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Abstract : Let p be a prime number. In [9], I introduced the Roquette category Rp of

finite p-groups, which is an additive tensor category containing all finite p-groups among

its objects. In Rp, every finite p-group P admits a canonical direct summand ∂P , called

the edge of P . Moreover P splits uniquely as a direct sum of edges of Roquette p-groups.
In this note, I would like to describe a fast algorithm to obtain such a decomposition,

when p is odd.
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1. Introduction

Let p be a prime number. The Roquette category Rp of finite p-groups,
introduced in [9], is an additive tensor category with the following properties :

• Every finite p-group can be viewed as an object of Rp. The tensor
product of two finite p-groups P and Q in Rp is the direct product
P ×Q.

• In Rp, any finite p-group has a direct summand ∂P , called the edge
of P , such that

P ∼= ⊕
N EP

∂(P/N) .

Moreover, if the center of P is not cyclic, then ∂P = 0.

• In Rp, every finite p-group P decomposes as a direct sum

P ∼= ⊕
R∈S

∂R ,

where S is a finite sequence of Roquette groups, i.e. of p-groups of
normal p-rank 1, and such a decomposition is essentially unique. Given
the group P , such a decomposition can be obtained explicitly from the
knowledge of a genetic basis of P .

• The tensor product ∂P × ∂Q of the edges of two Roquette p-groups P
and Q is isomorphic to a direct sum of a certain number νP,Q of copies
of the edge ∂(P �Q) of another Roquette group (where both νP,Q and
P �Q are known explicitly.
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• The additive functors from Rp to the category of abelian groups are
exactly the rational p-biset functors introduced in [4].

The latter is the main motivation for considering this category : any struc-
tural result on Rp will provide for free some information on such rational
functors for p-groups, e.g. the representation functors RK , where K is a field
of characteristic 0 (see [2], [3], and L. Barker’s article [1]), the functor of
units of Burnside rings ([6]), or the torsion part of the Dade group ([5]).

The decomposition of a finite p-group P as a direct sum of edges of
Roquette p-groups can be read from the knowledge of a genetic basis of P .
The problem is that the computation of such a basis is rather slow, in general.
For most purposes however, the full details encoded in a genetic basis are
useless, and it would be enough to know the direct sum decomposition.

Hence it would be nice to have a fast algorithm taking any finite p-group
P as input, and giving its decomposition as direct sum of edges of Roquette
groups in the category Rp. This note is devoted to the description of such
an algorithm, when p > 2.

2. Rational p-biset functors

2.1. Recall that the characteristic property of the edge ∂P of a finite p-group
in the Roquette category Rp is that for any rational p-biset functor F

∂F (P ) = F̂ (∂P ) ,

where ∂F (P ) is the faithful part of F (P ), and F̂ denotes the extension of F
to Rp. Also recall the following criterion ([7], Theorem 3.1):

2.2. Theorem : Let p be a prime number, and F be a p-biset functor.
Then the following conditions are equivalent:

1. The functor F is a rational p-biset functor.

2. For any finite p-group P , the following conditions hold:

• if the center of P is non cyclic, then ∂F (P ) = {0}.
• if EEP is a normal elementary abelian subgroup of rank 2, and
if Z ≤ E is a central subgroup of order p of P , then the map

ResPCP (E) ⊕DefPP/Z : F (P ) → F
(
CP (E)

)
⊕ F (P/Z)

is injective.

2



2.3. Let K be a commutative ring in which p is invertible. When P is a
finite group, denote by CFK(P ) the K-module of central functions from P
to K. The correspondence sending a finite p-group P to CFK(P ) is a rational
p-biset functor:

2.4. Proposition : If P and Q are finite p-groups, if U is a finite (Q,P )-
biset, and if f ∈ CFK(P ), define a map CFK(U) : CFK(P ) → CFK(Q) by

∀s ∈ Q, CFK(U)(f)(s) = 1
|P |

∑
u∈U, x∈P
su=ux

f(x) .

With this definition, the correspondence P 7→ CFK(P ) becomes a rational
p-biset functor, denoted by CFK.

Proof : A straightforward argument shows that CFK(U)(f) is indeed a cen-
tral function on Q, hence the map CFK(U) is well defined. It is also clear
that this map only depends on the isomorphism class of the biset U , and
that for any two finite (H,G)-bisets U and U ′, we have

CFK(U t U ′) = CFK(U) + CFK(U
′) .

Moreover if U is the identity biset at P , i.e. if U = P with biset structure
given by left and right multiplication, then for f ∈ CFK(P ) and s ∈ P

CFK(U)(f)(s) = 1
|P |

∑
u∈U, x∈P
su=ux

f(x) = 1
|P |

∑
u∈P

f(su) = f(s) ,

hence CFK(U) is the identity map.
Now if R is a third finite p-group, and V is a finite (R,Q)-biset, then for

any t ∈ R, setting λ = CFK(V ) ◦ CFK(U)(f)(t), we have that

λ = 1
|Q|

∑
v∈V, s∈Q
tv=vs

1
|P |

∑
u∈U, x∈P
su=ux

f(x)

= 1
|Q||P |

∑
(v,u)∈V×U
s∈Q, x∈P

tv=vs, su=ux

f(x)

= 1
|Q||P |

∑
(v,u)∈V×U, x∈P
t(v,

Q
u)=(v,

Q
u)x

|{s ∈ Q | tv = vs, su = ux}| f(x)
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λ = 1
|Q||P |

∑
(v,

Q
u)∈V×

Q
U, x∈P

t(v,
Q
u)=(v,

Q
u)x

|Q : Qv ∩ uP ||Qv ∩ uP | f(x)

= 1
|P |

∑
(v,

Q
u)∈V×

Q
U, x∈P

t(v,
Q
u)=(v,

Q
u)x

f(x) = CFK(V ×Q U)(f)(t) .

Hence CFK(V ) ◦ CFK(U) = CFK(V ×Q U), and CFK is a p-biset functor.
To prove that this functor is rational, we use the criterion given by Theo-

rem 2.2. Suppose first that the center Z(P ) of P is non-cyclic. Let E denote
the subgroup of Z(P ) consisting of elements of order at most p. Then saying
that ∂CFK(P ) = {0} amounts to saying that for any f ∈ CFK(P ), the sum

S =
∑
Z≤E

µ(1, Z)InfPP/ZDef
P
P/Zf

is equal to 0, where µ denotes the Möbius function of the poset of subgroups
of P (or of E). Equivalently, for any s ∈ P

S(s) =
∑
Z≤E

µ(1, Z) 1
|P |

∑
aZ∈P/Z, x∈P

saZ=aZx

f(x) = 0 .

This also can be written as

S(s) =
∑
Z≤E

µ(1, Z) 1
|P ||Z|

∑
a∈P, x∈P
saZ=aZx

f(x)

= 1
|P |

∑
Z≤E

µ(1,Z)

|Z|

∑
a∈P, z∈Z

f(sa.z)

= 1
|P |

∑
Z≤E

µ(1,Z)

|Z|

∑
a∈P, z∈Z

f
(
(sz)a

)
=

∑
Z≤E

µ(1,Z)

|Z|

∑
z∈Z

f(sz)

=
∑
z∈E

( ∑
z∈Z≤E

µ(1,Z)

|Z|

)
f(sz) .

2.5. Lemma : Let E be an elementary abelian p-group of rank at least 2.
Then for any z ∈ E ∑

z∈Z≤E

µ(1,Z)

|Z| = 0 .
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Proof : For z ∈ E, set σ(z) =
∑

z∈Z≤E

µ(1,Z)
|Z| . Assume first that z 6= 1, i.e.

|z| = p. If Z 3 z is elementary abelian of rank r, then µ(1, Z) = (−1)rp(
r
2),

hence µ(1,Z)
|Z| = (−1)rp(

r−1
2 )−1 = − 1

p
µ(1, Z/<z>). Hence setting Z = Z/<z>

and E = E/<z>,

σ(z) = − 1

p

∑
1≤Z≤E

µ(1, Z) = 0 ,

since |E| > 1. Now∑
z∈E

σ(z) = σ(1) +
∑

e∈E−{1}

σ(z) =
∑
z∈Z

∑
z∈Z≤E

µ(1,Z)

|Z| =
∑

1≤Z≤E

µ(1, Z) = 0

hence σ(1) = 0, completing the proof of the lemma.

It follows that S(s) = 0, hence S = 0, as was to be shown.
For the second condition of Theorem 2.2, suppose that E is a normal

elementary abelian subgroup of P of rank 2, and that Z is a central subgroup
of P of order p contained in E. Let f ∈ CFK(P ) which restricts to 0 to CP (E),
and such that

∀sZ ∈ P/Z, (DefPP/Zf)(sZ) =
1
|P |

∑
z∈Z

f(sz) = 0 .

Thus f(s) = 0 if s ∈ CP (E). Assume that s /∈ CP (E). Then for e ∈ E,
the commutator [s, e] lies in Z. Moreover the map e ∈ E 7→ [s, e] ∈ Z is
surjective. it follows that for any z ∈ Z, there exists e ∈ E such that se = sz.
Thus f(sz) = f(se) = f(s). Hence DefPP/Zf(s) = f(s) = 0. Hence f = 0, as
was to be shown.

3. Action of p-adic units

Let Zp denote the ring of p-adic integers, i.e. the inverse limit of the rings
Z/pnZ, for n ∈ N − {0}. The group of units Z×

p is the inverse limits of
the unit groups (Z/pnZ)×, and it acts on the functor CFK in the following
way: if ζ ∈ Z×

p and P is a finite p-group, choose an integer r such that pr

is a multiple of the exponent of P , and let ζpr denote the component of ζ in

(Z/prZ)×. For f ∈ CFK(P ), define ζ̂P (f) ∈ CFK(P ) by

∀s ∈ P, ζ̂P (f)(s) = f(sζpr ) .
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Then clearly ζ̂P (f) only depends on ζ, and this gives a well defined map

ζ̂P : CFK(P ) → CFK(P ) .

One can check easily (see [8] Proposition 7.2.4 for details) that if Q is a finite
p-group, and U is a finite (Q,P )-biset, then the square

CFK(P )
ζ̂P //

CFK(U)
��

CFK(P )

CFK(U)
��

CFK(Q)
ζ̂Q // CFK(Q)

is commutative. In other words, we have an endomorphism ζ̂ of the functor
CFK . It is straightforward to check that for ζ, ζ ′ ∈ Z×

p , we have ζ̂ζ ′ = ζ̂ ◦ ζ̂ ′,
and that 1̂ is the identity endomorphism of CFK . So this yields an action of
the group Z×

p on CFK .
It follows in particular that when n ∈ N−{0}, and P is a finite p-group,

if we set

Fn(P ) = {f ∈ CFK(P ) | ∀s ∈ P, f(s1+pn) = f(s)} ,

then the correspondence P 7→ Fn(P ) is a subfunctor of CFK : indeed Fn is
the subfunctor of invariants by the element 1 + pn of Z×

p .
It follows that Fn is a rational p-biset functor, for any n ∈ N−{0}, hence

it factors through the Roquette category Rp. In particular, for any finite
p-group P , if P splits as a direct sum

P ∼= ⊕
R∈S

∂R

of edges of Roquette groups in Rp, then there is an isomorphism

Fn(P ) ∼= ⊕
R∈S

∂Fn(R) .

3.1. Notation : For a finite p-group P , and an integer n ∈ N − {0}, let
ln(P ) denote the number of conjugacy classes of elements s of P such that
s1+pn is conjugate to s in P . Also set l0(P ) = 1.

With this notation, for any finite p-group P , and any n ∈ N − {0}, the
K-module Fn(P ) is a free K-module of rank ln(P ). In particular, if P = Cpm

is cyclic of order pm, then Fn(P ) has rank ln(P ) = pmin(m,n). Thus if m > 0,
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then ∂Fn(Cpm) has rank pmin(m,n) − pmin(m−1,n), since Cpm
∼= ∂Cpm ⊕ Cpm−1

in Rp.

3.2. Theorem : Assume that a p-group P splits as a direct sum

P ∼= 1⊕
∞
⊕

m=1
am∂Cpm

of edges of cyclic groups in the Roquette category Rp, where am ∈ N. Then

∀m ≥ 1, am =
lm(P )− lm−1(P )

pm−1(p− 1)
.

Proof : For any n ∈ N− {0}, we have

ln(P ) = 1 +
∞∑

m=1

am(p
min(m,n) − pmin(m−1,n)) = 1 +

n∑
m=1

am(p
m − pm−1) .

For n ∈ N− {0}, this gives ln(P )− ln−1(P ) = an(p
n − pn−1).

3.3. Corollary : Suppose p > 2. If P is a finite p-group, then

P ∼= 1⊕
∞
⊕

m=1

lm(P )−lm−1(P )

pm−1(p−1)
∂Cpm

in the Roquette category Rp.

Proof : Indeed for p odd, all the Roquette p-groups are cyclic, hence the
assumption of Theorem 3.2 holds for any P .

Appendix

3.1. A GAP function : The following function for the GAP software ([10])
computes the decomposition of p-groups for p > 2, using Corollary 3.3:

#

# Roquette decomposition of an odd order p-group g

# output is a list of pairs of the form [p^n,a_n]

# where a_n is the number of summands of g

# isomorphic to the edge of the cyclic group of order p^n

#
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roquette_decomposition:=function(g)

local prem,cg,s,i,x,y,z,pn,u;

if IsTrivial(g) then return [[1,1]];fi;

prem:=PrimeDivisors(Size(g));

if Length(prem)>1 then

Print("Error : the group must be a p-group\n");

return fail;

fi;

prem:=prem[1];

if prem=2 then

Print("Error : the order must be odd\n");

return fail;

fi;

cg:=ConjugacyClasses(g);

s:=[];

for i in [2..Length(cg)] do

x:=cg[i];

y:=Representative(x);

pn:=1;

u:=y;

repeat

pn:=pn*prem;

u:=u^prem;

z:=y*u;

until z in x;

Add(s,pn);

od;

s:=Collected(s);

s:=List(s,x->[x[1],x[2]*prem/(prem-1)/x[1]]);

s:=Concatenation([[1,1]],s);

return s;

end;

3.2. Example :

gap> l:=AllGroups(81);;

gap> for g in l do

> Print(roquette_decomposition(g),"\n");

> od;

[ [ 1, 1 ], [ 3, 1 ], [ 9, 1 ], [ 27, 1 ], [ 81, 1 ] ]

[ [ 1, 1 ], [ 3, 4 ], [ 9, 12 ] ]

[ [ 1, 1 ], [ 3, 7 ], [ 9, 3 ] ]

[ [ 1, 1 ], [ 3, 7 ], [ 9, 3 ] ]

[ [ 1, 1 ], [ 3, 4 ], [ 9, 3 ], [ 27, 3 ] ]

[ [ 1, 1 ], [ 3, 4 ], [ 9, 4 ] ]

[ [ 1, 1 ], [ 3, 8 ] ]

[ [ 1, 1 ], [ 3, 5 ], [ 9, 1 ] ]

[ [ 1, 1 ], [ 3, 5 ], [ 9, 1 ] ]

[ [ 1, 1 ], [ 3, 5 ], [ 9, 1 ] ]
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[ [ 1, 1 ], [ 3, 13 ], [ 9, 9 ] ]

[ [ 1, 1 ], [ 3, 16 ] ]

[ [ 1, 1 ], [ 3, 16 ] ]

[ [ 1, 1 ], [ 3, 13 ], [ 9, 1 ] ]

[ [ 1, 1 ], [ 3, 40 ] ]

For example, the group on line 6 of the previous list, isomorphic to the
semidirect product C27 o C3, is isomorphic to 1⊕ 4∂C3 ⊕ 4∂C9 in R3.
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