)
are non

zero. Then there exist elements g, g′ ∈ G such that (T g, Sg) ¹ (T ′, S ′)
and (T ′g

′
, S ′g

′
) ¹ (T, S), so (T, S) and (T ′, S ′) are conjugate in G.

2. If p > 0, then R = Z/pZ, and φ is equal to the reduction of φT,S
modulo p. Since φ

(〈T, S〉G
)

= |NG(T, S)/S| is non zero in R, it follows
that NG(T, S)/S is a p′-group. If (T ′, S ′) is another slice of G such that
φ is the reduction modulo p of φT ′,S′ , and NG(T ′, S ′)/S ′ is a p′-group,
then

|NG(T, S)/S| = φT,S
(〈T, S〉G

) ≡ φT ′,S′
(〈T, S〉G

)
(mod. p) .

This is non zero. Similarly |NG(T, S)/S| ≡ φT,S
(〈T ′, S ′〉G

)
(mod. p)

is non zero. In particular φT ′,S′
(〈T, S〉G

)
and φT,S

(〈T ′, S ′〉G
)

are both
non zero, and it follows as above that (T, S) and (T ′, S ′) are conjugate
in G.

7.3. Notation : Let p be a prime number.

• Let Πp(G) denote the subset of Π(G) consisting of the slices (T, S) such
that NG(T, S)/S is a p′-group.

• For any (T, S) ∈ Π(G), let (T, S)bp denote the unique element (V, U) of
Πp(G), up to conjugation, such that IT,S,p = IV,U,p.

7.4. Proposition : Let p be a prime number. If (T, S) is a slice of G,
let (T, S)+

p denote a slice of the form (PT, PS) of G, where P is a Sylow
p-subgroup of NG(T, S).

Define inductively an increasing sequence (Tn, Sn) in (Π(G),¹) by
(T0, S0) = (T, S), and (Tn+1, Sn+1) = (Tn, Sn)

+
p , for n ∈ N. Then (T, S)bp

is conjugate to the largest term (T∞, S∞) of the sequence (Tn, Sn).

Proof : The proof of Proposition 7.2 shows that (T, S)bp is a minimal element
(V, U) of the poset (Π(G),¹) such that

φT,S(V, U) = |{g ∈ G/U | (T g, Sg) ¹ (V, U)}| 6≡ 0 (mod.p) .

Thus one can assume that (T, S) ¹ (V, U). But φT,S ≡ φPT,PS (mod. p) by
Corollary 4.4, for any p-subgroup P of NG(T, S), hence one can also assume
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that (T, S)+
p ¹ (V, U), and by induction, that (T∞, S∞) ¹ (V, U). Moreover

φT∞,S∞ ≡ φV,U (mod. p). As NG(T∞, S∞)/S∞ is a p′-group, it follows that
(T∞, S∞) = (V, U), as was to be shown.

7.5. Remark : Let (T, S) ∈ Π(G), and (V, U) ∈ Πp(G). It is easy to check,
by induction on the integer n such that (Tn, Sn) = (T∞, S∞), that (T, S)bp
is equal to (V, U) if and only if T is a subnormal subgroup of V , if S is a
subnormal subgroup of U , if |U : S| is a power of p, and if the set T ·U is
equal to V .

7.6. Proposition : Let (T, S, p), (T ′, S ′, p′) be elements of Θ(G). Then
IT ′,S′,p′ ⊆ IT,S,p if and only if

• either p′ = p and the slices (T ′, S ′) and (T, S) are conjugate in G.

• or p′ = 0 and p > 0, and the slices (T ′, S ′)bp and (T, S) are conjugate
in G.

Proof : Set I = IT,S,p and I ′ = IT ′,S′,p′ . Then Ξ(G)/I ′ ∼= Z/p′Z maps
surjectively to Ξ(G)/I ∼= Z/pZ. Thus if p = p′, this projection map is an
isomorphism, hence I = I ′ and the slices (T, S) and (T ′, S ′) are conjugate
in G. And if p 6= p′, then p′ = 0 and p > 0. The morphism φT,S is equal to the
reduction modulo p of the morphism φT ′,S′ . In other words IT ′,S′,p = IT,S,p,
hence (T, S) is conjugate to (T ′, S ′)bp.

7.7. Corollary : Let p be a prime number, and let Z(p) be the localization
of Z at the set Z − pZ. Let Θp(G) denote the subset of Θ(G) consisting of
triples (T, S, 0), for (T, S) ∈ Π(G), and (T, S, p), for (T, S) ∈ Πp(G). Then :

1. The prime ideals of the ring Z(p)Ξ(G) are the ideals Z(p)IT,S,q, for
(T, S, q) ∈ Θp(G).

2. If (T, S, q), (T ′, S ′, q′) ∈ Θp(G), then Z(p)IT ′,S′,q′ ⊆ Z(p)IT,S,q if and
only if :

• either q = q′, and the slices (T, S) and (T ′, S ′) are conjugate in G.

• or q′ = 0, q = p, and the slices (T ′, S ′)bp and (T, S) are conjugate
in G.

3. The connected components of the spectrum of Z(p)Ξ(G) are indexed
by the conjugacy classes of Πp(G). The component indexed by (T, S) ∈
Πp(G) consists of a unique maximal element Z(p)IT,S,p, and of the ideals
Z(p)IT ′,S′,0, where (T ′, S ′) ∈ Π(G) is such that (T ′, S ′)bp is conjugate to
(T, S) in G.
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Proof : The prime ideals of Z(p)Ξ(G) are of the form Z(p)I, where I is a prime
ideal of Ξ(G) such that I∩(Z−pZ) = ∅. Equivalently I = IT,S,0 or I = IT,S,p.
This proves Assertion 1. Now Assertion 2 follows from Proposition 7.6, and
Assertion 3 follows from Assertion 2.

7.8. Corollary :

1. The primitive idempotents of the ring Z(p)Ξ(G) are indexed by the con-
jugacy classes of Πp(G). The primitive idempotent ηGV,U indexed by
(V, U) ∈ Πp(G) is equal to

ηGV,U =
∑

(T,S)∈[Π(G)]

(T,S)bp=G(T,S)

ξGT,S .

2. Let π be a set of prime numbers, and Z(π) be the localization of Z
relative to Z − ∪p∈πpZ. Let F be a set of slices of G, invariant by G-
conjugation, and [F ] be a set of representatives of G-conjugacy classes
of F . Then the following conditions are equivalent :

(a) The idempotent

ξGF =
∑

(T,S)∈[F ]

ξGT,S

of QΞ(G) lies in Z(π)Ξ(G).

(b) Let (T, S) ∈ Π(G), and let P be a p-subgroup of NG(T, S), for
some p ∈ π. Then (T, S) ∈ F if and only if (PT, PS) ∈ F .

Proof : Let F be a set of slices of G, invariant by G-conjugation, and [F ]
be a set of representatives of G-conjugacy classes of F . The idempotent

ξGF =
∑

(T,S)∈[F ]

ξGT,S

of QΞ(G) lies in Z(p)Ξ(G), for some prime p, if and only if there exists an
integer m, not divisible by p, such that u = mξGF ∈ Ξ(G). Let (T, S) ∈ Π(G),
and let P be a p-subgroup of NG(T, S). The integer φT,S(u) is equal to m
if (T, S) ∈ F , and to 0 otherwise. Hence it is coprime to p if and only if
(T, S) ∈ F . Since φT,S and φPT,PS are congruent modulo p, it follows that
(T, S) ∈ F if and only if (PT, PS) ∈ F .

Hence if (T, S) and (T ′, S ′) are slices of G such that (T, S)bp =G (T ′, S ′)bp,
then (T, S) ∈ F if and only if (T ′, S ′) ∈ F . Thus F is a disjoint union of
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sets of the form

EV,U = {(T, S) ∈ Π(G) | (T, S)bp =G (V, U)} ,

for some slices (V, U) ∈ Πp(G). In other words the idempotent ξGF is a sum
of some idempotents ηGV,U , for (V, U) ∈ Πp(G).

But the primitive idempotents of the ring Z(p)Ξ(G) are in one to one cor-
respondence with the connected components of its spectrum, which precisely
are indexed by the conjugacy classes of Πp(G). It follows that ξGF = ηGV,U is
equal to the idempotent corresponding to the component indexed by (V, U),
for any (V, U) ∈ Πp(G). This proves Assertion 1. This also proves Assertion 2
in the case where π consists of a single prime number.

For the general case, observe that ξGF lies in Z(π)Ξ(G) if and only if it lies
in Z(p)Ξ(G), for any p ∈ π.

7.9. Theorem : Let G be a finite group.

1. Let ∼ denote the finest equivalence relation on the set Π(G) such that
for any (T, S), (T ′, S ′) ∈ Π(G),

∃p, (T, S)bp =G (T ′, S ′)bp =⇒ (T, S) ∼ (T ′, S ′) .

Then the primitive idempotents of Ξ(G) are indexed by the equivalence
classes of Π(G) for the relation ∼. The idempotent ξGC indexed by the
component C is equal to

ξGC =
∑

(T,S)∈[C]
ξGT,S ,

where [C] is a set of representatives of G-conjugacy classes in C.
2. The prime spectrum of Ξ(G) is connected if and only if G is solvable.

Proof : Assertion 1 follows from Corollary 7.8, applied to the set π of all
primes.

For Assertion 2, observe that the spectrum of Ξ(G) is connected if and
only if 1 is a primitive idempotent of Ξ(G). This means that for any two
slices (T, S) and (T ′, S ′) of G, there exists a sequence (Ti, Si) of slices, for
i ∈ {0, . . . , n}, and a sequence pi of prime numbers, for i ∈ {0, . . . , n − 1},
such that

(T, S) = (T0, S0)
p0∼ (T1, S1)

p1∼ . . .
pn−2∼ (Tn−1, Sn−1)

pn−1∼ (Tn, Sn) = (T ′, S ′) ,

where the notation (Y,X)
p∼ (Y ′, X ′) means that (Y,X)bp =G (Y ′, X ′)bp.
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But clearly, if (Y,X)
p∼ (Y ′, X ′), then the slices

(
Op(Y ), Op(X)

)
and(

Op(Y ′), Op(X ′)
)

are conjugate in G. Hence the slices
(
D∞(Y ), D∞(X)

)
and

(
D∞(Y ′), D∞(X ′)

)
are conjugate in G, where D∞(H) denotes the last

term in the derived series of the group H.
If the spectrum of G is connected, taking (T, S) = (G,G) and (T ′, S ′) =

(1,1), it follows that D∞(G) = 1, i.e. that G is solvable.
Conversely, if G is solvable, let (T, S) be a slice of G. Then S is solvable,

and there exists a prime p such that Op(S) < S. Let P be a Sylow p-
subgroup of S. Then P ≤ NG(T, S), and (T, S) =

(
PT, POp(S)

)
. Thus

(T, S)
p∼ (

T,Op(S)
)
. By induction, there is a sequence of prime numbers pi,

for i ∈ {1, . . . , k}, such that

(T, S) = (T, S0)
p0∼ (T, S1)

p1∼ . . .
pk−1∼ (T, Sk)

pk∼ (T,1) ,

where Si+1 = Opi(Si).
Now T is solvable, so there exists a prime q such that Oq(T ) < T . If Q

is a Sylow q-subgroup of T , then Q ≤ NG(T,1), and (T,1)
q∼ (

Oq(T ),1
)
.

Hence there exists a sequence of primes qj, for j ∈ {0, . . . , l}, such that

(T,1) = (T0,1)
q0∼ (T1,1)

q1∼ . . .
ql−1∼ (Tl,1)

ql∼ (1,1) ,

where Tj+1 = Oqj(Tj). This shows that the spectrum of Ξ(G) is connected.

8. Unit group

8.1. When G is a finite group, denote by Ξ(G)× the group of invertible
elements of the ring Ξ(G). It follows from Theorem 4.6 that the restricted
ghost map yields an injective group homomorphism

Φ× : Ξ(G)× ↪→
∏

(T,S)∈Π(G)

Z× .

The following lemma is a straightforward consequence of the existence of this
injective group homomorphism :

8.2. Lemma : Let G be a finite group, and let u ∈ Ξ(G). The following
conditions are equivalent :

1. u ∈ Ξ(G)×.

2. φT,S(u) ∈ {±1}, for any (T, S) ∈ Π(G).
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3. u2 = 1.

In particular Ξ(G)× is a finite elementary abelian 2-group.

The main motivation in considering the group Ξ(G)× lies in the following
proposition, which extends a theorem of tom Dieck ([9] Proposition 1.5.1)
about the unit group of the usual Burnside ring :

8.3. Proposition : Feit-Thompson’s theorem is equivalent to the statement
that, if G has odd order, then Ξ(G)× = {±1}.

Proof : The first observation is that for any finite group G, by Lemma 8.2,
the correspondences u 7→ 1−u

2
and e 7→ 1− 2e are mutually inverse bijections

between Ξ(G)× and the set of idempotents e ∈ QΞ(G) such that 2e ∈ Ξ(G).
Now Theorem 5.2 shows that |G|e ∈ Ξ(G), for any idempotent e of

QΞ(G). Hence if G has odd order, and if e is an idempotent of Ξ(G) such
that 2e ∈ Ξ(G), then (2, |G|)e = e ∈ Ξ(G). Thus if |G| is odd, the set Ξ(G)×

is in one to one correspondence with the set of idempotents of the ring Ξ(G).
By a standard argument from commutative ring theory, this set is in one to
one correspondence with the set of connected components of the spectrum
of Ξ(G). It follows that if G has odd order, the spectrum of G is connected
if and only if Ξ(G)× = {±1}. By Theorem 7.9, this is equivalent to saying
that G is solvable.

The following theorem is an analogue of Yoshida’s characterization ([10])
of the unit group of the usual Burnside ring :

8.4. Theorem : Let G be a finite group, and let m = (mT,S)(T,S)∈Π(G) be
a sequence of integers in {±1} indexed by Π(G), constant on G-conjugacy
classes of slices. Then the sequence [m] = (mT,S)(T,S)∈[Π(G)] of representatives
lies in the image of the restricted ghost map Φ× if and only if for any (T, S) ∈
Π(G), the map

g ∈ NG(T, S)/S 7→ m<gT>,<gS>/mT,S ∈ {±1}

is a group homomorphism.

Proof : Let X
f→ Y be a morphism of finite G-sets. It follows from

Lemma 4.3 that for any (T, S) ∈ Π(G), the monoid of endomorphisms of
G/S → G/T in the category G-Mor is actually a group, isomorphic to
NG(T, S)/S. This group acts on the set of morphisms from G/S → G/T
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to X
f→ Y , by pre-composition : if

G/S //

α

²²

G/T

β
²²

X
f // Y

is a morphism in G-Mor, and if g ∈ NG(T, S), the morphism g(α, β) =
(gα, gβ) is defined by (gα)(xS) = xgS and (gβ)(xT ) = xgT , for any g ∈ T .
The morphism (α, β) is invariant under g ∈ NG(T, S) if and only if α(gS) =
α(S), i.e. if (α, β) factors as

G/S //

²²

G/gT

²²
G/<gS> //

α
²²

G/<gT>

β
²²

X
f // Y

It follows that the number of fixed points of g ∈ NG(T, S)/S on the set

of homomorphisms from G/S → G/T to X
f→ Y , i.e. the value at gS

of the corresponding permutation character θT,S of NG(T, S)/S, is equal to

φ<gT>,<gS>(X
f→ Y ). This shows more generally that for any u ∈ Ξ(G), the

correspondence

θT,S : g ∈ NG(T, S)/S 7→ φ<gT>,<gS>(u)

is a generalized character of the group NG(T, S)/S.
Now if u ∈ Ξ(G)×, this generalized character has all its values in {±1}.

It follows that 〈θT,S, θT,S〉G = 1, hence θT,S is up to a sign equal to an
irreducible character of NG(T, S)/S, of degree 1. Hence θT,S/θT,S(1) is a
group homomorphism from NG(T, S)/S to {±1}. Thus if m ∈ Im(Φ×),
then the map g ∈ NG(T, S)/S 7→ m<gT>,<gS>/mT,S ∈ {±1} is a group
homomorphism.

Conversely, if m = (mT,S)(T,S)∈Π(G) is a G-invariant sequence with values
in {±1}, such that for any (T, S) ∈ Π(G), the map g ∈ NG(T, S)/S 7→
m<gT>,<gS>/mT,S ∈ {±1} is a group homomorphism θT,S, then

∑

g∈NG(T,S)/S

m<gT>,<gS> = mT,S|NG(T, S)/S| 〈θT,S, 1〉G
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is an integer multiple of |NG(T, S)/S|. By Theorem 6.1, it follows that
[m] = Φ(u), for some u ∈ Ξ(G). Then u ∈ Ξ(G)×, by Lemma 8.2, and this
completes the proof.

8.5. In the case of the usual Burnside ring B(G), the correspondence sending
a finite group G to the unit group B(G)× can be endowed with a structure of
biset functor, using tensor induction (see e.g. [3], Proposition 5.5). One may
ask whether a similar structure exists for the group of units of the section
Burnside ring :

8.6. Proposition : The correspondence sending a finite group G to Ξ(G)×

cannot be endowed with a structure of biset functor.

Proof : If such a structure exists, one may view it as a biset functor Ξ× with
values in F2-vector spaces. Obviously Ξ×(1) = F2. This shows that there are
two subfunctors F2 ⊂ F1 of Ξ× such that F1/F2 is isomorphic to the simple
functor S1,F2 .

An easy computation (a special case of Theorem 16.13 in the Appendix)
shows moreover that Ξ×(C2) ∼= (F2)

3, where C2 is a group of order 2. As
S1,F2(C2) ∼= (F2)

2 (see e.g. [4] Proposition 4.4.6), this shows that either
(F/F1)(C2) ∼= F2 and F2(C2) = {0}, or F (C2) = F1(C2) and F2(C2) ∼= F2. In
the first case, there are subfunctors F3 and F4 of F with F1 ⊆ F4 ⊂ F3 ⊆ F
and F3/F4

∼= SC2,F2 . In the latter case, there are subfunctors F4 ⊂ F3 of F2

such that F3/F4
∼= SC2,F2 . In any case

dimF2 Ξ×
(
(C2)

2
) ≥ dimF2 S1,F2

(
(C2)

2
)

+ dimF2 SC2,F2

(
(C2)

2
)
.

Now dimF2 S1,F2

(
(C2)

2
)

= 4 by [4] Proposition 4.4.6 or Corollary 10.5.6, and
dimF2 SC2,F2

(
(C2)

2
)

= 5 by inspection, using [4] Proposition 4.4.6. Thus
dimF2 Ξ×

(
(C2)

2
) ≥ 9.

WhenG is a finite abelian group, the unit group Ξ(G)× can be determined
explicitly (see Theorem 16.13). In particular

(8.7) Ξ
(
(C2)

2
)× ∼= (F2)

7 .

This contradiction shows that the biset functor Ξ× cannot exist.

8.8. Remark : Boltje and Pfeiffer ([1]) have described an efficient algorithm
to compute the unit group of the ordinary Burnside ring. A straightforward
adaptation of this algorithm to the ring Ξ(G) allows for a quick computation
of the group Ξ(G)×, for not too large finite groups G, using GAP4 ([7]).
These computations agree in particular with 8.7.
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II - The section Burnside ring

9. Galois morphisms of G-sets

9.1. Definition : Let G be a group. A morphism f : X → Y of G-sets is
a Galois morphism if for any x, x′ ∈ X such that f(x) = f(x′), there exists
ϕ ∈ AutG(X) such that f ◦ ϕ = f and ϕ(x) = x′.

9.2. Example : Any injective morphism of G-sets is a Galois morphism,
for trivial reasons.

9.3. Proposition : Let f : X → Y be a morphism of G-sets. The
following conditions are equivalent:

1. f is a Galois morphism.

2. ∀x, x′ ∈ X, f(x) = f(x′) =⇒ Gx = Gx′.

Proof : Suppose first that f is a Galois morphism. Then if f(x) = f(x′),
there exists a G-automorphism ϕ of X such that ϕ(x) = x′. This implies
Gx ≤ Gx′ , hence Gx = Gx′ by symmetry. Thus Condition 1 implies Condi-
tion 2.

Conversely, suppose that Condition 2 holds, and let x, x′ ∈ X with f(x) =
f(x′). There are two cases :

• Either x and x′ are in the same G-orbit ω. Let Z = X − ω. Define
ϕ : X → X by ϕ(t) = t if t ∈ Z and ϕ(ux) = ux′ if u ∈ G. This is a
well defined G-automorphism of X, since Gx = Gx′ . Clearly ϕ(x) = x′,
and f ◦ ϕ(t) = f(t) if t ∈ Z. Moreover

f ◦ ϕ(ux) = f(ux′) = uf(x′) = uf(x) = f(ux)

for any u ∈ G. Hence f ◦ ϕ = f .

• If x and x′ are in different G-orbits ω and ω′, respectively, let Z =
X − (ω tω′). Define ϕ : X → X by ϕ(t) = t if t ∈ Z, and ϕ(ux) = ux′

and ϕ(ux′) = ux, for any u ∈ G. This is a well defined G-automorphism
of X, since Gx = Gx′ . Clearly ϕ(x) = x′, and f ◦ ϕ(t) = f(t) if t ∈ Z.
Moreover

f ◦ ϕ(ux) = f(ux′) = uf(x′) = uf(x) = f(ux)
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for any u ∈ G. Also

f ◦ ϕ(ux′) = f(ux) = uf(x) = uf(x′) = f(ux′) ,

for any u ∈ G. Hence f ◦ ϕ = f .

It follows that f is a Galois morphism, and Condition 2 implies Condition 1.

9.4. Corollary : Let f : X → Y be a morphism of G-sets. Then f is
a Galois morphism if and only if for any y ∈ f(X), there exists a normal
subgroup Ny of Gy such that Gx = Ny for any x ∈ f−1(y).

Proof : Suppose first that f is a Galois morphism. If x ∈ X, set y =
f(x), and choose g ∈ Gy. Then f(gx) = gy = y = f(x), thus Ggx =
gGx = Gx, thus Gx EGy. Moreover Gx does not depend on x ∈ f−1(y), by
Proposition 9.3.

Conversely, suppose that for any y ∈ f(X), there exists Ny EGy such
that Gx = Ny for any x ∈ f−1(y). Then obviously Gx = Gx′ = Ny if
f(x) = f(x′) = y, so f is a Galois morphism, by Proposition 9.3.

9.5. Remark : In particular, when (T, S) is a slice of G, the projection
morphism G/S → G/T is a Galois morphism of G-sets if and only if SET ,
i.e. if (T, S) is a section of G.

9.6. Corollary : Let f : X → Y be a Galois morphism of G-sets. If X1

is a G-subset of X, the restricted morphism f|X1 : X1 → f(X1) is a Galois
morphism of G-sets.

Proof : This is a straightforward consequence of Proposition 9.3.

9.7. Lemma : Let f : X → Y be a morphism of G-sets, and j : Y ↪→ Z be
an injective morphism of G-sets. Then f is a Galois morphism if and only
if j ◦ f is a Galois morphism.

Proof : This is straightforward.

9.8. Lemma : Let

X
a //

b
²²

Y

c

²²
Z

d
// T
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be a cartesian square of G-sets. If c is a Galois morphism, then b is a Galois
morphism.

Proof : Suppose that x, x′ ∈ X are such that b(x) = b(x′). Then

ca(x) = db(x) = db(x′) = ca(x′) .

If c is a Galois morphism, it follows that Ga(x) = Ga(x′). Let g ∈ Gx. Then
g ∈ Ga(x) = Ga(x′), and g ∈ Gb(x) = Gb(x′), thus

b(x′) = gb(x′) = b(gx′)

a(x′) = ga(x′) = a(gx′) .

It follows that x′ = gx′, so Gx ≤ Gx′ , and Gx = Gx′ by symmetry. Hence b
is a Galois morphism, by Proposition 9.3.

9.9. Remark : In particular, any morphism isomorphic to a Galois mor-
phism (that is, when a and d are isomorphisms) is a Galois morphism.

9.10. Proposition : A morphism f : X → Y1 t Y2 is a Galois morphism
if and only if the restricted morphisms f−1(Y1) → Y1 and f−1(Y2) → Y2 are
Galois morphisms.

Proof : Set Xi = f−1(Yi), and denote by fi : Xi → Yi the restriction of f ,
for i = 1, 2. Assume first that f is a Galois morphism. If x, x′ ∈ X1 have the
same image under f1, then they have the same image under f , and Gx = Gx′ .
So f1 is a Galois morphism, and f2 is also a Galois morphism, by symmetry.

Conversely, suppose that f1 and f2 are Galois morphisms. If x, x′ ∈ X
are such that f(x) = f(x′) ∈ Y1, then x, x′ ∈ X1, and f1(x) = f1(x

′). Thus
Gx = Gx′ , as f1 is a Galois morphism. If f(x) = f(x′) ∈ Y2, the argument
is similar, with f1 replaced by f2. In any case Gx = Gx′ , and f is a Galois
morphism, by Proposition 9.3.

Let G and H be groups. A morphism f : U → U ′ of (H,G)-bisets is
called a Galois morphism if it is a Galois morphism of (H×Gop)-sets. Then :

9.11. Proposition : Let G, H and K be groups. If f : U → U ′ is a
Galois morphism of (H,G)-bisets, and g : V → V ′ is a Galois morphism of
(K,H)-bisets, then g ×H f : V ×H U → V ′ ×H U ′ is a Galois morphism of
(K,G)-bisets.
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Proof : Let (v,
H
u) and (v′,

H
u′) be elements of V ×H U with the same image

under g ×H f . It means that there exists h ∈ H such that

g(v′) = g(v)h = g(vh) and f(u′) = h−1f(u) = f(h−1u) .

As g is a Galois morphism, the stabilizers of v′ and vh in K×Hop are equal.
Similarly, as f is a Galois morphism, the stabilizers of u′ and h−1u in H×Gop

are equal.
Now let (k, g) ∈ K × Gop such that k(v′,

H
u′)g−1 = (v′,

H
u′). It means

that there exists a ∈ H such that kv′a−1 = v′ and au′g−1 = u′. Hence

kvha−1 = vh and ah−1ug−1 = h−1u .

It follows that

k(v,
H
u)g−1 = (kv,

H
ug−1) = (vhah−1,

H
ug−1)

= (v,
H
hah−1ug−1) = (v,

H
hh−1u) = (v,

H
u) .

By symmetry, the stabilizers of (v,
H
u) and (v′,

H
u′) in K × Gop are equal.

Thus (g ×H f) is a Galois morphism of (K,G)-bisets.

9.12. Corollary : Let G and H be finite groups, and U be an (H,G)-biset.
If f : X → Y is a Galois morphism of G-sets, then

U ×G f : U ×G X → U ×G Y and U ◦G f : U ◦G X → U ◦G Y

are Galois morphisms of H-sets.

Proof : The assertion on U ×G f is the special case of Proposition 9.11, with
the following changes in the notation : the group G becomes the trivial group,
the group H becomes G, the group K becomes H, the biset U becomes X,
the biset V becomes U , and the map g becomes the identity map of U .

Now recall from [2] that U ◦G X is the H-subset of U ×G X defined by

U ◦G X = {(u,
G
x) ∈ U ×G X | ∀g ∈ G, ug = u =⇒ gx = x} ,

and that the map U ◦Gf is the restriction of U×Gf to U ◦GX. By Lemma 9.7
and Corollary 9.6, the morphism U◦Gf is also a Galois morphism ofH-sets.

9.13. Corollary : Let f : X → Y be a Galois morphism of G-sets. If
H is a subgroup of G, the restriction ResGHf : ResGHX → ResGHY is a Galois
morphism of H-sets.
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Proof : In Corollary 9.12, set U = G, viewed as and (H,G)-biset for left
and right multiplication.

9.14. Corollary : Let G and H be groups. If f : X → Y is a Galois
morphism of G sets and g : Z → T is a Galois morphism of H-sets, then
f × g : X × Z → Y × T is a Galois morphism of (G×H)-sets.

Proof : Consider f as a morphism of (G,1)-bisets, and g as a morphism of
(1, Hop)-bisets.

9.15. Notation : Let G-MorGal denote the full subcategory of G-Mor
consisting of Galois morphisms of G-sets.

9.16. Notation : Let X
f→ Y be a morphism of G-sets. For x ∈ X, set

Gf
x = <Gz | ∀z ∈ X, f(z) = f(x)> .

Let ∼f be the relation on X defined by

x ∼f x
′ ⇔ ∃g ∈ Gf

x, gx = x′ .

9.17. Lemma : With this notation :

1. The relation ∼f is an equivalence relation on X. Let XGal
f denote

the set of equivalence classes, and let γX,f : X → XGal
f denote the

projection map.

2. If x, x′ ∈ X and x ∼f x
′, then gx ∼f gx

′ for any g ∈ G. Hence there
exists a unique structure of G-set on XGal

f such that γX,f is a morphism
of G-sets.

3. There is a unique map fGal : XGal
f → Y such that the diagram

X
f //

γX,f

²²

Y

XGal
f

fGal

=={{{{{{{{

is commutative.
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Proof : For Assertion 1, the relation ∼f is clearly reflexive, since Gx ≤ Gf
x.

Now if x, x′ ∈ X and x ∼f x′, let g ∈ Gf
x such that gx = x′. There

exist r ∈ N, elements z1, . . . , zr in X and elements g1, . . . , gr of G such that
gizi = zi and f(zi) = f(x), for i = 1, . . . , r, and such that g = g1 · · · gr. It
follows that

f(x′) = g1 · · · grf(x) = g1 · · · grf(zr) = g1 · · · gr−1f(grzr) = g1 · · · gr−1f(zr)

= g1 · · · gr−1f(x) ,

thus f(x′) = f(x), by induction on r. It follows that Gf
x′ = Gf

x, hence that
x′ ∼f x, since x = g−1x′. So the relation ∼f is symmetric.

Finally ∼f is transitive : if x, x′, x′′ ∈ X, if x ∼f x
′ and x′ ∼f x

′′, there

exist g ∈ Gf
x and g′ ∈ Gf

x′ such that gx = x′ and g′x′ = x′′. But the previous

argument shows that Gf
x = Gf

x′ = Gf
x′′ . Hence g′g ∈ Gf

x, and x ∼f x
′′, since

g′gx = x′′.
Assertion 2 follows from the straightforward fact that g(Gf

x) = Gf
gx for

any x ∈ X and any g ∈ G. Assertion 3 follows as well, since x ∼f x
′ implies

f(x) = f(x′).

9.18. Proposition : Let G be a finite group.

1. Let X
f→ Y be a morphism of G-sets. Then the morphism XGal

f

fGal−→ Y
is a Galois morphism of G-sets.

2. If

X
f //

α

²²

Y

β
²²

A
a // B

is a morphism in the category G-Mor, and if A
a→ B is a Galois

morphism of G-sets, then there exists a unique morphism of G-sets
α̃ : XGal

f → A such that the diagram

X
f //

γX,f

²²
α

ÃÃ

Y

XGal
f

eα
²²

fGal
// Y

β

²²
A

a // B
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is commutative.

3. The correspondence sending X
f→ Y to XGal

f

fGal−→ Y is a functor from

G-Mor to G-MorGal, and this functor is left adjoint to the forgetful
functor G-MorGal → G-Mor.

Proof : When x ∈ X, let x̃ = γX,f (x) ∈ XGal
f denote its equivalence class

for the relation ∼f . Let g ∈ G. Then gx̃ = x̃ if and only if gx ∼f x, i.e. if
there exists h ∈ Gf

x such that gx = hx, or equivalently h−1g ∈ Gx. Hence the
stabilizer of x̃ in G is equal to Gf

x ·Gx = Gf
x, since Gx ≤ Gf

x. So if x, x′ ∈ X
are such that fGal(x̃) = fGal(x̃′), i.e. if f(x) = f(x′), then the stabilizers Gf

x

of x̃ and Gf
x′ of x̃′ are equal, since Gf

x depends only on f(x). Assertion 1
follows, by Proposition 9.3.

Let x, x′ ∈ X such that x ∼f x′. Then there exist r ∈ N, elements
z1, . . . , zr in X and elements g1, . . . , gr of G such that gizi = zi and f(zi) =
f(x), for i = 1, . . . , r, and such that g = g1 · · · gr. It follows that

βf(zi) = aα(zi) = βf(x) = aα(x) ,

for i = 1, . . . , r. By Proposition 9.3, since A
a→ B is a Galois morphism,

this implies Gα(zi) = Gα(x). Moreover Gz ≤ Gα(z) for any z ∈ X. Thus
gi ∈ Gα(zi) = Gα(x) for i = 1, . . . , r. It follows that g = g1 · · · gr ∈ Gα(x), hence
α(x′) = gα(x) = α(x). This shows the existence of a map α̃ : XGal

f → A,
sending the equivalence class of x ∈ X for ∼f to α(x). Such a map is
obviously unique, and it is a morphism of G-sets. This proves Assertion 2.

For Assertion 3, suppose that

X
f //

α

²²

Y

β
²²

X ′ f ′ // Y ′

is a morphism from X
f→ Y to X ′ f ′→ Y ′ in the category G-Mor. Then one

can compose this morphism with the morphism

X ′ f ′ //

γX′,f ′
²²

Y ′

X ′Gal
f ′

f ′Gal

// Y ′ .

This yields a morphism from X
f→ Y to X ′Gal

f ′
f ′Gal

−→ Y ′, which is a Galois
morphism by Assertion 1. By Assertion 2, this composition factors in a

32



unique way through the morphism XGal
f

fGal−→ Y . In other words there is a

unique morphism of G-sets α̃ : XGal
f → X ′Gal

f such that the diagram

X
f //

α

))RRRRRRRRRRRRRRRRR

γX,f

²²

Y
β

))RRRRRRRRRRRRRRRRRR

X ′
f ′

//

γX′,f ′

²²

Y ′

XGal
f

fGal
//

eα
''PPPPPPPPPPPPPPP Y

β

((PPPPPPPPPPPPPPPPPP

X ′Gal
f ′

f ′Gal
// Y ′

is commutative. Clearly, the map (α, β) 7→ (α̃, β) endows the correspondence

(
X

f→ Y
) 7→ (

XGal
f

fGal−→ Y
)

with a structure of functor from G-Mor to G-MorGal. Moreover, for any Galois
morphism A

a→ B, Assertion 2 yields a bijection

HomG-Mor

(
X

f→ Y,A
a→ B

) ∼= HomG-MorGal

(
XGal
f

fGal−→ Y,A
a→ B

)
,

and this bijection is clearly functorial with respect to X
f→ Y and A

a→ B.
Assertion 3 follows.

9.19. Example : Let (T, S) be a slice of G, and f be the projection map
from X = G/S to Y = G/T . Then for x = S ∈ X, the group Gf

x is the
group generated by the stabilizers GtS, for t ∈ T . As GtS = tS, it follows
that Gf

x is equal to the normal closure SET of S in T . In this case moreover,
the G-set XGal

f is isomorphic to G/(SET ), and the map fGal is the projection
to G/T .

10. The section Burnside functor

10.1. Proposition : If X
f→ Y and X ′ f ′→ Y ′ are Galois morphisms of

G-sets, then XtX ′ ftf ′−→ Y tY ′ and X×X ′ f×f ′−→ Y ×Y ′ are Galois morphisms
of G-sets.
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Proof : The case of disjoint union follows from Proposition 9.10 and Corol-
lary 9.6. Moreover Proposition 9.14 shows that if f : X → Y and f ′ : X ′ →
Y ′ are Galois morphisms of G-sets, then

f × f ′ : X ×X ′ → Y × Y ′

is a Galois morphism of (G × G)-sets. By Corollary 9.13, the restriction of
this morphism to the diagonal G ≤ G×G is a Galois morphism of G-sets.

10.2. Definition : Let G be a finite group. The section Burnside group
Γ(G) of G is the subgroup of the slice Burnside ring Ξ(G) generated by the
classes of Galois morphisms of G-sets.

By Proposition 10.1, the group Γ(G) is actually a subring of Ξ(G), called
the section Burnside ring of G.

10.3. Lemma : Let f : X → Y be a Galois morphism of finite G-sets.
Then in the group Γ(G)

π(X
f→ Y ) =

∑

x∈[G\X]

〈Gf(x), Gx〉G

=
∑

y∈[G\Y ]

|Gy\f−1(y)| 〈Gy, Gxy〉G ,

where xy is chosen in f−1(y), for each y ∈ [G\f(X)].

Proof : The first formula follows from Lemma 3.4. For the second one, write

π(X
f→ Y ) =

∑

y∈[G\Y ]

∑

x∈[Gy\f−1(Y )]

π(G/Gx → G/Gy) ,

and observe that Gx = Gx′ if f(x) = f(x′).

10.4. Corollary : The elements 〈T, S〉G, where (T, S) runs through a set
[Σ(G)] of representatives of conjugacy classes of sections of G, form a basis
of Γ(G).

Proof : Indeed, these elements generate Γ(G), by Proposition 10.3, and they
are linearly independent, by 4.6.

10.5. Remark : This also shows that Γ(G) is the quotient of the free abelian

group on the set of isomorphism classes [X
f−→ Y ] of Galois morphisms of
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finite G-sets, by the subgroup generated by elements of the form

[(X1 tX2)
f1tf2−→ Y ]− [X1

f1→ f(X1)]− [X2
f2→ f(X2)] ,

whenever X
f→ Y is a Galois morphism of finite G-sets with a decomposition

X = X1 tX2 as a disjoint union of G-sets, where f1 = f|X1 and f2 = f|X2 .

10.6. Remark : Since Γ(G) is a subring of Ξ(G), the product formula of
Proposition 3.8

〈T, S〉G〈Y,X〉G =
∑

g∈[S\G/X]

〈T ∩ gY , S ∩ gX〉G ,

also expresses the product of two sections 〈T, S〉G and 〈Y,X〉G of G. Other
ring structures with the same additive group Γ(G), but different multipli-
cations, have been considered by O. Coşkun in [5] (Definition 2.2 and Re-
mark 2.3), as well as their functorial properties.

10.7. Theorem :

1. Let G and H be finite groups, and let U be a finite (H,G)-biset. The
functor

(X
f→ Y ) 7→ (U ×G X

U×Gf−→ U ×G Y )

from G-MorGal to H-MorGal induces a group homomorphism

Γ(U) : Γ(G) → Γ(H) .

2. The correspondence G 7→ Γ(G) is a Green biset functor.

Proof : This follows from Theorem 3.9 and Corollary 9.12.

10.8. Remark : It follows from Remark 9.2 that the image of the morphism
i : B → Ξ of Proposition 3.11 is actually contained in Γ. Thus i is a morphism
of Green biset functors from B to Γ.

11. Sections and ghost map

11.1. Notation : If (T, S) is a slice of G, denote by ψT,S : Γ(G) → Z the
restriction of the ring homomorphism φT,S : Ξ(G) → Z.
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11.2. Lemma : Let (T, S), (T ′, S ′) ∈ Π(G). Then ψT,S = ψT ′,S′ if and
only if the sections (T, SET ) and (T ′, S ′ET ′) are conjugate in G (recall that
SET denotes the normal closure of S in T ). In particular ψT,S = ψT,SE T .

Proof : This follows from Proposition 9.18 and Remark 9.19, but the fol-
lowing is a short direct proof : by Lemma 4.3, ψT,S = ψT ′,S′ if and only if for
any section (V, U) of G

|{g ∈ G/U | (T, S)g ¹ (V, U)}| = |{g ∈ G/U | (T ′, S ′)g ¹ (V, U)}| .
Taking (V, U) = (T, SET ) shows that there exists g ∈ G such that (T ′, S ′)g ≤
(T, SET ). This implies (T ′, S ′ET ′)g ¹ (T, SET ). Taking now (V, U) =
(T ′, S ′ET ′) shows that (T ′, S ′ET ′)g

′ ¹ (T, SET ), for some g′ ∈ G. It fol-
lows that (T ′, S ′ET ′)g = (T, SET ).

11.3. Theorem : The map (called the ghost map for Γ(G))

Ψ =
∏

(T,S)∈[Σ(G)]

ψT,S : Γ(G) →
∏

(T,S)∈[Σ(G)]

Z

is an injective ring homomorphism, with finite cokernel as morphism of
abelian groups.

Proof : The proof is exactly the same as for Theorem 4.6 : by Lemma 3.5,
the elements 〈T, S〉G, for (T, S) ∈ [Σ(G)], generate Γ(G). Suppose that there
is a non zero linear combination in the kernel of Ψ

Λ =
∑

(T,S)∈[Σ(G)]

λT,S 〈T, S〉G

with integer coefficients λT,S ∈ Z, for (T, S) ∈ [Σ(G)]. Extend λ to a function
Σ(G) → Z, constant on conjugacy classes. Let (Y,X) be an element of Σ(G),
maximal for the relation ¹, such that λY,X 6= 0. Then since by Lemma 4.3

ψY,X(G/S → G/T ) = |{g ∈ G/S | (Y g, Xg) ¹ (T, S)}| ,
it follows that

ψY,X(Λ) =
∑

(T,S)∈[Σ(G)]

λT,SψY,X(G/S → G/T )

= λY,XψY,X(G/X → G/Y )

= λY,X |NG(X,Y )/X| = 0 .
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Hence λY,X = 0, and this contradiction shows that Ψ is injective (and in
particular, we recover the fact that the elements 〈T, S〉G, for (T, S) ∈ [Σ(G)],
form a Z-basis of Γ(G)). Thus Ψ is an injective morphism between free
abelian groups with the same finite rank, hence it has finite cokernel.

11.4. Corollary : Set QΓ(G) = Q⊗Z Γ(G), and QΨ = Q⊗Z Ψ. Then

QΨ : QΓ(G) →
∏

(T,S)∈[Σ(G)]

Q

is an isomorphism of Q-algebras.

12. Sections and idempotents

Corollary 11.4 shows that QΓ(G) is a split semisimple commutative algebra.
Its primitive idempotents are indexed by sections of G, up to conjugation :
they are the inverse images under QΨ of the primitive idempotents of the
algebra

∏
(T,S)∈[Σ(G)]

Q :

12.1. Notation : If (T, S) ∈ Σ(G), denote by γGT,S the unique element of
Q⊗Z Γ(G) such that

∀(Y,X) ∈ Σ(G), QψY,X(γGT,S) =

{
1 if (Y,X) =G (T, S)
0 otherwise

The elements γGT,S, for (T, S) ∈ Σ(G), are the primitive idempotents of
QΓ(G).

12.2. Theorem : Let ¹ denote the restriction of the relation ¹ to Σ(G).
Then for (T, S) ∈ Σ(G)

γGT,S =
1

|NG(T, S)|
∑

(V,U)¹(T,S)

|U |µΣ

(
(V, U), (T, S)

)〈V, U〉G ,

where µΣ is the Möbius function of the poset (Σ(G),¹).

Proof : The proof is the same as the proof of Theorem 5.2.
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12.3. Proposition : Let (X ,≤) be a finite poset. Let ϕ : X → X be a
map of posets such that ϕ ◦ ϕ = ϕ and x ≤ ϕ(x) for any x ∈ X . Then the
Möbius function µY of the subposet Y = ϕ(X ) of X is given by

(12.4) ∀y, z ∈ Y , µY(y, z) =
∑

y≤u∈X
ϕ(u)=z

µX (y, u) ,

where µX is the Möbius function of (X ,≤).

Proof : For y, z ∈ Y , denote by m(y, z) the right hand side of Equation 12.4.
Then for y, t ∈ Y

∑
z∈Y
y≤z≤t

m(y, z) =
∑
z∈Y
y≤z≤t

∑
y≤u∈X
ϕ(u)=z

µX (y, u)

=
∑

(z,u)∈P
µX (y, u) ,

where
P = {(z, u) | z ∈ Y , u ∈ X , y ≤ u ≤ ϕ(u) = z ≤ t} .

Set Q = {u ∈ X | y ≤ u ≤ t}. If (z, u) ∈ P , then clearly u ∈ Q. Conversely,
if u ∈ Q, then

(
ϕ(u), u

) ∈ P : indeed ϕ(u) ∈ Y = ϕ(X ), and moreover
ϕ(u) ≤ ϕ(t) = t, since t ∈ ϕ(X ) and ϕ ◦ϕ = ϕ. Now the maps (z, u) ∈ P 7→
u ∈ Q and u ∈ Q 7→ (

ϕ(u), u
) ∈ P are mutual inverse bijections. It follows

that ∑
z∈Y
y≤z≤t

m(y, z) =
∑
u∈X
y≤u≤t

µX (y, u) .

This is equal to 1 if y = t, and to zero otherwise. The proposition follows.

12.5. Corollary : Let (V, U) and (T, S) be sections of G. Then

(12.6) µΣ(G)

(
(V, U), (T, S)

)
= µ(V, T )

( ∑
U≤X≤V
XE T =S

µ(U,X)
)
.

In particular in QΓ(G)

γGT,S =
1

|NG(T, S)|
∑

U EV≤T
U≤X≤V
XE T =S

|U |µ(U,X)µ(V, T ) 〈V, U〉G .
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Proof : For Equation 12.6, apply Proposition 12.3 to the poset X =
(
Π(G),¹ )

,
and to the map ϕ : X → X defined by

ϕ
(
(Y,X)

)
= (Y,XEY ) ,

and then use Equation 5.6. Then substitute the value of µΣ

(
(V, U), (T, S)

)
in the formula of Theorem 12.2.

13. The image of the ghost map

The following is a characterization of the image of the ghost map for the
section Burnside ring, similar to Theorem 6.1 :

13.1. Theorem : Let G be a finite group. Let m =
(
m(T, S)

)
(T,S)∈Σ(G)

be a sequence of integers indexed by Σ(G), constant on G-conjugacy classes
of sections. Then the sequence [m] =

(
m(T, S)

)
(T,S)∈[Σ(G)]

of representatives

lies in the image of the ghost map Ψ if and only if, for any section (T, S)
of G

∑

g∈NG(T,S)/S

m
(
<gT>,<gS>E<gT>

) ≡ 0
(
mod. |NG(T, S)/S|) .

Proof : The proof is very similar to the proof of Theorem 6.1, with two
differences : the first one is that the poset Π(G) of slices of G has to
be replaced by the poset Σ(G) of sections of G. The second one is that
the slice (<gT>,<gS>) has to be changed to the corresponding section(
<gT>,<gS>E gT

)
of G. Apart from these two differences, the proof goes

through without changes.

14. Prime spectrum

14.1. Notation : Let p denote either 0 or a prime number.

• If (T, S) ∈ Σ(G), denote by JT,S,p the prime ideal IT,S,p∩Γ(G) of Γ(G).
In other words JT,S,p is the kernel of the ring homomorphism

Γ(G)
ψT,S−→ Z→ Z/pZ ,
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where the right hand side map is the projection.

• Let Ω(G) denote the set of triples (T, S, p), where (T, S) ∈ Σ(G) is
such that |NG(T, S)/S| 6≡ 0 (mod. p).

The group G acts on Ω(G), by g(T, S, p) = (gT , gS, p), for g ∈ G, and the
ideal JT,S,p only depends on the G-orbit of (T, S, p). Conversely :

14.2. Proposition : Let I be a prime ideal of Γ(G), and R = Γ(G)/I.
Denote by ψ : Γ(G) → R the projection map, and denote by p ≥ 0 the
characteristic of R. Then R ∼= Z/pZ and :

1. If p = 0, there exists a section (T, S) of G such that ψ = ψT,S, and
(T, S) is unique up to G-conjugation, with this property.

2. If p > 0, there exists a section (T, S) of G such that ψ is the reduction
modulo p of ψT,S and NG(T, S)/S is a p′-group, and (T, S) is unique
up to G-conjugation, with these properties.

In particular, there exists a unique (T, S, p) ∈ Ω(G), up to conjugation, such
that I = JT,S,p.

Proof : The proof is exactly the same as the proof of Proposition 7.2, with
slices replaced by sections : let (T, S) be a section of G, minimal for the
relation ¹, such that 〈T, S〉G /∈ I. Then by Proposition 3.8, for any (Y,X) ∈
Σ(G)

〈T, S〉G〈Y,X〉G =
∑

g∈[S\G/X]

〈T ∩ gY , S ∩ gX〉G

≡
∑

g∈G/X
S≤gX
T≤gY

〈T, S〉G (mod. I)

= ψT,S
(〈Y,X〉G

)〈T, S〉G .

Since I is prime, it follows that 〈Y,X〉G−ψT,S(〈Y,X〉G)1Γ(G) ∈ I. In partic-
ular R = Γ(G)/I is generated by the image of 1Γ(G), hence R ∼= Z/pZ, where
p is the characteristic of R. Since R is an integral domain, the number p is
either 0 or a prime.

1. If p = 0, then R = Z, and ψ = ψT,S. And if (T ′, S ′) ∈ Σ(G) is such that
ψT,S = ψT ′,S′ , then both ψT,S

(〈T ′, S ′〉G
)

and ψT ′,S′
(〈T, S〉G

)
are non

zero. Then there exist elements g, g′ ∈ G such that (T g, Sg) ¹ (T ′, S ′)
and (T ′g

′
, S ′g

′
) ¹ (T, S), so (T, S) and (T ′, S ′) are conjugate in G.
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2. If p > 0, then R = Z/pZ, and ψ is equal to the reduction of ψT,S
modulo p. Since ψ

(〈T, S〉G
)

= |NG(T, S)/S| is non zero in R, it follows
that NG(T, S)/S is a p′-group. If (T ′, S ′) is another section of G such
that ψ is the reduction modulo p of ψT ′,S′ , and NG(T ′, S ′)/S ′ is a p′-
group, then

|NG(T, S)/S| = ψT,S
(〈T, S〉G

) ≡ ψT ′,S′
(〈T, S〉G

)
(mod. p) .

This is non zero. Similarly |NG(T, S)/S| ≡ ψT,S
(〈T ′, S ′〉G

)
(mod. p)

is non zero. In particular ψT ′,S′
(〈T, S〉G

)
and ψT,S

(〈T ′, S ′〉G
)

are both
non zero, and it follows as above that (T, S) and (T ′, S ′) are conjugate
in G.

14.3. Notation : Let p be a prime number.

• Let Σp(G) denote the set of sections (T, S) of G such that NG(T, S)/S
is a p′-group. In other words Σp(G) = Σ(G) ∩ Πp(G).

• For any (T, S) ∈ Σ(G), let (T, S)bbp denote the unique element (V, U) of
Σp(G), up to conjugation, such that JT,S,p = JV,U,p.

14.4. Proposition : Let p be a prime number. If (T, S) is a section of G,

let (T, S)b+p denote a section of the form
(
PT, (PS)EPT

)
of G, where P is a

Sylow p-subgroup of NG(T, S).
Define inductively an increasing sequence (Tn, Sn) in (Σ(G),¹) by

(T0, S0) = (T, S), and (Tn+1, Sn+1) = (Tn, Sn)
b+
p, for n ∈ N. Then (T, S)bbp

is conjugate to the largest term (T∞, S∞) of the sequence (Tn, Sn).

Proof : Again, the proof is the same as the proof of Proposition 7.4 : the
section (T, S)bbp is a minimal element (V, U) of the poset (Σ(G),¹) such that

ψT,S(V, U) = |{g ∈ G/U | (T g, Sg) ¹ (V, U)}| 6≡ 0 (mod.p) .

Thus one can assume that (T, S) ¹ (V, U). But ψT,S ≡ ψPT,(PS)E PT (mod. p)
by Corollary 4.4 and Lemma 11.2, for any p-subgroup P of NG(T, S), hence

one can also assume that (T, S)b+p ¹ (V, U), hence that (T∞, S∞) ¹ (V, U),
by induction. Moreover ψT∞,S∞ ≡ ψV,U (mod. p). As NG(T∞, S∞)/S∞ is a
p′-group, it follows that (T∞, S∞) = (V, U), as was to be shown.

14.5. Proposition : Let (T, S, p), (T ′, S ′, p′) be elements of Ω(G). Then
JT ′,S′,p′ ⊆ JT,S,p if and only if
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• either p′ = p and the sections (T ′, S ′) and (T, S) are conjugate in G.

• or p′ = 0 and p > 0, and the sections (T ′, S ′)bbp and (T, S) are conjugate
in G.

Proof : (see Proposition 7.6) Set J = JT,S,p and J ′ = JT ′,S′,p′ . Then
Γ(G)/J ′ ∼= Z/p′Z maps surjectively to Γ(G)/J ∼= Z/pZ. Thus if p = p′,
this projection map is an isomorphism, hence J = J ′ and the sections (T, S)
and (T ′, S ′) are conjugate in G. And if p 6= p′, then p′ = 0 and p > 0. The
morphism ψT,S is equal to the reduction modulo p of the morphism ψT ′,S′ .
In other words JT ′,S′,p = JT,S,p, hence (T, S) is conjugate to (T ′, S ′)bbp.

14.6. Corollary : Let p be a prime number, and let Z(p) be the localization
of Z at the set Z − pZ. Let Ωp(G) denote the subset of Ω(G) consisting of
triples (T, S, 0), for (T, S) ∈ Σ(G), and (T, S, p), for (T, S) ∈ Σp(G). Then :

1. The prime ideals of the ring Z(p)Γ(G) are the ideals Z(p)JT,S,q, for
(T, S, q) ∈ Ωp(G).

2. If (T, S, q), (T ′, S ′, q′) ∈ Θp(G), then Z(p)JT ′,S′,q′ ⊆ Z(p)JT,S,q if and
only if :

• either q = q′, and the sections (T, S) and (T ′, S ′) are conjugate
in G.

• or q′ = 0, q = p, and the sections (T ′, S ′)bbp and (T, S) are conjugate
in G.

3. The connected components of the spectrum of Z(p)Γ(G) are indexed by
the conjugacy classes of Σp(G). The component indexed by (T, S) ∈
Σp(G) consists of a unique maximal element Z(p)JT,S,p, and of the ideals
Z(p)JT ′,S′,0, where (T ′, S ′) ∈ Σ(G) is such that (T ′, S ′)bbp is conjugate to
(T, S) in G.

Proof : (See Corollary 7.7) The prime ideals of Z(p)Γ(G) are of the form Z(p)I,
where I is a prime ideal of Γ(G) such that I ∩ (Z − pZ) = ∅. Equivalently
I = JT,S,0 or I = JT,S,p. This proves Assertion 1. Now Assertion 2 follows
from Proposition 14.5, and Assertion 3 follows from Assertion 2.

14.7. Corollary :

1. The primitive idempotents of the ring Z(p)Γ(G) are indexed by the con-
jugacy classes of Σp(G). The primitive idempotent εGV,U indexed by
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(V, U) ∈ Σp(G) is equal to

εGV,U =
∑

(T,S)∈[Σ(G)]

(T,S)bb
p
=G(T,S)

γGT,S .

2. Let π be a set of prime numbers, and Z(π) be the localization of Z
relative to Z−∪p∈πpZ. Let F be a set of sections of G, invariant by G-
conjugation, and [F ] be a set of representatives of G-conjugacy classes
of F . Then the following conditions are equivalent :

(a) The idempotent

γGF =
∑

(T,S)∈[F ]

γGT,S

of QΓ(G) lies in Z(π)Γ(G).

(b) Let (T, S) ∈ Σ(G), and let P be a p-subgroup of NG(T, S), for
some p ∈ π. Then (T, S) ∈ F if and only if

(
PT, (PS)EPT

) ∈ F .

Proof : The proof is almost identical to the proof of Corollary 7.8 : let F
be a set of sections of G, invariant by G-conjugation, and [F ] be a set of
representatives of G-conjugacy classes of F . The idempotent

γGF =
∑

(T,S)∈[F ]

γGT,S

of QΓ(G) lies in Z(p)Γ(G), for some prime p, if and only if there exists an
integer m, not divisible by p, such that u = mγGF ∈ Γ(G). Let (T, S) ∈ Σ(G),
and let P be a p-subgroup of NG(T, S). The integer ψT,S(u) is equal to m
if (T, S) ∈ F , and to 0 otherwise. Hence it is coprime to p if and only if
(T, S) ∈ F . Since ψT,S and ψPT,(PS)E PT are congruent modulo p, it follows

that (T, S) ∈ F if and only if
(
PT, (PS)EPT

) ∈ F .
Hence if (T, S) and (T ′, S ′) are sections ofG such that (T, S)bbp =G (T ′, S ′)bbp,

then (T, S) ∈ F if and only if (T ′, S ′) ∈ F . Thus F is a disjoint union of
sets of the form

EV,U = {(T, S) ∈ Σ(G) | (T, S)bbp =G (V, U)} ,

for some sections (V, U) ∈ Σp(G). In other words the idempotent γGF is a
sum of some idempotents εGV,U , for (V, U) ∈ Σp(G).

But the primitive idempotents of the ring Z(p)Γ(G) are in one to one cor-
respondence with the connected components of its spectrum, which precisely
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are indexed by the conjugacy classes of Σp(G). It follows that γGF = εGV,U is
equal to the idempotent corresponding to the component indexed by (V, U),
for any (V, U) ∈ Σp(G). This proves Assertion 1. This also proves Assertion 2
in the case where π consists of a single prime number.

For the general case, observe that γGF lies in Z(π)Γ(G) if and only if it lies
in Z(p)Γ(G), for any p ∈ π.

The following proposition is the analogue of Theorem 7.9, for the ring
Γ(G). Its statement is a bit simpler :

14.8. Theorem : Let G be a finite group.

1. The primitive idempotents of Γ(G) are indexed by the conjugacy classes
of perfect subgroups of G. The idempotent γGH indexed by the perfect
subgroup H is equal to

γGH =
∑

(T,S)∈[Σ(G)]
D∞(T )=GH

γGT,S ,

where D∞(T ) denotes the last term in the derived series of T .

2. The prime spectrum of Γ(G) is connected if and only if G is solvable.

Proof : As in the proof of Theorem 7.9, let ∼ denote the finest equivalence
relation on the set Σ(G) such that for any (T, S), (T ′, S ′) ∈ Σ(G)

∃p, (T, S)bbp =G (T ′, S ′)bbp =⇒ (T, S) ∼ (T ′, S ′) .

If we can show that

(T, S) ∼ (T ′, S ′) ⇔ D∞(T ) =G D
∞(T ′) ,

then Assertion 1 follows from Corollary 14.7, applied to the set π of all
primes.

Clearly, if there exists a p-subgroup P ≤ NG(T, S) such that (T ′, S ′)
is conjugate to

(
PT, (PS)EPT

)
, then T ′ is conjugate to PT , and D∞(T ′)

is conjugate to D∞(T ). By transitivity, for any (T, S), (T ′, S ′) ∈ Σ(G), if
(T, S) ∼ (T ′, S ′), then D∞(T ) =G D

∞(T ′).
To show the converse, is it enough to show that (T, S) ∼ (

D∞(T ), D∞(T )
)
,

for any (T, S) ∈ Σ(G). Let p be any prime, and P be a Sylow p-subgroup of T .
Then (T, S)bbp =

(
T, (PS)EPT

)bb
p, hence (T, S) ∼ (T, S ′), where S ′ = (PS)EPT

is a normal subgroup of T , containing S, and of p′-index in T . Since p was
arbitrary, it follows by induction that (T, S) ∼ (T, T ). Now for any prime p,
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if P is a Sylow p-subgroup of T , then P ≤ NG

(
Op(T )

)
, and T = POp(T ). It

follows that (T, T )bbp =
(
Op(T ), Op(T )

)bb
p. Again, since p is arbitrary, it follows

that (T, T ) ∼ (
D∞(T ), D∞(T )

)
, and this completes the proof of Assertion 1.

Assertion 2 follows easily, since by Assertion 1, the spectrum of Γ(G) is
connected if and only if the trivial group is the only perfect subgroup of G,
i.e. if G is solvable.

14.9. Corollary : The images of the primitive idempotents of B(G) by
the morphism iG : B(G) → Γ(G) are the primitive idempotents of Γ(G). In
other words, if H is a perfect subgroup of G, then

γGH =
1

|NG(H)|
∑
K≤H

|K|µ(K,H)〈K,K〉G .

Proof : Indeed by a theorem of Dress ([6]), the primitive idempotents of
B(G) are indexed by the conjugacy classes of perfect subgroups of G. As
the morphism iG : B(G) → Γ(G) is an injective unital ring homomorphism
(see Remark 10.8 and Proposition 3.11), it follows that the primitive idempo-
tents of B(G) are mapped to primitive idempotents in Γ(G), and that every
primitive idempotent of Γ(G) is in the image of B(G).

15. Unit group

All the results of Section 8 about the unit group of the slice Burnside ring
have an analogue for the group Γ(G)× of the section Burnside ring of a finite
group G. Namely :

• The restricted ghost map yields an injective group homomorphism

Ψ× : Γ(G)× ↪→
∏

(T,S)∈Σ(G)

Z× .

The following lemma follows :

15.1. Lemma : Let G be a finite group, and let u ∈ Γ(G). The following
conditions are equivalent :

1. u ∈ Γ(G)×.

2. ψT,S(u) ∈ {±1}, for any (T, S) ∈ Σ(G).
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3. u2 = 1.

In particular Γ(G)× is a finite elementary abelian 2-group.

• The following is an analogue of Proposition 8.3 :

15.2. Proposition : Feit-Thompson’s theorem is equivalent to the state-
ment that, if G has odd order, then Γ(G)× = {±1}.

Proof : The proof is the same as the proof of Proposition 8.3 : the argu-
ment uses only the formulas for the primitive idempotents of QΓ(G) (Corol-
lary 12.5), and the characterization of solvable groups by the connectedness
of the prime spectrum of Γ(G) (Proposition 14.8).

• The following theorem is an analogue of Yoshida’s characterization ([10])
of the unit group of the usual Burnside ring :

15.3. Theorem : Let G be a finite group, and let m =
(
m(T, S)

)
(T,S)∈Σ(G)

be a sequence of integers in {±1} indexed by Σ(G), constant on G-conjugacy
classes of sections. Then the sequence [m] =

(
m(T, S)

)
(T,S)∈[Σ(G)]

of repre-

sentatives lies in the image of the restricted ghost map Ψ× if and only if for
any (T, S) ∈ Σ(G), the map

g ∈ NG(T, S)/S 7→ m
(
<gT>,<gS>E<gT>

)
/m(T, S) ∈ {±1}

is a group homomorphism.

Proof : Again, the proof is the same as for Theorem 8.4 : it only requires
Theorem 13.1 and Lemma 11.2.

• Finally, the correspondence G 7→ Γ(G)× is not a biset functor :

15.4. Proposition : The correspondence sending a finite group G to
Γ(G)× cannot be endowed with a structure of biset functor.

Proof : The proof of Proposition 8.6 goes through without change here :
the argument uses computations for the trivial group, the group C2, and
the group (C2)

2. All these groups are abelian, hence sections and slices
coincide.
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Appendix

16.1. Let G and H be finite groups, and U be a finite (H,G)-biset. Let
U op denote the opposite biset, i.e. the (G,H)-biset equal to U as a set, with
actions reversed by taking inverses (i.e. g · u · h [in U op] = h−1ug−1 [in U ],
for g ∈ G, u ∈ U , and h ∈ H).

When X is a finite G-set, the set HomG-set(U
op, X) is a finite H-set : if

ϕ : U op → X is a morphism of G-sets, and if h ∈ H, then the morphism hϕ :
U op → X is defined by (hϕ)(u) = ϕ(h−1u), for u ∈ U . This correspondence

TU : X 7→ HomG-set(U
op, X)

is actually a functor from the category G-set of finite G-sets to the category
H-set. One can show (see e.g. Section 11.2.13 of [4]) that this functor
induces a map tU : B(G) → B(H) between the usual Burnside rings of
G and H, called the generalized tensor induction with respect to U . This
induction is not additive, but multiplicative (i.e. tU(ab) = tU(a)tU(b), for
any a, b ∈ B(G)). It yields a biset functor structure on the unit group of the
usual Burnside ring.

A natural question is to know whether this construction can be extended

to the rings Ξ(G) and Γ(G) : indeed, if X
f→ Y is a morphism of finite

G-sets, then the morphism TU(X
f→ Y )

HomG-set(U
op, X)

HomG-set(U
op,f) // HomG-set(U

op, Y )

is a morphism of finite H-sets. Does this correspondence induce a map
Ξ(G) → Ξ(H) or a map Γ(G) → Γ(H) ?

In other words :

(Q1) Are the defining relations of Ξ(G) preserved by TU ?

(Q2) Does TU map a Galois morphism to a Galois morphism ?

The answer to these two questions has to be no in general, for otherwise TU
would yield a biset functor structure on the unit groups of the slice Burnside
ring and the section Burnside ring, contradicting Proposition 8.6 and Propo-
sition 15.4. But the answer is yes with the additional assumption that the
biset U be left inert, according to the following definition :

16.2. Definition : An (H,G)-biset U is called left inert if Hu ⊆ uG, for
any u ∈ U , in other words if H acts trivially on the set of orbits U/G.
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16.3. Example :

• If U is transitive as a right G-set, then U is left inert, since |U/G| = 1.
In particular, the identity (G,G)-biset G is left inert. Conversely, if U
is left inert, then each right orbit uG, for u ∈ U , is an (H,G)-biset,
so U is a disjoint union of (H,G)-bisets which are transitive as right
G-sets.

• The disjoint union of two left inert (H,G)-bisets is left inert. Any
sub-biset of a left inert biset if left inert.

• Left inert bisets can be composed : if G, H, and K are groups, if U
is a left inert (H,G)-biset, and if V is a left inert (K,H)-biset, then
V ×H U is a left inert (K,G)-biset : indeed, for u ∈ U and v ∈ V
K(v,

H
u) = (Kv,

H
u) ⊆ (vH,

H
u) = (v,

H
Hu) ⊆ (v,

H
uG) = (v,

H
u)G ,

where (v,
H
u) denotes the image of (v, u) in V ×H U .

16.4. The following proposition deals with Question (Q2) above, in the case
of a left inert biset :

16.5. Proposition : Let X
f→ Y be a Galois morphism of G-sets. If U is a

left inert (H,G)-biset, then the morphism TU(X
f→ Y ) is a Galois morphism

of H-sets.

Proof : Let ϕ, ψ ∈ TU(X) = HomG-set(U
op, X) having the same image in

TU(Y ). This means that f ◦ϕ = f ◦ψ, i.e. that f
(
ϕ(u)

)
= f

(
ψ(u)

)
, for any

u ∈ U . Since f is a Galois morphism, it follows that Gϕ(u) = Gψ(u), for any
u ∈ U .

Suppose that h ∈ H stabilizes ϕ. It means that ϕ(h−1u) = ϕ(u), for any
u ∈ U . But since Hu ⊆ uG, there exists g ∈ G (depending on u) such that
hu = ug, i.e. h−1u = ug−1. Then

ϕ(u) = ϕ(h−1u) = ϕ(ug−1) = gϕ(u) ,

hence g ∈ Gϕ(u). It follows that

ψ(u) = gψ(u) = ψ(ug−1) = ψ(h−1u) = (hψ)(u) .

Hence h stabilizes ψ, and by symmetry ϕ and ψ have the same stabilizer

in H. This shows that TU(X
f→ Y ) is a Galois morphism of H-sets.

16.6. Remark : The following example shows that Lemma 16.5 is no longer
true without the hypothesis that U is left inert : suppose that G = 1, and
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that H is non trivial. Let U = H, viewed as an (H,G)-biset. Then U is not
left inert. Let X be a set of cardinality 2, let Y be a set of cardinality 1, and
let f : X → Y be the unique map. Then f is a Galois morphism of G-sets,
for trivial reasons.

In this case HomG(U op, X) is isomorphic to the set 2H of subsets of H,
on which H acts by left translation. The set HomG(U op, Y ) is a set • of
cardinality 1, and the map TU(f) is the only possible map 2H → •. In
particular, all the elements of 2H have the same image. But the subset
{1} of H has a trivial stabilizer, whereas the subset H of H has stabilizer

equal to H. Thus TU(X
f→ Y ) is not a Galois morphism of H-sets, by

Proposition 9.3.

16.7. Remark : The example given in Remark 16.6 also shows that the
answer to Question (Q1) is no, in general : indeed, keeping the same notation,

the image of the morphism X
f→ Y in Ξ(G) is equal to the sum of two copies

of the image of Y
Id→ Y . In other words, in Ξ(G) ∼= Z,

π(X
f→ Y ) = 2 = π(X

Id→ X) .

But TU(X
f→ Y ) is isomorphic to 2H → •, hence

(16.8) π
(
TU(X

f→ Y )
)

=
∑
A⊆H

Amod.H

〈H,HA〉H

by Lemma 3.4, where the summation runs over a set of representatives of
subsets of H, up to translation by H, and HA denotes the stabilizer in H of
such a subset A. In particular HA = H if and only if A = H or A = ∅, hence
if K is a subgroup of H, the only term of the form 〈K,K〉H in the right hand
side of Equation 16.8 is 〈H,H〉H , with coefficient 2.

On the other hand, by Lemma 3.4 again

π(X
Id→ X) =

∑
A⊆H

Amod.H

〈HA, HA〉H .

As there are proper non empty subsets A of H, there are some terms of
the form 〈K,K〉H with non zero coefficient in this summation, for some

subgroups K < H. Hence π(X
f→ Y ) 6= π(X

Id→ X), thus TU does not
preserve the defining relations of Ξ(G).

16.9. The following proposition answers Question (Q1) in the case of left
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inert bisets :

16.10. Proposition :

1. Let G and H be finite groups, and U be a finite left inert (H,G)-biset.
Then TU induces a well defined map tU : Ξ(G) → Ξ(H), such that
tU

(
Γ(G)

) ⊆ Γ(H). Moreover tU only depends on the isomorphism
class of the biset U .

2. The map tU is multiplicative, i.e. tU(ab) = tU(a)tU(b), for any a, b ∈
Ξ(G). Moreover tU(1Ξ(G)) = 1Ξ(H). In particular tU restricts to group
homomorphisms Ξ(G)× → Ξ(H)× and Γ(G)× → Γ(H)×.

3. If U and U ′ are finite left inert (H,G)-bisets, then tUtU ′ = tU tU ′.

4. If G, H, and K are finite groups, if U is a finite left inert (H,G)-biset
and V is a finite left inert (K,H)-biset, then tV ◦ tU = tV×HU .

5. If U is the identity (G,G)-biset, then tU is the identity map.

Proof : Since U is left inert, Example 16.3 shows that U splits as a disjoint
union of (H,G)-bisets

U ∼=
⊔

u∈[U/G]

uG .

It follows that the functor TU = HomG-set(U,−) is isomorphic to the direct
product of the functors TuG, for u ∈ [U/G]. Hence to prove Assertion 1, it
suffices to consider the case where U is transitive as a right G-set.

In this case, the functor TU induces actually a group homomorphism from
Ξ(G) to Ξ(H) : to see this, it suffices to check that the defining relations of
Ξ(G) are mapped to relations in Ξ(H). Fix u ∈ U , and denote by Gu its
stabilizer in G. So U = uG ∼= G/Gu as G-set, and for any G-set X, there is
a bijection

HomG-set(U
op, X) ∼= XGu .

This is actually an isomorphism of H-sets if the left action of H on XGu is
defined as follows : for h ∈ H, there is some g ∈ G such that hu = ug, and
the action of h on XGu is defined by hx = g−1x, for x ∈ XGu .

Now let X
f→ Y be a morphism of finite G-sets such that X splits as a

disjoint union X = X1 t X2 of two G-sets. The image π(X
f→ Y ) of this

morphism in Ξ(G) is equal to the sum of the images of the morphisms

X1
f1→ f(X1) and X2

f2→ f(X2) ,

where f1 and f2 are the restrictions of f to X1 and X2, respectively.
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On the other hand TU(X
f→ Y ) is isomorphic to XGu

1 tXGu
2

fGu−→ Y Gu in
the category H-Mor, where fGu is the restriction of f to XGu . The image

π
(
TU(X

f→ Y )
)

of this morphism in Ξ(H) is equal to the sum of the images
of the morphisms

XGu
1

fGu
1−→ f(XGu

1 ) and XGu
2

fGu
2−→ f(XGu

2 ) .

By Lemma 3.3, since f(XGu
1 ) ⊆ f(X1)

Gu

π
(
XGu

1

fGu
1−→ f(XGu

1 )
)

= π
(
XGu

1

fGu
1−→ f(X1)

Gu
)
,

which is equal to π
(
TU

(
X1

f1→ f(X1)
))

. It follows that in Ξ(H)

π
(
TU(X

f→ Y )
)

= π
(
TU

(
X1

f1→ f(X1)
))

+ π
(
TU

(
X2

f2→ f(X2)
))

,

hence TU induces a group homomorphism tU : Ξ(G) → Ξ(H). As the func-
tor TU maps direct product of G-sets to direct product of H-sets, and the
trivial G-set to the trivial H-set, the morphism tU is actually a unital ring
homomorphism from Ξ(G) to Ξ(H) (recall that U is assumed transitive as a
right G-set, here).

If U is an arbitrary finite left inert (H,G)-biset, then TU induces the map

tU =
∏

u∈[U/G]

tuG : Ξ(G) → Ξ(H) .

It follows from Proposition 16.5 that tU
(
Γ(G)

) ⊆ Γ(H).
Now Assertion 2 follows, since tU is equal to a product of unital ring

homomorphisms. Assertions 3, 4, and 5 are straightforward consequences of
the properties of the functor TU .

16.11. Remark : It follows that the correspondences G 7→ Ξ(G)× and
G 7→ Γ(G)× are biset functors for which the biset operations are only defined
for left inert bisets. Equivalently, these correspondences are biset functors
without induction : the usual basic operations for biset functors are defined
for these correspondences, namely restriction to a subgroup, deflation from
G to a factor group G/N (this is induced by taking fixed points by N on
G-sets), transport by isomorphism, and inflation from a factor group. But
there is no induction from a subgroup.

16.12. The last result of this Appendix is the computation of the group
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Ξ(G)×, when G is abelian :

16.13. Theorem : Let G be a finite abelian group. Then Ξ(G)×(= Γ(G)×)
has an F2-basis consisting of the elements



−〈G,G〉G
〈G,G〉G − 〈S, S〉G
〈G,G〉G − 〈G,S〉G

}
for |G : S| = 2 .

In particular
Ξ(G)× ∼= (F2)

2r+1 ,

where r is the number of subgroups of index 2 in G.

Proof : By Theorem 8.4, the group Ξ(G)× is isomorphic to the group of
sequences (uT,S)(T,S)∈Π(G) with values in {±1}, such that for any (T, S) ∈
Π(G), the map

g ∈ G/S 7→ u<gT>,<gS>/uT,S

is a group homomorphism. Switching to an additive notation, the group
Ξ(G)× is isomorphic to the F2-vector spaces of sequences (λT,S)(T,S)∈Π(G),
with values in F2, such that for any (T, S) ∈ Π(G) and any (g, h) ∈ G

λ<ghT>,<ghS> + λ<gT>,<gS> + λ<hT>,<hS> + λT,S = 0 .

If none of g, h, and gh are in S, this yields an expression

λT,S = λ<ghT>,<ghS> + λ<gT>,<gS> + λ<hT>,<hS>

of λT,S as a linear combination of λT ′,S′ , for S ′ > S. If |G : S| > 2, it is
always possible to find such elements g and h. It follows that the sequence
(λT,S)(T,S)∈Π(G) is entirely determined by the values λT,S, for |G : S| ≤ 2, i.e.
the values λG,G, λS,S and λG,S, where S runs through the set of subgroups of
index 2 in G. If there are r such subgroups, this gives 2r + 1 such values, so
dimF2 Ξ(G)× ≤ 2r + 1.

To prove the converse, and actually the more precise statement in the
theorem, it suffices to show that the elements −1Ξ(G), u

G
S = 〈G,G〉G−〈S, S〉G

and vGS = 〈G,G〉G−〈G,S〉G, for |G : S| = 2 are linearly independent elements
of the F2-vector space Ξ(G)×.

First as 〈G,G〉G = 1Ξ(G), and as 〈S, S〉2G = 2〈S, S〉 if |G : S| = 2, by
Proposition 3.8, it follows that (uGS )2 = (vGS )2 = 1, hence {uGS , vGS } ⊆ Ξ(G)×.

Observe now that for |G : S| = 2, both elements uGS and vGS are obtained

by inflation from G/S to G of the corresponding elements u
G/S
1 and v

G/S
1 .
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The group C = G/S has order 2. The additive group Ξ(C) has a Z-basis
consisting of 〈C,C〉C , a = 〈C,1〉C and b = 〈1,1〉C . The element 〈C,C〉C
is the identity element 1Ξ(C) of Ξ(C), and by Proposition 3.8, the products
of the other basis elements are given by a2 = 2a, b2 = ab = ba = 2b. The
group of units Ξ(C)× has an F2-basis consisting of −1Ξ(C), x = 1Ξ(C)−a and
y = 1Ξ(C)− b. Moreover, the set {x, y} is an F2-basis of the kernel ∂Ξ(G)× of
the deflation map DefCC/C : Ξ(C)× → Ξ(1)× = {±1Ξ(1)} (recall that deflation
in this case consists in taking fixed points under C).

Now assume that in Ξ(G)×, there is a linear relation (with an additive
notation) of the form

λ(−1Ξ(G)) +
∑

|G:S|=2

(αSu
G
S + βSv

G
S ) = 0 ,

for some coefficients λ, αS, βS in F2. Fix a subgroup X of index 2 in G, and
apply DefGG/X to this relation. Observe that

DefGG/Xu
G
S = DefGG/XInfGG/Su

G/S
1 = Inf

G/X
G/SXDef

G/S
G/SXu

G/S
1

is equal to 0 if S 6= X, and to u
G/S
1 if S = X. Similarly DefGG/Xv

G
S is equal

to 0 if S 6= X, and to v
G/S
1 if S = X. It follows that

λ(−1Ξ(G/X)) + αXu
G/X
1 + βXv

G/X
1 = 0 ,

hence λ = αX = βX = 0. This completes the proof, since this holds for
any X of index 2 in G.

16.14. Remark : Using the inclusion iG : B(G) → Ξ(G) of Proposi-
tion 3.11, one can identify B(G) with a subring of Ξ(G). Then it is easy to
see that B(G)× is the subgroup of Ξ(G)× generated by the elements−〈G,G〉G
and 〈G,G〉G−〈S, S〉G, for |G : S| = 2 : this gives another proof of Matsuda’s
theorem ([8]), saying that the unit group B(G)× of the usual Burnside ring
of a finite abelian group G is isomorphic to (F2)

r+1, where r is the number
of subgroups of index 2 in G.
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