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S. Bouc

Abstract. I will build some standard resolutions for Mackey functors which
are projective relative to p-subgroups. Those resolutions are closely related to
the poset of p-subgroups. They lead to generalizations of known results on co-
homology. They give a way to compute the Cartan matrix for Mackey functors,
in terms of p-permutation modules, and to precise the structure of projective
Mackey functors. They also provide results on complexes of projective Mackey
functors and complexes of p-permutation modules.

1. Introduction

I will build some standard resolutions for Mackey functors which are projective
relative to p-subgroups. Those resolutions are closely related to the poset of p-
subgroups. They lead to generalizations of known results on cohomology. They
give a way to compute the Cartan matrix for Mackey functors, in terms of p-
permutation modules, and to precise the structure of projective Mackey functors.
They also provide results on complexes of projective Mackey functors and complexes
of p-permutation modules.

2. Notation

2.1. The Mackey algebra. Most of the results I will need can be found in
J.Thévenaz and P.Webb’s paper ([6]) on the structure of Mackey functors : among
other possible definitions, a Mackey functor is a module over the Mackey algebra.
A possible definition of this algebra is the following :

Definition 2.1. Let G be a finite group, and R be a commutative ring. The
Mackey algebra µR(G) is the algebra generated by the elements tKH , rK

H , and cg,H ,
where H and K are subgroups of G such that H ⊆ K, and g is an element of G,
subject to the relations :

tLKt
K
H = tLH for all H ⊆ K ⊆ L

rK
H r

L
K = rL

H for all H ⊆ K ⊆ L
cg,hKch,K = cgh,K for all g, h,K

tHH = rH
H = ch,H for all h,H such that h ∈ H
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cg,Kt
K
H = t

gK
gHcg,H for all g, h,H,K

cg,Kr
H
K = r

gH
gKcg,H for all g, h,H,K∑

H

tHH =
∑

H

rH
H = 1

rH
K t

H
L =

∑

x∈K\H/L

tKK∩xLr
xL
K∩xLcx,L for all K ⊆ H ⊇ L (Mackey axiom)

any other product of rK
H , tKH and cg,H being equal to zero.

Setting cx =
∑

H cx,H for x ∈ G, it follows that cx,H = cxt
H
H , and that the map

x 7→ cx endows µR(G) with a structure of interior G-algebra (in Puig’s sense [3]).
Proposition (3.4) of [6] proves that the cx,1, hence also the cx, are linearly

independent, which allows for an identification of x and cx. With this notation,
Proposition (3.2) of [6] proves that µR(G) admits a basis over R, consisting of the
elements tHxLxr

K
L , where H and K are subgroups of G, where x ∈ K\G/H, and L

is a subgroup of H ∩Kx up to conjugation by H ∩Kx.
If H is a subgroup of G, the defining relations of µR(G) allow to define a

morphism from the Burnside ring bR(H) of H with coefficients in R, to the algebra
µR(G), sending the element H/K to the element tHKr

H
K . I will denote by X 7→ [X]

this morphism.
On the other hand, there is a natural morphism z from the Burnside ring of G

to the center of the Mackey algebra ([6], Proposition (9.2)), defined by

z(X) =
∑

K⊆G

[ResG
KX]

which allows the use of the idempotents of the Burnside ring to split the Mackey
algebra into smaller pieces.

In the remainder of this paper, I will only consider the “characteristic p” case :
I will assume that any prime number different from p is invertible in the ring R.
Under these conditions (cf [6] Section 9-10), the algebra µR(G) is Morita-equivalent
to a direct product of algebras indexed by the p-perfect subgroups of G (i.e. the
subgroups with no non trivial quotient p-group).

More precisely, the algebra µR(G) is Morita-equivalent to the direct product
over the p-perfect subgroups H of G (up to G-conjugation) of the algebras I will de-
note by µ1

R(NG(H)/H) (the category of µ1
R(G)-modules is denoted by MackR(G, 1)

in [6]) : the algebra µ1
R(G) is the piece of µR(G) corresponding to the idempotent

fG
1 of the Burnside ring of G. Denoting by sp(G) the set of p-subgroups of G, the

idempotent fG
1 of the Burnside ring bQ(G) with rational coefficients is defined par

fG
1 =

∑

P∈sp(G)/G

eG
P

with
eG
P =

1
|NG(P )|

∑

Q⊆P

χ̃]Q,P [|Q|G/Q

where χ̃]Q,P [ is the reduced Euler-Poincaré characteristic of the set of p-subgroups
strictly containing Q and strictly contained in P . An easy computation shows then
that

fG
1 = −

∑

P∈sp(G)/G

χ̃(sp(NG(P )/P ))
|NG(P )/P | G/P
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with sp(G) = sp(G)− {1}.
This expression shows that fG

1 is p-integral, hence fG
1 in bR(G) (it is indeed

well known that χ̃(sp(G)) is divisible by the p-part of the order of G, since e.g. it
is the degree of a projective character of G (cf. [4])).

With this notation, the algebra µ1
R(G) identifies to z(fG

1 )µR(G). Another way
of seeing this algebra up to Morita equivalence is given by the following lemma :

Lemma 2.2. Let e =
∑

P∈sp(G) t
P
P . Then eµR(G)e is a subalgebra of µ1

R(G),

and the inclusion of eµR(G)e in µ1
R(G) is a Morita equivalence.

First I have to check that eµR(G)e is a subalgebra of µ1
R(G) : it suffices to

check that z(fG
1 )e = e, which will follow from the equality z(fG

1 )tPP = tPP for all
p-subgroup P of G. But it follows from Section 9 of [6] that

z(fG
1 )tPP = [ResG

P (fG
1 )]tPP = [ResG

P (fG
1 )P/P ] = [ResG

P (fG
1 )]

and the result will follow, if I know that ResG
P f

G
1 = fP

1 , since the expression of fP
1

shows that fP
1 = P/P if P is a p-group. This in turn follows from the

Lemma 2.3. Let H be a subgroup of G. Then ResG
Hf

G
1 = fH

1

The computation can be done inside bQ(G) : the idempotents eG
L are such that

for all X of bQ(G)
X =

∑

L∈G
Lmod.G

|XL|eG
L

Then
ResG

He
G
P =

∑

L⊆H
Lmod.H

ResG
He

G
P .e

H
L =

∑

L⊆H
Lmod.H

|(ResG
He

G
P )L|eH

L

and since |(ResG
He

G
P )L| is non zero only if L is a conjugate of P in G, in which case

it is equal to 1, I see that ResG
He

G
P is the sum of the eH

L , where L runs through
the conjugates of P contained in H, up to H-conjugation. Then ResG

Hf
G
1 is the

sum over the p-subgroups L of H, modulo H, of the eH
L . Lemma 2.3, and the first

assertion of Lemma 2.2. The second one follows then from

Lemma 2.4. 2 Let A be a ring (with identity element), and e be an idempotent
of A. The following assertions are equivalent :
1) The inclusion of eAe in A is a Morita equivalence.
2) The two sided ideal of A generated by e is equal to A (i.e. AeA = A).

The inclusion of eAe in A defines a functor of restriction r from the category A-
mod of left A-modules to eAe-mod, by r(M) = eM . This functor has a left adjoint i,
defined by i(M) = A⊗eAe M . Then ri(M) = eA⊗eAe M = eAe⊗eAe M = M and
ir(M) identifies with AeM . Hence if 1) holds, then in particular AeA = A, hence
2) holds. Conversely, if 2) holds, then ir(M) = AeM = AeAM = AM = M , hence
1) holds.

To complete the proof of Lemma 2.2, it remains to check that the identity
element of µ1

R(G), i.e. z(fG
1 ), lies in the two sided ideal of µ1

R(G) generated by e.
It suffices to show that tHP r

H
P lies in this ideal, for any subgroup H of G and any

p-subgroup P of H. But this is clear, since tHP r
H
P = tHP er

H
P . Lemma 2.2 follows.

2This lemma is true, but the proof given here is not quite complete
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Remark 2.5. The eµR(G)e-modules are actually very natural objects : they
are exactly the Mackey functors “defined only over p-subgroups ”. Whereas the
µ1

R(G)-modules are the Mackey functors which are projective relative to p-subgroups
([6] Theorem 9.7). The algebra µ1

R(G) identifies with the subalgebra of µR(G) gen-
erated by the x ∈ G, and the rH

Q and tHQ , where Q is a p-subgroup of G and H an
arbitrary subgroup of G.

On the other hand, Lemma 2.2 has the following consequence :

Corollary 2.6. Let S be a Sylow p-subgroup of G, and M∗ be a complex of
Mackey functors in MackR(G, 1). Then M∗ is acyclic (resp. split acyclic) if and
only if its restriction to S is.

Indeed, a Morita equivalence maps an exact sequence (resp. a split exact
sequence) to an exact sequence (resp. to a split exact sequence).

2.2. Another algebra. I will use also here another algebra, that I denote by
rµR(G), defined similarly by considering only p-subgroups of G, and “forgetting”
the generators tKH and the Mackey axiom.

More precisely, let A be a free R-module on the set of triples (x,Q, P ), where
x is an element of G, and P,Q are p-subgroups of G such that Q ⊆ P . I turn A
into an algebra by defining the multiplication of the basis elements by

(x,Q, P )(y,R, S) = δP y,R(xy,Qy, S)

It is easy to see that A is an associative algebra. Moreover, let

e =
∑

P∈sp(G)

(1, P, P )

then
e.(y,Q,R) =

∑

P∈sp(G)

δP y,Q(y, P y, R) = (y,Q,R)

and
(y,Q,R).e =

∑

P∈sp(G)

δR,P (y,Q, P ) = (y,Q,R)

hence e is an identity element of A.
Let then I the R-submodule of A generated by the elements of the form

ux,z,Q,P = (xz,Qz, P ) − (x,Q, P ), where z ∈ P . Then I is a two sided ideal
of A. Indeed

(y,R, S)ux,z,Q,P = δSxz,Qz (yxz,Rxz, P )− δSx,Q(yx,Rx, P )

= δSx,Q((yxz,Rxz, P )− (yx,Rx, P )) = δSx,Quyx,z,Rx,P

Similarly

ux,z,Q,P (y,R, S) = δP y,R(xzy,Qzy, S)− δP y,R(xy,Qy, S)

= δP y,Ruxy,zy,Qy,S

which makes sense, since if P y = R, then zy ∈ R ⊆ S.
I will denote by rµR(G) the quotient algebra A/I. It is easy to find a basis of

rµR(G) :

Lemma 2.7. The elements (x,Q, P ), for Q ⊆ P ∈ sp(G), and x ∈ G/P , form
a basis of rµR(G).
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Lemma 2.7 is just a reformulation of the following :

Lemma 2.8. Let A be an R-algebra, admitting a basis B over R. Let E be an
equivalence relation over B such that the elements x− y, with xEy, generate a two
sided ideal I of A. Then A/I admits a basis over R, consisting of the images in
A/I of the elements of B/E.

Indeed, it is clear that the images of B/E generate A/I. since all the elements of
the equivalence class of x ∈ B are congruent to xmodulo I. And if

∑
x∈B/E rxx ∈ I,

with rx ∈ R, then there exists scalars sx,y ∈ R such that
∑

x∈B/E

rxx =
∑

xEy

sx,y(x− y)

Then for all x
rx =

∑

xEy

sx,y −
∑

yEx

sy,x

Summing this relation for x in the equivalence class of z, I can suppose that rz
alone is non zero, hence

rz =
∑

xEz

(
∑

xEy

sx,y −
∑

yEx

sy,x) =
∑

x,yEz

sx,y −
∑

x,yEz

sx,y = 0

since the relation E is symmetric and transitive. The above lemmas follow.
I can then define an application f from rµR(G) to eµ1

R(G)e by sending (x,Q, P )
to xrP

Q. It is easy to check that the map f is a morphism of algebras (with identity
elements).

Lemma 2.9. The morphism f is injective.

(In the sequel, I will identify rµR(G) with its image in µR(G).)
To show this, I must check that the elements xrP

Q, for x ∈ G/P and Q ⊆ P , are
linearly independent in µR(G) : but if

∑

x∈G/P,Q,P

rx,Q,Pxr
P
Q = 0 in µR(G)

then multiplying this relation on the left by tRR and on the right by rP
P , for given

subgroups R and P , it follows that
∑

x∈G/P,Q
xQ=R

rx,Q,P t
R
Rxr

P
Q = 0

i.e. ∑

x∈G/P
Rx⊆P

rx,Rx,P t
R
Rxr

P
Rx = 0

Then using the above basis of µR(G), it follows that, for any double coset Rx0P
and any subgroup Q0 of Rx0 ∩ P

∑

x∈Rx0P/P
Rx=Q0mod.Rx0∩P

rx,Rx,P = 0
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i.e. ∑

y∈R/(R∩x0P )
Ryx0=Q0mod.Rx0∩P

ryx0,Ryx0 ,P = 0

or equivalently ∑

y∈R/(R∩x0P )
Rx0=Q0mod.Rx0∩P

ryx0,Rx0 ,P = 0

In particular taking Q0 = Rx0 ∩ P , I conclude that rx0,Rx0∩P,P = 0, and as this
relation is true for all x0, R, P , the above linear independence claim holds, and the
injectivity of f follows.

It is also natural to consider here the algebra tµR(G) defined similarly to
rµR(G) by “forgetting” the generators rK

H . This algebra identifies with the subal-
gebra of µR(G) generated by the elements tPQx. It also identifies to the opposite
algebra of rµR(G) : the map sending tPQ to rP

Q and cx,Q to cx−1,Q defines indeed an
anti-isomorphism from tµR(G) to rµR(G). The results I will prove here for rµR(G)
will have a “dual” version for tµR(G), and the previous argument will allow for a
single proof for both.

The algebra homomorphism from rµR(G) to µ1
R(G) yields a forgetful functor

from the category of Mackey functors which are projective relative to p-subgroups
to the category of rµR(G)-modules. I will denote this functor by R : if M is a
Mackey functor, then R(M) is the functor M , for which I only consider evaluations
at p-subgroups, and restrictions and conjugation by elements of G.

The functor R admits a left adjoint : let N be a rµR(G)-module. I set N(P ) =
rP
PN . If H is a subgroup of G, then H acts on ⊕P∈sp(H)N(P ), and I set

I(N)(H) = H0(H,⊕P∈sp(H)N(P ))

that I will also denote by (⊕P∈sp(H)N(P ))H .
If P is a p-subgroup of H, and v is an element of ⊕P∈sp(H)N(P ), I denote by

πH(v) its image in I(N)(H).
If H ⊆ K are subgroups of G, and if v ∈ ⊕P∈sp(H)N(P ), I set

tKH(πH(v)) = πK(v)

which makes sense since H ⊆ K.
Similarly, if Q is a p-subgroup of K, and v ∈ N(Q), I set

rK
H (πK(v)) =

∑

x∈H\K/Q

πH(r
xQ
H∩xQxv)

It is easy to see that the map rK
H is well defined.

Finally in the same situation, if x ∈ G, I set

cx,K(πK(v)) = πxK(xv)

With this notation :

Lemma 2.10. The correspondence sending N to I(N) defines a functor from
the category of rµR(G)-modules in MackR(G, 1), and this functor is left adjoint to
the functor R.
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I must check that I(N) is a Mackey functor, which is moreover in MackR(G, 1),
and then check the adjunction property. For the first property, the only non obvious
points are the transitivity of restrictions and the Mackey axiom. So let H ⊆ K ⊆ L
be subgroups of G, and x = πL(n) ∈ I(N)(L), with P ∈ sp(L) and n ∈ N(P ).

Then
rL
K(x) =

∑

l∈K\L/P

πK(r
lP
K∩lP ln)

Thus
rK
H r

L
K(x) =

∑

k∈H\K/K∩lP

∑

l∈K\L/P

πH(r
k(K∩lP )

H∩k(K∩lP )
kr

lP
K∩lP ln)

=
∑

k∈H\K/K∩lP

∑

l∈K\L/P

πH(r
klP
H∩klP kln)

But the map (k, l) 7→ kl is a bijection from the set of pairs (k, l) such that l ∈
K\L/P and k ∈ H\K/K ∩ lP to the set H\L/P . Thus indeed rK

H r
L
K(x) = rL

H(x),
and restrictions are transitive.

For the Mackey axiom, let H ⊆ K ⊇ L be subgroups of G, and x = πL(n) ∈
I(N)(L), with P ∈ sp(L). Then tKL (x) = πK(n) hence

rK
H t

K
L (x) =

∑

k∈H\K/P

πH(r
kP
H∩kP kn)

On the other hand∑

y∈H\K/L

tHH∩yLr
yL
H∩yLyx =

∑

y∈H\K/L

tHH∩yLr
yL
H∩yLπyL(yn)

=
∑

y∈H\K/L

tHH∩yL

∑

z∈H∩yL\yL/yP

πH∩yL(r
zyP
H∩yL∩zyP zyn)

=
∑

y∈H\K/L

∑

z∈H∩yL\yL/yP

πH(r
zyP
H∩zyP zyn)

Replacing z by zy in this sum, I get

rK
H t

K
L (x) =

∑

y∈H\K/L

∑

z∈Hy∩L\L/P

πH(r
yzP
H∩yzP yzn)

and as above, the map (y, z) 7→ yz induces a bijection from the set of pairs (y, z)
such that y ∈ H\K/L and z ∈ Hy ∩ L\L/P to the set H\K/P . Then indeed

rK
H t

K
L (x) =

∑

y∈H\K/L

tHH∩yLr
yL
H∩yLyx

and the Mackey axiom holds. Thus I(N) is indeed a Mackey functor.
To check that it is in MackR(G, 1), I must check that z(fG

1 ) acts trivially on
it. So let H be a subgroup of G, and x = πH(n) ∈ I(H)(N), with n ∈ N(P ). As
x = tHP (πP (n)), I have z(fG

1 )x = [fH
1 ]tHP (πP (n)). Then if I know that [fH

1 ]tHP =
tHP [ResH

P f
H
1 ], the proof will be complete, since ResH

P f
H
1 = fP

1 = P/P . But this
follows from

Lemma 2.11. Let K ⊆ H be subgroups of G, and X ∈ b(H). Then

[X]tHK = tHK [ResH
KX] in µR(G)
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Indeed if X = H/L, then [X] = tHL r
H
L and

[X]tHK = tHL r
H
L t

H
K =

∑

x∈L\H/K

tHL∩xKr
xK
L∩xKx =

∑

x∈L\H/K

xtHLx∩Kr
K
Lx∩K

=
∑

x∈L\H/K

tHLx∩Kr
K
Lx∩K

since x ∈ H, which can be written as

[X]tHK = tHK
∑

x∈L\H/K

tKLx∩Kr
K
Lx∩K = tHK [ResH

KH/L]

proving Lemma2.11.
It remains to check the adjunction property : so let α be a morphism from

I(N) to a Mackey functor M . Such a morphism is characterized by specifying, for
all subgroup H of G, of a morphism αH of I(N)(H) in M(H), such that

αHt
H
K = tHKαK , αKr

H
K = rH

KαH , cx,HαH = αxHcx,H

for all K ⊆ H and all x ∈ G.
Then if P is a p-subgroup of G, I define a map βP from N(P ) to M(P ) by

βP = αPπP . If Q is a subgroup of P , and if n ∈ N(P ), then

rP
Q(πP (n)) =

∑

x∈Q\P/P

πQ(r
xP
Q∩xPxn) = πQ(rP

Q(n))

hence

rP
QβP (n) = rP

QαPπP (n) = αQr
P
QπP (n) = αQπQr

P
Q(n) = βQr

P
Q(n)

Similarly

cx,PβP (n) = cx,PαPπP (n) = αxP cx,PπP (n) = αxPπxP cx,P (n) = βxP cx,P (n)

and β defines a morphism from N to R(M).
Conversely, if β is such a morphism, then for any p-subgroup P of G, I have a

morphism βP of N(P ) in M(P ), such that

rP
QβP = βQr

P
Q cx,PβP = βxP cx,P

Then if H is a subgroup of G, I define a map αH from I(N)(H) to M(H) by
αH(πH(n)) = tHP βP (n), if P is a p-subgroup of H, and if n ∈ N(P ). If K is a
subgroup of H, if Q is a subgroup of P , and if n ∈ N(Q), then

αHt
H
K(πK(n)) = αH(πH(n)) = tHQβQ(n)

whereas
tHKαK(πK(n)) = tHKt

K
QβQ(n)

which proves that αHt
H
K = tHKαK .

Similarly, if n ∈ N(P ), then

αKr
H
K(πH(n)) = αK(

∑

x∈K\H/P

πK(r
xP
K∩xPxn)) =

∑

x∈K\H/P

tKK∩xPβK∩xP r
xP
K∩xPxn

=
∑

x∈K\H/P

tKK∩xP r
xP
K∩xPβxPxn =

∑

x∈K\H/P

tKK∩xP r
xP
K∩xPxβPn

= rH
K t

H
P βP (n) = rH

KαH(πH(n))
which proves that αKr

H
K = rH

KαH .
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Finally

cx,HαHπH(n) = cx,Ht
H
P βP (n) = t

xH
xP cx,PβP (n) = t

xH
xP βxP cx,P (n) = αxHcx,H(πH(n))

which proves that cx,HαH = αxHcx,H , hence that α defines a morphism from I(N)
to M .
These correspondences between HomµR(G)(I(N),M) and HomrµR(G)(N,R(M))
are clearly mutual inverse bijections, and this proves the adjunction property, com-
pleting the proof of Lemma 2.10.

3. Examples of rµR(G)-modules

Let I the R-submodule of rµR(G) generated by the xrP
Q, where x ∈ G, and Q

is a proper subgroup of P . Then :

Lemma 3.1. The submodule I is a nilpotent two sided ideal of rµR(G), and the
quotient rµR(G)/I is isomorphic to the direct product over the p-subgroups P of G
up to G-conjugation, of the algebras IndG

NG(P )/PRNG(P )/P .

(about the notion of induced algebra, see [3])
Indeed, if Q is a proper subgroup of P , and if A ⊆ B are p-subgroups of G,

and if c ∈ G, then crB
Axr

P
Q is equal to zero if Bx 6= Q, and to cxrP

Ax otherwise, and
then Ax is a proper subgroup of P . Similarly, the product xrP

Qcr
B
A is equal to zero

if P c 6= A, and to xcrB
Qc otherwise, and then Qc is a proper subgroup of B.

It is clear moreover that I is nilpotent : indeed, if x1r
P1
Q1
x2r

P2
Q2
. . . xnr

Pn

Qn
6= 0,

then P x2
1 = Q2, P x3

2 = Q3, etc, and the sequence P x2...xn
1 , P x3...xn

2 , . . . , Pn is strictly
decreasing. Its length is hence bounded by the p-valuation of the order of G.

Then if P is a p-subgroup of G, let eP =
∑

Q=GP r
Q
Q. The elements eP are

idempotents of rµR(G). Moreover eP and eR are orthogonal if P and R are not
conjugate in G. Finally

∑
Pmod.G eP =

∑
P r

P
P is the identity element of rµR(G).

On the other hand, if the product rP
P cr

B
Ar

P
P is non zero, then P c = A ⊆ B = P ,

hence the algebra rP
P rµR(G)rP

P has a basis consisting of the elements xrP
P , for x ∈

NG(P )/P (which form a subset of the basis of rµR(G) of Lemma 2.7). Moreover,
the map x ∈ NG(P )/P 7→ xrP

P defines a morphism of algebras α of RNG(P )/P
in rP

P rµR(G)rP
P , which is hence an isomorphism. It is then clear that the map

from IndG
NG(P )/PRNG(P )/P to eP rµR(G)eP , sending g ⊗ u ⊗ h to gα(u)h is a

isomorphism, and this completes the proof of Lemma 3.1.
But if H is a subgroup of G, and A is an interior H-algebra, the inclusion of A

in IndG
HA is a Morita equivalence : this follows e.g. from Lemma 2.4. This remark,

together with Lemma 3.1, yields a classification of the simple rµR(G)-modules.
Indeed, let P be a p-subgroup of G and V be an RNG(P )/P -module. I define

an rµR(G)-module NP,V by NP,V = IndG
NG(P )/PV . The element crB

A acts by 0
on NP,V if A is a proper subgroup of B, or if B is not conjugate to P . And if
A = B = P x, then crB

A .(y ⊗ v) = 0 if xy /∈ NG(P ), and crB
A .(y ⊗ v) = cx−1 ⊗ xyv

otherwise (note that this element does not depend on the choice of the element x
such that B = P x).

This defines a genuine rµR(G)-module : I must essentially check that Q acts
trivially on NP,V (Q) and that

crP x

P x (drP y

P y .(z ⊗ v)) = (crP x

P xdrP y

P y ).(z ⊗ v)
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The left hand side is equal to 0 if yz 6∈ NG(P ), and to crP x

P x .(dy−1⊗yzv) otherwise.
This is equal to zero if xdy−1 6∈ NG(P ), and to cx−1 ⊗ xdzv = cx−1 ⊗ xdy−1yzv =
cdy−1 ⊗ yzv otherwise. But the right hand side is equal to zero if P xd 6= P y,
i.e. if xdy−1 6∈ NG(P ), and to cdrP y

P y .(z ⊗ v) otherwise. This is equal to zero if
yz 6∈ NG(P ), and to cdy−1 ⊗ yzv otherwise. Hence the two sides are equal.

The definition of NP,V implies that NP,V (Q) = rQ
QNP,V is equal to zero if Q is

not conjugate to P in G. And if Q = P x, then NP,V (Q) identifies with x−1 ⊗ V .
Then if q ∈ Q, and if x−1 ⊗ v ∈ NP,V (Q), I have q.(x−1 ⊗ v) = qx−1 ⊗ v =
x−1.xq ⊗ v = x−1 ⊗x qv = x−1 ⊗ v since xQ = P and since P acts trivially on V .
Thus NP,V is a genuine rµR(G)-module.

The previous remarks, together with Lemma 3.1, yield the following

Proposition 3.2. The modules NP,V , when P runs through a set of repre-
sentatives of conjugacy classes of p-subgroups of G, and V through a set of repre-
sentatives of isomorphism classes of simple RNG(P )/P -modules, form a full set of
representatives of isomorphism classes of simple rµR(G)-modules.

In order to describe the indecomposable projective rµR(G)-modules, I need a
notation : if A and B are subgroups of G, I denote by TG(A,B) the set of x ∈ G such
that Ax ⊆ B. Let then P be a p-subgroup of G, and V be a RNG(P )/P -module.
If Q is a p-subgroup of G, I define an R-submodule of IndG

NG(P )/PV , denoted by
LP,V (Q), by

LP,V (Q) = ⊕x∈TG(Q,P )/NG(P )x⊗ V
and I set LP,V = ⊕QLP,V (Q).

If Q ⊇ R, then the inclusion of TG(Q,P )/NG(P ) in TG(R,P )/NG(P ) induces
a morphism rQ

R from LP,V (Q) to LP,V (R). And if x ∈ G, the natural bijection
yNG(P ) 7→ xyNG(P ) from TG(Q,P )/NG(P ) to TG(xQ,P )/NG(P ) induces a mor-
phism, that I still denote by x, from LP,V (Q) to LP,V (xQ). Then

Proposition 3.3. These definitions turn LP,V into an rµR(G)-module, and
the functor from RNG(P )/P -Mod to rµR(G)-Mod sending V to LP,V is left adjoint
to the restriction functor induced by the inclusion u 7→ urP

P from RNG(P )/P to
rµR(G).

The action of crB
A on the element x⊗ v of LP,V (Q) is defined by

crB
A .x⊗ v = δB,Qcx⊗ v

where, when B = Q, the element cx⊗v is seen in LP,V (cA). In particular, if q ∈ Q,
then q.(x⊗ v) = qx⊗ v = xqx ⊗ v = x⊗ qxv = x⊗ v, since Qx ⊆ P . Thus Q acts
trivially on LP,V (Q).

Similarly,
drF

E .(cr
B
A .x⊗ v) = δF,cAδB,Qdcx⊗ v

with dcx⊗ v ∈ LP,V (dE) if B = Q and F = cA.
Since drF

E .cr
B
A = δF c,Adcr

B
Ec , I have

(drF
E .cr

B
A).x⊗ v = δF c,Aδ

Q
Bdcx⊗ v

with dcx ⊗ v ∈ LP,V (dc(Ec)) if F c = A and B = Q. Thus LP,V is indeed an
rµR(G)-module.



RESOLUTIONS OF MACKEY FUNCTORS 11

It is clear that the construction sending V to LP,V is functorial in V . If M is
an rµR(G)-module, a morphism α from LP,V to M is defined by specifying, for any
p-subgroup Q of G, a morphism αQ from LP,V (Q) to M(Q), such that

αRr
Q
R = rQ

RαQ xαQ = αxQx

Since LP,V (P ) identifies with V as an RNG(P )/P -module, this yields a morphism
β = αP from V to M(P ). And since the element x ⊗ v of LP,V (Q) is equal to
r

xP
Q (x⊗ v), I have

αQ(x⊗ v) = r
xP
Q αxP (x⊗ v) = r

xP
Q xαP (1⊗ v) = xrP

Qxβ(v)

and β determines entirely α.
Conversely, if β is a morphism from V to M(P ), if Q is a p-subgroup of G, and

if x⊗ v ∈ LP,V (Q), I set αQ(x⊗ v) = xrP
Qxβ(v), which makes sense since Qx ⊆ P .

Then rQ
RαQ(x ⊗ v) = rQ

Rxr
P
Qxβ(v) = rP

Rxβ(v) = αRr
Q
R(x ⊗ v), hence αRr

Q
R =

rQ
RαQ.

On the other hand, yαQ(x ⊗ v) = yxrP
Qxβ(v), whereas αyQ(y.(x ⊗ v)) =

αyQ(yx ⊗ v) = yxrP
(yQ)yxβ(v), which proves that α is a morphism of rµR(G)-

modules.
Finally it is clear that these correspondences between HomrµR(G)(LP,V ,M) and

HomRNG(P )/P (V,M(P )) are mutual inverse bijections. The proposition follows.

Corollary 3.4. If EV is a projective cover of the simple RNG(P )/P -module V ,
then LP,EV

is a projective cover of the simple rµR(G)-module NP,V .

This follows indeed from the isomorphisms

HomrµR(G)(LP,EV
,M) ∼= HomRNG(P )/P (EV ,M(P ))

and NP,V (P ) ∼= V : if f is an essential morphism from EV to V , then f defines
a morphism L(f) of LP,EV

in NP,V , which is also essential : if L1 is a submodule
of LP,EV which maps onto NP,V by L(f), then L1(P ) maps onto V by f , hence
L1(P ) = EV . And since L1(Q) is the sum for x ∈ TG(Q,P ) of xrP

Qx(L1(P )), it
follows that L1(Q) = LP,V (Q) for all Q, hence that L1 = LP,V .

Remark 3.5. The module LP,EV
(1) identifies with X = IndG

NG(P )/PEV as an
RG-module. In the case where R is a field of characteristic p, it is easy to check
that the module LP,EV

(Q) identifies with the module

X[Q] = XQ/(
∑

R⊂Q

TrQ
R(XR))

The projective indecomposable rµR(G)-modules are then in one to one correspon-
dence with p-permutation RG-modules of the form IndG

NG(P )/PEV , where P is a
p-subgroup of G and EV is an indecomposable projective RNG(P )/P -module.

The restriction functor induced by the inclusion u 7→ urP
P from RNG(P )/P

to rµR(G) also admits a right adjoint : if V is an RNG(P )/P module, and Q a
p-subgroup of G, then Q acts on the right on NG(P )\TG(P,Q), hence on the left
on ⊕x∈NG(P )\TG(P,Q)x

−1 ⊗ V , and I set

Lo
P,V (Q) = (⊕x∈NG(P )\TG(P,Q)x

−1 ⊗ V )Q

Then if Q ⊆ R, the inclusion of NG(P )\TG(P,Q) in NG(P )\TG(P,R) allows to de-
fine a morphism rR

Q from Lo
P,V (R) to Lo

P,V (Q), by rR
Q(⊕xx

−1⊗vx) = ⊕P x⊆Qx
−1⊗vx.
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Similarly, the natural bijection y 7→ yx−1 fromNG(P )\TG(P,Q) toNG(P )\TG(P,xQ)
allows to define a morphism denoted by x from Lo

P,V (Q) to Lo
P,V (xQ), by setting

x.⊕y (y−1 ⊗ vy) = ⊕y(yx−1)−1 ⊗ vy = ⊕yxy
−1 ⊗ vy.

It is then clear that Q acts trivially on Lo
P,V (Q). Moreover

drF
E(crB

A .(⊕xx
−1 ⊗ vx)) = δB,Qdr

F
E(⊕P x⊆Acx

−1 ⊗ vx)

= δB,QδF,cA ⊕P x⊆A,P xc−1⊆E dcx−1 ⊗ vx

But if F = cA, then P xc−1 ⊆ E implies that P x ⊆ Ec ⊆ F c = A, hence

drF
E(crB

A .(⊕xx
−1 ⊗ vx)) = δB,QδF,cA ⊕P xc−1⊆E dcx−1 ⊗ vx

On the other hand, since drF
Ecr

B
A = δF c,Adcr

B
Ec , I also have

(drF
Ecr

B
A)⊕x x

−1 ⊗ vx = δB,QδF c,A ⊕P x⊆Ec dcx−1 ⊗ vx

and Lo
P,V = ⊕QL

o
P,V (Q) is indeed an rµR(G)-module.

This construction is clearly functorial in V . And if α is a morphism from an
rµR(G)-moduleM to Lo

P,V , then as Lo
P,V (P ) = 1⊗V , this yields a morphism β from

M(P ) to V , such that αP = 1⊗ β. If Q is a p-subgroup of G, if m ∈M(Q), and if
αQ(m) = ⊕x∈NG(P )\TG(P,Q)x

−1⊗ vx, let x ∈ NG(P )\TG(P,Q). Since rQ
P xαQ(m) =

x−1⊗vx, I must hence have x−1⊗vx = rQ
P xαQ(m) = αP xrQ

P x(m) = x−1αPxr
Q
P x(m),

hence vx = β(xrQ
P x(m)), and β determine entirely α.

Conversely, if β is given, I define αQ from M(Q) to Lo
P,V (Q) by

αQ(m) = ⊕x∈NG(P )\TG(P,Q)x
−1 ⊗ β(xrQ

P x(m))

It is easy to see that α is a morphism from M to Lo
P,V . These two constructions

are clearly inverse to each other. Thus

Proposition 3.6. The functor which maps V to Lo
P,V is right adjoint to the

restriction functor from rµR(G)-Mod to RNG(P )/P -Mod.

This allows of course for a description of injective rµR(G)-modules.

4. Resolutions

4.1. Projectivity relative to a functor. 3 The following definition gener-
alizes the notion of relative projectivity, when R is a functor of restriction to a
subgroup.

Definition 4.1. Let C and D be categories, and R a functor from C to D. I
will say that an object M of C is projective relative to R (or R-projective) if for
any diagram

M
↓ β

α
X → Y

such that the morphism R(α) is a split epimorphism, there exists a morphism φ
from M to X such that αφ = β.

3The content of this section is very close to the notion of comonad or cotriple in category
theory. See e.g. C.A. Weibel. An introduction to homological algebra, Cambridge studies in
advanced mathematics 38, Chapter 8.6
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The following lemma is a straightforward consequence of the definitions :

Lemma 4.2. a) If M is projective relative to R, and if f : M → N is a split
epimorphism, then N is projective relative to R.
b) If M1 and M2 are projective relative to R, and if N is a coproduct of M1 and
M2, then N is projective relative to R

The following lemma is a formalization of known results in the classical cases
of relative projectivity, when R has a left adjoint :

Lemma 4.3. Let C and D be categories, and R be a functor of C in D, admitting
a left adjoint I. Let M be an object of C. The following conditions are equivalent :

(1) The object M is projective relative to R.
(2) The counit morphism IR(M)→M is a split epimorphism.
(3) There exists an object Y of D and a split epimorphism I(Y )→M .

If X is an object of C, if Y is an object of D, and α (resp. β) is a morphism
from Y to R(X) (resp. a morphism from I(Y ) to X), I denote by α∗ (resp. β∗)
the morphism from I(Y ) to X (resp. from Y to R(X)) associated by adjunction.
Then (α∗)∗ = α and (β∗)∗ = β.

Since the isomorphism from HomC(I(−),−) to HomD(−,R(−)) is an isomor-
phism of bifunctors, if f ∈ HomD(Y1, Y2), and if α ∈ HomD(Y2,R(X)), I have
(αf)∗ = α∗I(f). Similarly, if g ∈ HomC(X1, X2), and if β ∈ HomC(I(Y ), X1),
then (gβ)∗ = R(g)β∗.

Then if 1) holds, the diagram

M
↓ IdM

(IdR(M))∗

IR(M) → M

shows that 2) holds, if I know that the morphism u = R((IdR(M))∗) is a split
epimorphism. But if I set v = (IdIR(M))∗, I have

uv = ((IdR(M))∗IdR(M))∗ = ((IdR(M))∗)∗ = IdR(M)

It is clear that 2) implies 3).
Conversely, if u : I(Y )→M is a split epimorphism, then there exists v : M → I(Y )
such that uv = IdM . On the other hand, the morphism I(u∗) is a morphism from
I(Y ) to IR(M) and

(IdR(M))∗I(u∗) = (IdR(M)u∗)∗ = u

hence
(IdR(M))∗I(u∗)v = uv = IdM

which prove 2).
Finally if 2) holds, let τ : M → IR(M) be such that (IdR(M))∗τ = IdM . If I have
a diagram

M
↓ β

α
X → Y

such that R(α) is a split epimorphism, then there exists a morphism

γ : R(Y )→R(X)
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such that R(α)γ = IdR(Y ). Setting then

φ = (IdR(X))∗I(γ)IR(β)τ

it follows that
αφ = α(IdR(X))∗I(γR(β))τ
= (R(α)IdR(X))∗I(γR(β))τ

= (R(α)γR(β))∗τ = (R(β))∗τ
= (R(β)IdR(M))∗τ = β(IdR(M))∗τ = β

which proves 1), and the equivalence of the three conditions.

Lemma 4.4. Let C and D be categories, and R be a functor from C to D,
admitting a left adjoint I. Then R is faithful if and only if for any object M of C,
the counit morphism from IR(M) to M is an epimorphism.

Indeed, the morphism from IR(M) to M is an epimorphism if and only if for
any object X, the morphism

Hom(M,X)→ Hom(IR(M), X)

is injective, i.e. by adjunction if and only if the morphism

Hom(M,X)→ Hom(R(M),R(X))

is injective.

Remark 4.5. It follows that if R is faithful, then any projective object is
projective relative to R.

I suppose now that C and D are abelian categories, that R is faithful and
admits a left adjoint I. I denote by K(M) the kernel of the epimorphism from
IR(M) to M .

Then K(M) is the quotient of IRK(M) by K(K(M)) = K2(M), which itself
is the quotient of IRK2(M) by K(K2(M)) = K3(M), and I can build that way
a resolution of M by objects of C of the form I(L), which are projective relative
to R. Actually :

Lemma 4.6. Let C and D be abelian categories, and R be a faithful functor
from C to D admitting a left adjoint I. Then for any object M of C, there exists
a resolution

. . .→ Li → Li−1 → . . .→ L0 →M → 0
where the Li’s are projective relative to R, such that the complex

. . .→R(Li)→ R(Li−1)→ . . .→R(L0)→ R(M)→ 0

is exact and split, and such a resolution of M is unique to homotopy.

The existence of such a resolution follows from the previous argument, and
from the fact that the morphism RIR(M) → R(M) is a split epimorphism (see
the proof of Lemma 4.3).

A standard homological argument shows that if M and N are objects of C, if
X∗ is a resolution of M by R-projective objects, and Y∗ a resolution of N such that
the complex R(Y∗) → R(N) is split, any homomorphism of M in N can be lifted
to an homomorphism from X∗ to Y∗, and that such a lift is unique up to homotopy.
The uniqueness of the resolution follows.
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Remark 4.7. If M is projective, a resolution of M with the properties of
Lemma 4.6 is split, because M is projective relative to R.

4.2. Resolutions of Mackey functors. The functors R and I defined above
between the categories rµR(G)-Mod and MackR(G, 1) fulfill the assumptions of
Lemma 4.6 (the functor R is faithful because it is the composition of a forgetful
functor and an equivalence of categories).

Thus, any Mackey functor in MackR(G, 1) admits a resolution by R-projective
functors, whose image by R is split. This means that this resolution can be split
by homomorphisms which commute with conjugations by G, and with restrictions
(but dot not commute, in general, with transfers). Moreover such a resolution is
unique up to homotopy. The additional fact here is that this resolution can be
chosen to be finite.

Indeed, let M a Mackey functor. Then K(M)(H) is the image in the quotient
(⊕P∈sp(H)M(P ))H of the set of sequences nP such that

∑
P t

H
P nP = 0. In particu-

lar, ifH is a p-subgroup Q of G, this condition is equivalent to nQ = −∑
P⊂Q t

Q
PnP .

It follows that RK(M)(Q) identifies with

R(M)1(Q) = (⊕P⊂QM(P ))Q

More generally, let M a rµR(G)-module : I will set M0 = M , and if i is a positive
integer, I set

Mi(Q) = (⊕P0⊂P1...⊂Pi−1⊂QM(P0))Q

If n ∈M(P0), I denote by nP0,P1,...,Pi−1,Q the corresponding element of
(⊕P0⊂P1...⊂Pi−1⊂QM(P0)), and πQ(nP0,P1,...,Pi−1,Q) its image in Mi(Q). If x ∈ G,
I set

xπQ(nP0,...,Pi−1,Q) = πxQ((xn)xP0,...,xPi−1,xQ)
and if S is a subgroup of Q, I set

rQ
S πQ(nP0,...,Pi−1,Q) =

∑

x∈S\Q/P0
S∩xP0 6=S∩xP1... 6=S∩xPi−1 6=S

πS((xrP0
Sx∩P0

n)S∩xP0,...,S∩xPi−1,S)

Lemma 4.8. The previous definitions turn Mi into an rµR(G)-module.

The only non-trivial point is the transitivity of restrictions. So let T ⊆ R ⊆ Q
be p-subgroups of G, and s = (P0, . . . , Pi−1, Q) be an increasing sequence of sub-
groups of Q. I will say that s is a proper sequence if s is strictly increasing. If A is
a subgroup of G, I will denote by A∩ s the sequence (A∩P0, . . . , A∩Pi−1, A∩Q).

Then if n ∈M(P0), I have

rQ
S (πQ(ns)) =

∑

x∈S\Q/P0
S∩xs proper

πS((xrP0
Sx∩P0

n)S∩xs)

Thus

rS
T r

Q
S (πQ(ns)) =

∑

x∈S\Q/P0
S∩xs proper

∑

y∈R\S/S∩xP0
R∩y(S∩xs) proper

πR((yrS∩xP0
Ry∩S∩xP0

xrP0
Sx∩P0

n)R∩y(S∩xs))

i.e.
rS
T r

Q
S (πQ(ns)) =

∑

x∈S\Q/P0
S∩xs proper

∑

y∈R\S/S∩xP0
R∩yxs proper

πR((yxrP0
Ryx∩P0

n)R∩yxs)
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Then the element z = yx runs through a set of representatives of doubles cosets
R\Q/P0 such that R ∩ zs is proper. Thus

rS
T r

Q
S (πQ(ns)) =

∑

z∈R\Q/P0
R∩zs proper

πR((zrP0
Rz∩P0

n)R∩zs) = rQ
T (πQ(ns))

which proves the lemma.
The previous construction associates to any rµR(G)-module M some rµR(G)-

modules Mi, and moreover Mi = 0 if i is greater than (or equal to) the p-valuation
of the order of G. If M is a Mackey functor in MackR(G, 1), and i a non negative
integer, I will denote by δi(M) the functor I(R(M)i), and I will build a resolu-
tion of M from these functors. The functor δi(M) admits the following simple
description :

Lemma 4.9. Let M in MackR(G, 1), and H a subgroup of G. Then

δi(M)(H) = (⊕P0⊂...⊂Pi∈sp(H)M(P0))H

If s = (P0, . . . , Pi) is a sequence of p-subgroups ofH, and if n ∈M(P0), I denote
by ns the corresponding element of (⊕P0⊂...⊂Pi∈sp(H)M(P0)) if the sequence s is
strictly increasing, and I set ns = 0 otherwise. I denote by πH(ns) the image of ns

in (⊕P0⊂...⊂Pi∈sp(H)M(P ))H . I can then define a linear map f from δi(M)(H) to
(⊕P0⊂...⊂Pi∈sp(H)M(P ))H by

f(πHπQ(ns)) = πH(ns∪Q)

which makes sense since if h ∈ H and q ∈ Q, then

f(πH(hπQ(q.ns))) = f(πHπhQ((hqn)hqs)) = πH((hqn)hqs∪hQ))

= πH(h.(qn)qs∪Q) = πH(q.ns∪Q) = πH(ns∪Q)

Conversely, I define a linear map g from (⊕P0⊂...⊂Pi∈sp(H)M(P ))H to δi(M)(H) by

g(πH(ns)) = πHπsups(ns−sups)

which makes sense because if h ∈ H, then

g(πH(h.ns)) = g(πH((hn)hs)) = πHπhsups((hn)hs−hsups))

= πH(h.πsups(ns−sups)) = πHπsups(ns−sups)

It is then clear that f and g are mutual inverse isomorphisms, which proves the
lemma.

If K is a subgroup of H, if s = (P0, . . . , Pi) is a sequence of p-subgroups of K,
and if n ∈M(P0), it follows from the definitions that

tHK(πK(ns)) = πH(ns)

Similarly, if s = (P0, . . . , Pi) is a sequence of p-subgroups of H, and if n ∈ M(P0),
then

rH
K(πH(ns)) =

∑

x∈K\H/P0
K∩xs proper

πK((xrP0
Kx∩P0

n)K∩xs)
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Hence I can identify δ0(M) with IR(M). I will denote by d0 the canonical mor-
phism from δ0(M) to M . If i > 0, I define a linear map di from δi(M) to δi−1(M)
by

di,H(πH(ns)) = πH((tP1
P0
n)s0 +

i∑

j=1

(−1)jnsj
)

where sj denotes the sequence s− {Pj}. Then

Theorem 4.10. Let M in MackR(G, 1). The sequence

0→ . . .
di+1→ δi(M) di→ . . .

d1→ δ0(M) d0→M → 0

is an exact complex of Mackey functors in MackR(G, 1), and the complex

0→ . . .
R(di+1)→ R(δi(M))

R(di)→ . . .
R(d1)→ R(δ0(M))

R(d0)→ R(M)→ 0

is exact and split.

First I must that the maps di are morphisms of Mackey functors. This is clear
for d0. If i > 0, if H ⊆ K are subgroups of G, if s = (P0, . . . , Pi) is an increasing
sequence of p-subgroups of H, and if n ∈M(P0), then

di,K(tKHπH(ns)) = di,K(πK(ns)) = πK((tP1
P0
n)s0 +

i∑

j=1

(−1)jnsj )

whereas

tKHdi,H(πH(Ns)) = tKH(πH((tP1
P0
n)s0 +

i∑

j=1

(−1)jnsj ) = πK((tP1
P0
n)s0 +

i∑

j=1

(−1)jnsj )

and the maps di commute with traces.
Similarly, if s = (P0, . . . , Pi) is an increasing sequence of p-subgroups of K, and

if n ∈M(P0), then

di,H(rK
HπK(ns)) = di,H(

∑

x∈H\K/P0

πH((xrP0
Hx∩P0

n)H∩xs))

=
∑

x∈H\K/P0

πH((tH∩
xP1

H∩xP0
xrP0

Hx∩P0
n)(H∩xs)0 +

i∑

j=1

(−1)j(xrP0
Hx∩P0

)(H∩xs)j
) (1)

On the other hand

rK
Hdi,K(πK(ns)) = rK

HπK((tP1
P0
n)s0 +

i∑

j=1

(−1)jnsj )

But if j > 0, then the smallest element of sj is P0, and

rK
H (πK(nsj )) =

∑

x∈H\K/P0

πH((xrP0
Hx∩P0

n)H∩xsj )

And these terms are equal to the corresponding terms of Equality (1), since for any
m of M(P0), I have m(H∩xs)j

= mH∩xsj . Similarly

rK
HπK((tP1

P0
n)s0) =

∑

y∈H\K/P1

πH(yrP1
Hy∩P1

(tP1
P0
n)H∩ys0)
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= πH

∑

y∈H\K/P1

(y
∑

z∈Hy∩P1\P1/P0

tH
y∩P1

Hy∩zP0
r

zP0
Hy∩zP0

zn)H∩ys0)

=
∑

y∈H\K/P1

∑

z∈Hy∩P1\P1/P0

πH(tH∩
yP1

H∩yzP0
r

yzP0
H∩yzP0

yzn)H∩ys0)

and as z ∈ P1 = inf s0, I have yP1 = yzP1 and H ∩ ys0 = H ∩ yzP0, and I can sum
over x = yz, which runs through the set H\K/P0. It follows that

rK
HπK((tP1

P0
n)s0) =

∑

x∈H\K/P0

πH(tH∩
xP1

H∩xP0
r

xP0
H∩xP0

xn)H∩xs0)

=
∑

x∈H\K/P0

πH(tH∩
xP1

H∩xP0
xrP0

Hx∩P0
n)H∩xs0)

which is equal to the corresponding term of Equality (1), since (H∩xs)0 = H∩xs0,
which proves that the maps di commute with restrictions.

Finally it is clear that the di’s commute with conjugations by elements of G,
hence they are indeed morphisms of Mackey functors.

A standard computation shows that didi+1 = 0 for all i, and the sequence in the
statement of Theorem 4.10 is indeed a complex of Mackey functors (in MackR(G, 1)
by definition of functors δi(M)).

To check that this complex is exact, it suffices to check that its image by R is
acyclic, since the functor R is a forgetful functor. I will show that this complex is
split and acyclic, as claimed in Theorem 4.10.

Let Q be a p-subgroup of G. If s = (P0, . . . , Pi) is a sequence of subgroups of
Q, and if n ∈M(P0), I set αi,Q(πQ(ns)) = πQ(ns∪Q). Similarly, if n ∈M(Q), I set
α−1,Q(n) = πQ(n{Q}). This yields for any i a map from δi(M)(Q) to δi+1(M)(Q).
This map is actually a morphism from R(δi(M)) to R(δi+1(M)) : indeed, if S is a
subgroup of Q, then

αi,Sr
Q
S πQ(ns) = αi

∑

x∈S\Q/P0

πS((xrP0
Sx∩P0

n)S∩xs) =
∑

x∈S\Q/P0

πS((xrP0
Sx∩P0

n)(S∩xs)∪S)

But

rQ
S αi,QπQ(ns) = rQ

S πQ(ns∪Q) =
∑

x∈S\Q/P0
S∩x(s∪Q) proper

πS((xrP0
Sx∩P0

n)S∩x(s∪Q))

and since for any m of M(S), I have m(S∩xs)∪S = mS∩x(s∪Q) if S ∩ x(s ∪Q) is
proper, and m(S∩xs)∪S = 0 otherwise, the maps αi commute with restrictions. It
is clear on the other hand that they commute with conjugations, hence that this
are morphisms from R(δi(M)) to R(δi+1(M)).

Finally

di+1,Qαi,QπQ(ns) = di+1,QπQ(ns∪Q) = πQ((tP1
P0
n)(s∪Q)0 +

i+1∑

j=1

(−1)jn(s∪Q)j
)

On the other hand

αi−1,Qdi,QπQ(ns) = αi−1,QπQ((tP1
P0
n)s0 +

i∑

j=1

(−1)jnsj )



RESOLUTIONS OF MACKEY FUNCTORS 19

= πQ((tP1
P0
n)s0∪Q +

i∑

j=1

(−1)jnsj∪Q)

By difference, it follows that

di+1,Qαi,QπQ(ns)− αi−1,Qdi,QπQ(ns) = (−1)i+1πQ(n(s∪Q)i+1) = (−1)i+1πQ(ns)

hence di+1αi−αi−1di = (−1)i+1Id, and a suitable change of sign on the αi’s proves
the last assertion of the theorem.

4.3. Dual results. I have showed above that the algebra tµR(G) identifies
with the opposite algebra of rµR(G). The previous results have a translation in
terms of this algebra, obtained by replacing restrictions by traces, traces by restric-
tions, elements of G by their inverses, coinvariants by invariants, and reversing the
arrows.

I will denote by T the restriction functor associated to the inclusion from
tµR(G) into µR(G). The functor T admits a right adjoint, that I denote by J ,
defined par

J (N)(H) = (⊕P∈sp(H)N(P ))H

when N is a tµR(G)-module and H a subgroup of G.
If K is a subgroup of H, and if ⊕PnP ∈ J (N)(H), then rH

K(⊕PnP ) = ⊕QmQ,
with mQ = nQ if Q is a subgroup of K, and mQ = 0 otherwise.

Similarly, if ⊕QmQ ∈ J (N)(K), then tHK(⊕QmQ) = ⊕PnP , with

nP =
∑

x∈P\H/K

tPP∩xKxnP x∩K

If M is a Mackey functor in MackR(G, 1), I can define similarly the functors ∂i(M)
by the formulas

∂i(M)(H) = (⊕P0⊂...⊂Pi∈sp(H)M(P0))H

With this notation rH
K(⊕sns) = ⊕tmt, with mt = nt if sup t ⊆ K, and mt = 0

otherwise. Similarly, tHK(⊕tmt) = ⊕sns, with

ns =
∑

x∈P0\H/K

tP0
P0∩xKxmsx∩K where P0 = inf s

The differential d̂i from ∂i(M) to ∂i+1(M) is given by d̂i(⊕sns) = ⊕tmt where

mt = rP1
P0
ns0 +

i∑

j=1

(−1)jnsj

The dual result to Theorem 4.10 is then the following :

Theorem 4.11. Let M in MackR(G, 1). The sequence

0→M
d̂−1

→ ∂0(M) d̂0

→ . . .
d̂i−1

→ ∂i(M) d̂i

→ . . .→ 0

is an exact complex of Mackey functors in MackR(G, 1), and the complex

0→ T (M)
T (d̂−1)→ T (∂0(M))

T (d̂0)→ . . .
T (d̂i−1)→ T (∂i(M))

T (d̂i)→ . . .→ 0

is exact and split.



20 S. BOUC

5. Applications

5.1. Steinberg Modules. Theorem 4.11 allows to extend to any Mackey
functor in MackR(G, 1) a result of P.Webb expressing homology in terms of Stein-
berg modules (cf [7]) :

Proposition 5.1. Let M be a Mackey functor in MackR(G, 1), and H be a
subgroup of G. Then

M(H) = −
∑

P∈sp(H)/NG(H)

IndNG(H)/H
NG(H,P )/NH(P )HomRNH(P )/P (Stp(NH(P )/P ),M(P ))

in the Green ring of RNG(H)/H-modules.

Remark 5.2. Webb’s Theorem is the case whereH = G andM(K) = Ĥn(K,V )p,
where V denotes a ZpG-module and n ∈ Z : in this case, the term corresponding
to P = 1 in the above sum is equal to zero. On the other hand, the fact that
Ĥn(−, V )p lies in MackR(G, 1) is proved in [6] (section [16]).

Recall that the Steinberg module over R of the group G at the prime number
p is defined by

Stp(G) = −R−
∑

s

(−1)|s|IndG
NG(s)R

where the summation runs over a set of representatives of G-conjugacy classes of
strictly increasing sequences s of non trivial p-subgroups of G, and |s| denotes the
cardinality of s. This sum is an element of the Green ring of finitely generated RG-
modules. On the other hand, if A, B and C are RG-modules, then HomRG(A −
B,C) is equal by definition to HomRG(A,C)−HomRG(B,C).

Proposition 5.1 follows from the fact that, by Theorem 4.11, if H is a subgroup
of G, the sequence

0→M(H)→ ∂0(M)(H)→ . . .→ ∂i(M)(H)→ . . .→ 0

is a split exact sequence of RNG(H)/H-modules. Denoting by ∆i(H) the set of
sequences P0 ⊂ . . . ⊂ Pi of p-subgroups of H, I have

M(H) =
∑

i≥0

(−1)i∂i(M)(H) =
∑

i≥0

(−1)i(⊕s∈∆i(H)M(inf s))H

But ⊕s∈∆i(H)M(inf s) is an RNG(H)-module, isomorphic to

⊕s∈∆i(H)/NG(H)IndNG(H)
NG(H,s)M(inf s)

Moreover, if H is a normal subgroup of the group G, if K is a subgroup of G, and
L is a RK-module, the module (IndG

KL)H identifies to to IndG/H
HK/HL

H∩K as an
RG/H-module. This remark shows that

∂i(M)(H) = ⊕s∈∆i(H)/NG(H)IndNG(H)/H
HNG(H,s)/HM(inf s)NH(s)

On the other hand, the module Stp(NH(P )/P ) is a RNG(H,P )-module, isomorphic
to

−
∑

i

(−1)i
∑

s∈∆i(H)/NG(H,P )
inf s=P

IndNG(H,P )
NG(H,s) R
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hence the module HomR(Stp(NH(P )/P ),M(P )) is isomorphic to

−
∑

i

(−1)i
∑

s∈∆i(H)/NG(H,P )
inf s=P

IndNG(H,P )
NG(H,s) HomR(R,M(P ))

Another application of the previous remark, for the group NG(H,P ) and its normal
subgroup NH(P ), gives then
HomRNH(P )(Stp(NH(P )/P ),M(P )) =

−
∑

i

(−1)i
∑

s∈∆i(H)/NG(H,P )
inf s=P

IndNG(H,P )/NH(P )
NG(H,s)/NH(s) M(P )NH(s)

and the right hand side of the equality of the proposition becomes
∑

P∈sp(H)/NG(H)

∑

i

(−1)i
∑

s∈∆i(H)/NG(H,P )
inf s=P

IndNG(H)/H
NG(H,s)/NH(s)M(P )NH(s)

i.e. ∑

i

(−1)i
∑

s∈∆i(H)/NG(H)

IndNG(H)/H
NG(H,s)/NH(s)M(inf s)NH(s)

and this is equal to
∑

i(−1)i∂i(M)(H), which proves the proposition.

5.2. T -injective functors and R-projective functors.
5.2.1. Residues. The definitions and results of Section 3 about the projectivity

relative toR can be dualized by reversing the arrows and replacing “left” by “right”,
and “projective” by “injective” (in other words, I will say that an object M is
injective relative to the functor T if it is projective relative to the dual functor of
T for the opposite categories).
For the next statement, I will need the following notation :
Let M a Mackey functor for the group G, and K be a subgroup of G. I will denote
by M(K) the quotient

M(K) = M(K)/
∑

L⊂K

tKL M(L)

and M(K) the intersection

M(K) =
⋂

L⊂K

Ker rK
L

These definitions of “residues” of M at K are dual to each other : if N is a
Mackey functor for the group NG(K)/K, I define (with Thévenaz and Webb cf.[5])
a functor from the category of R(NG(K)/K)-Mackey functors to the category of
µR(G)-modules mapping N to the functor

F (N) = IndG
NG(K)InfNG(K)

NG(K)/KN

Then the functor F a a left adjoint, defined by

MK(L/K) = M(L)/
∑

K 6⊂H⊂L

tLHM(H)

and a right adjoint, defined by

MK(L/K) =
⋂

K 6⊂H⊂L

Ker rL
H
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Then M(K) is the value at K/K of MK , and M(K) is the value at K/K of MK .
Let then X be an rµR(G)-module, and P be a p-subgroup of G. It is easy to see

that I(X)(P ) identifies with X(P ). If FPV denotes the NG(P )/P -Mackey functor
of fixed points on V , defined by FPV (H) = V H , rH

Kv = v, and tHK(w) = TrH
K(v),

this implies that

Hom(I(X), IndG
NG(P )InfNG(P )

NG(P )/PFPV ) = Hom(I(X)P , FPV ) =

HomRNG(P )/P (X(P ), V )
the second equality following from the fact that that the functor sending V to FPV

is right adjoint to the evaluation functor at P/P (from the category of RNG(P )/P -
Mackey functors to the category of RNG(P )/P -modules)(cf.[5] Proposition 6.1).

Since moreover

Hom(I(X), IndG
NG(P )InfNG(P )

NG(P )/PFPV ) = Hom(X,R(IndG
NG(P )InfNG(P )

NG(P )/PFPV ))

it follows that the functor mapping V to R(IndG
NG(P )InfNG(P )

NG(P )/PFPV ) is right ad-
joint to the functor sending X to X(P ) (from the category of rµR(RNG(P )/P )-
modules to the category of RNG(P )/P -modules), hence that it identifies with the
functor sending V to Lo

P,V (cf. Proposition 3.6).
The following proposition shows how to compute the values of an R-projective or
a T -injective Mackey functor from its residues :

Proposition 5.3. Let M be a Mackey functor in MackR(G, 1).
(1) If M is R-projective (e.g. if M is projective), then

M(H) = (⊕P∈sp(H)M(P ))H

as an RNG(H)/H-module.
(2) If M is T -injective (e.g. if M is injective), then

M(H) = (⊕P∈sp(H)M(P ))H

as an RNG(H)/H-module.

These two results are dual to each other, hence it suffices to prover the second
one, which will be a consequence of the following stronger (but more obscure)
result :

Proposition 5.4. Let M be a Mackey functor in MackR(G, 1). If M is T -
injective, then

R(M) =
⊕

P∈sp(G)/G

Lo
P,M(P ) = R(

⊕

P∈sp(G)/G

IndG
NG(P )InfNG(P )

NG(P )/PFPM(P ))

Proposition 5.3 follows, since

(
⊕

P∈sp(G)/G

IndG
NG(P )InfNG(P )

NG(P )/PFPM(P ))(H) =

⊕

P∈sp(G)/G

⊕

x∈NG(P )\G/H

(InfNG(P )
NG(P )/PFPM(P ))(NG(P ) ∩ xH)

=
⊕

P∈sp(G)/G

⊕

x∈NG(P )\TG(P,H)/H

FPM(P )(NxH(P )/P )
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and using rational coefficients for this computation, this sum is equal to

⊕

P∈sp(G)

|NG(P )|
|G|

⊕

x∈TG(P,H)

|NxH(P )|
|NG(P )||H|M(P )NxH(P )/P =

⊕

P∈sp(G),x∈G,P x⊆H

|NH(P x)|
|G||H| M(P x)NH(P x)/P x

=
⊕

P∈sp(H)

|NH(P )|
|H| M(P )NH(P ) = (⊕P∈sp(H)M(P ))H

Proposition 5.4 shows that the identification of part 2 of Proposition 5.3 com-
mutes with restrictions.

In order to prove Proposition 5.4, I will first characterize those rµR(G)-modules
which are isomorphic to direct sums of modules of the form Lo

P,VP
. First I notice

that I can define M(P ) when M is an rµR(G)-module and P is a p-subgroup of G,
since this definition uses only restriction maps. Then :

Lemma 5.5. Let M be an rµR(G)-module. The following conditions are equiv-
alent :

(1) There exists NG(P )/P -modules VP such that M is isomorphic to
⊕

P∈sp(G)/G

Lo
P,VP

(2) The module M is isomorphic to
⊕

P∈sp(G)/G

Lo
P,M(P )

(3) For any p-subgroup P of G, the inclusion of M(P ) in M(P ) is a split
injection of RNG(P )/P -modules, and the quotient M(P )/M(P ) is iso-
morphic to (lim← Q⊂P

M(Q))P .

I recall that Lo
P,V is defined by

Lo
P,V (Q) = (⊕x∈NG(P )\TG(P,Q)x

−1 ⊗ V )Q

and
rR
Q(⊕xx

−1 ⊗ vx) = ⊕P x⊆Qx
−1 ⊗ vx

In particular Lo
P,V (R) is zero if P is not contained in R up to conjugation, hence

Lo
P,V (R) = 0 in this case.

Otherwise, if v = ⊕x∈NG(P )\TG(P,R)x
−1⊗v ∈ LP,V (R), and if R is not conjugate

to P , let y ∈ TG(P,R). Since rR
P y (v) = y−1 ⊗ vy = 0, it follows that v = 0. This

proves that Lo
P,V (R) is zero if R is not conjugate to P , and equal to V otherwise,

hence Assertion 1) implies Assertion 2).
It is clear conversely that Assertion 2) implies Assertion 1). The previous

argument also shows that Assertion 1) implies the first part of Assertion 3), because
if M = Lo

P,V , then the injection of M(R) in M(R) is zero if R is not conjugate
to P , and the identity map otherwise.
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To prove the second part, I notice that the kernel of the natural morphism from
M(R) to (lim← Q⊂R

M(Q))R is equal to M(R). Hence it suffices to show that this

morphism is surjective.
So let M = Lo

P,V . There is nothing to prove if P is not contained in R up to
conjugation. Similarly, if R = P , then (lim← Q⊂R

M(Q))R = 0, and M(R) = M(R)

in this case. Hence I can suppose that R contains P strictly up to conjugation.
Then if v ∈ (lim← Q⊂R

M(Q))R, for any proper subgroup Q of R, I have an element

vQ of M(Q), such that if S ⊆ Q, then rQ
S (vQ) = vS . In particular, if x ∈ TG(P,R),

then the element vP x can be written x−1 ⊗ vx. Since v is fixed by R, the element
w = ⊕x∈NG(P )\TG(P,R)x

−1⊗ vx is in M(R), and it is clear that rR
Q(w) = vQ for any

proper subgroup Q of R, which proves the second part of Assertion 3).
It remains to show that Assertion 3) implies Assertion 2). Let X be the module

⊕P∈sp(G)/GL
o
P,M(P ). I notice first that

Hom(M,X) = ⊕P HomRNG(P )/P (M(P ),M(P ))

from the adjunction property of the functor V 7→ Lo
P,V . Then by the first part of

Assertion 3), I can choose, for any P modulo G, a section of the inclusion of M(P )
in M(P ), and this choice determines a morphism φ from M to X.

This morphism is such that φ(P ) is the identity map for any P . Let then K be
the kernel of φ, and Q be a minimal p-subgroup of G such that K(Q) 6= 0. Then
by definition of Q,

K(Q) = K(Q) = Ker φ(Q) = 0

and this contradiction proves that φ is injective. Let Y the cokernel of φ. I postpone
the proof of the following lemma :

Lemma 5.6. The functor sending M to M(P ) is left exact, and its first derived
functor DP is given by

DP (M) = (lim← Q⊂P
M(Q))P /(Image of M(P ))

Then the exact sequence 0 → M
φ→ X → Y → 0 yields for any P the exact

sequence 0 → M(P )
φ(P )→ X(P ) → Y (P ) → 0, by the second part of Assertion 3).

Since φ(P ) is the identity map, it follows that Y (P ) = 0 for all P .
Then if Q is minimal such that Y (Q) 6= 0, I have Y (Q) = Y (Q) = 0, and this

contradiction proves that Y is zero, hence that φ is surjective, and Assertion 2) of
Lemma 5.5 follows.

It remains to prove Lemma 5.6. If 0→ X → Y → Z → 0 is an exact sequence
of rµR(G)-modules, it is clear that X(P ) is a submodule of Y (P ). And if w is in
the kernel of the map Y (P ) → Z(P ), then w is an element of Y (P ) which maps
to 0 in Z(P ). Thus w is in X(P ) ∩ Y (P ) = X(P ), which proves that the functor
M 7→M(P ) is left exact.

To complete the proof of Lemma 5.6, it remains to see that its first derived
functor DP is as claimed. I will denote by dP the functor which maps M to the
quotient of (lim← Q⊂P

M(Q))P by the image of M(P ).

I have already observed (in the proof of the implication 1)⇒ 3) of Lemma 5.5),
that dP (M) = 0 if M is of the form Lo

P,V . The adjunction property of the functor
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V 7→ Lo
P,V shows that Lo

P,V is injective if V is, and I have indeed DP (Lo
P,V ) =

dP (Lo
P,V ) = 0 in this case.

Let then M be an arbitrary rµR(G)-module. I choose, for any P modulo G, an
injective RNG(P )/P -module IP containing M(P ). The inclusion map from M(P )
into IP extends to a morphism from M(P ) to IP , and I get this way a morphism
from M to X = ⊕PL

o
P,IP

, and X is an injective module. It is easy to see that this
morphism is moreover injective.

Let Y the cokernel of this morphism. If I show that any exact sequence
0→M → X → Y → 0 yields an exact sequence

0→M(P )→ X(P )→ Y (P )→ dP (M)→ dP (X)

I get then an exact sequence

0→M(P )→ X(P )→ Y (P )→ dP (M)→ 0

Since moreover, by definition of DP , I have the exact sequence

0→M(P )→ X(P )→ Y (P )→ DP (M)→ 0

Lemma 5.6 will be proved.
So let 0 → M → X

b→ Y → 0 be an exact sequence, in which I consider M
as a submodule of X, and y be an element of Y (P ). Then there exists x in X(P )
such that y = b(x). Moreover, if Q is a proper subgroup of P , then rP

Qx belongs to
M(Q).

The sequence (rP
Qx)Q⊂P defines an element of (lim← Q⊂P

M(Q))P , well defined

up to an element of the image of M(P ), i.e. an element of dP (M). This element
is zero if and only if there exists an element m of M(P ) such that rP

Qx = rP
Qm

for all subgroup proper Q of P , i.e. if y is in the image of X(P ) (because then
y = b(x−m), and x−m ∈ X(P )). Thus I have built an exact sequence

0→M(P )→ X(P )→ Y (P ) c→ dP (M)

The inclusion a from M to X yields a morphism dP (a) from dP (M) to dP (X).
Let m be an element of dP (M). Then m is represented by a sequence (mQ)Q⊂P

of elements of M(Q) such that rQ
S (mQ) = mS if S ⊆ Q ⊂ P , and pmQ = mpQ

if p ∈ P . The element m is in the kernel of dP (a) if and only if there exists an
element x of X(P ) such that mQ = rP

Qx for all Q ⊂ P , hence if and only if m is in
the image of Y (P ) (the element m is then the image by c of b(x)).

Hence I have proved that the sequence

0→M(P )→ X(P )→ Y (P ) c→ dP (M)
dP (a)→ dP (X)

is exact, which proves Lemma 5.6, and completes the proof of Lemma 5.5.
It remains to see how Lemma 5.5 implies Proposition 5.4. So let M be a T -

injective Mackey functor inMackR(G, 1). I will show thatR(M) fulfills Condition 3
of Lemma 5.5.

This condition being inherited by direct summands, I can suppose that M is
of the form J (X). Let then P be a p-subgroup of G. By definition

J (X)(P ) = (
⊕

Q⊆P

X(Q))P

If R is a subgroup of P , and if v = (vQ) ∈ J (X)(P ), then the Q-component of
rP
R(v) is equal to vQ (for Q ⊆ R). Hence if v is in J (X)(P ), then vQ is zero for any
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subgroup of a proper subgroup of P , i.e. for any proper subgroup of P . Hence the
only non zero component of v is its P -component. But it is clear that J (X)(P )
splits as

J (X)(P ) = X(P )
⊕

(
⊕

Q⊂P

X(Q))P

as an NG(P )/P -module, which proves that the injection of J (X)(P ) in J (X)(P )
is a split.

Similarly, if w ∈ ( lim←−
Q⊂P

J (X)(Q))P , then w is a sequence of elements wQ of

J (X)(Q) such that rQ
R(wQ) = wR if Q ⊂ P , and x.wQ = wxQ if x ∈ P . Each

element wQ is itself defined by a sequence wR,Q of elements of X(R), for R ⊆ Q.
Then if R ⊆ S ⊆ Q ⊂ P , I must have rQ

S (wQ) = wS , hence wR,S = wR,Q. Setting
uR = wR,R for R ⊂ P , and uP = 0, I define indeed a element u = (uR) of J (X)(P )
(because w is invariant by P ) such that rP

Q(u) = wQ for Q ⊂ P . The natural
morphism from J (X)(P ) to ( lim←−

Q⊂P

J (X)(Q))P is hence indeed surjective, which

proves Condition 3 of Lemma 5.5, and Proposition 5.4.
5.2.2. Homomorphisms. Let X be an rµR(G)-module, and Y be a tµR(G)-

module. I define a tµR(G)-module h(X,Y ) by

h(X,Y )(P ) = HomR(X(P ), Y (P ))

If P is a subgroup of Q, and if φ ∈ h(X,Y )(P ), I set

tQP (φ) = tQP .φ.r
Q
P

If x is a element of G, I define the conjugate of φ by x by

x(φ) = x.φ.x−1

A similar (though more complicated) construction, exists for Mackey functors : if
X and Y are G-Mackey functors, I define the Mackey functor H(X,Y ) by

H(X,Y )(K) = Hom(ResG
KX,ResG

KY )

Hence an element of H(X,Y )(K) is a sequence of homomorphisms φL of X(L) in
Y (L), for all subgroups L of K such that

φL.t
L
M = tLM .φM φM .rL

M = rL
M .φL si M ⊆ L ⊆ K

x.φL = φxL.x if x ∈ K, L ⊆ K
The restriction of such an element φ = (φL)L⊆K to a subgroup M of K is defined by
rK
M (φ)L = φL for L ⊆M . The trace of φ from K to a subgroup N of G containing
K is defined by

tNK(φ)L =
∑

x∈K\N/L

tLKx∩L.x
−1.φK∩xL.x.r

L
Kx∩L

Finally, if x ∈ G, then the conjugate of φ by x is defined par

(xφ)L = x.φLx .x−1

Its a rather tedious calculation to check that H(X,Y ) is indeed a Mackey functor.
This construction plays the same role for Mackey functors as the functor Hom(−,−)
plays for G-modules : for example, a Mackey functor X is projective relative to a
subgroup K of G if and only if H(X,X)(G) = tGKH(X,X)(K) (Higman’s criterion).
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On the other hand, it is easy to see that if X and Y are in MackR(G, 1), then
so does H(X,Y ) (this follows from the fact that ResG

Kf
G
1 = fK

1 ).
The previous two constructions are related by the following lemma :

Lemma 5.7. Let X be an rµR(G)-module, and Y be a tµR(G)-module. Then

H(I(X),J (Y )) ' J (h(X,Y ))

Corollary 5.8. Let X and Y be Mackey functors in MackR(G, 1). If X is
R-projective and if Y is T -injective, then H(X,Y ) is T -injective, and in particular

Hom(X,Y ) = ⊕P∈sp(G)/GHomRNG(P )/P (X(P ), Y (P ))

Let K be a subgroup of G. There is an obvious restriction functor from the
category of rµR(G)-modules to the category of rµR(K)-modules : if P is a p-
subgroup of K, and X a rµR(G)-module, then ResG

K(X)(P ) = X(P ). It is clear
moreover that this functor commutes with the functors I and R : more precisely, if
IG (resp. IK) denotes the functor I for the group G (resp. for the group K), then
ResG

KIG = IKResG
K (here the first Res denotes restriction for Mackey functors, the

second one restriction for rµR(G)-modules).
Similarly, there is a restriction functor, that I still denote by ResG

K , from the
category of tµR(G)-modules to the category of tµR(K)-modules, which commutes
with functors J and T .

With this notation

Hom(ResG
KIG(X),ResG

KJ (Y )) = Hom(IK(ResG
KX),ResG

KJ (Y )) =

Hom(ResG
KX,RKResG

KJG(Y )) = Hom(ResG
KX,RKJK(ResG

KY ))
But JK(ResG

KY ) is TK-injective, and JK(ResG
K)(Y )(P ) = Y (P ). Proposition 5.4

shows then that
RKJK(ResG

KY ) =
⊕

P∈sp(K)/K

Lo
P,Y (P )

and then

Hom(ResG
KIG(X),ResG

KJ (Y )) =
⊕

P∈sp(K)/K

HomNG(P )/P (X(P ), Y (P ))

hence
Hom(ResG

KIG(X),ResG
KJ (Y )) = (

⊕

P∈sp(K)

h(X,Y )(P ))K

which is also J (h(X,Y ))(K). It is easy to describe this isomorphism precisely : if
for all p-subgroup P of K, I have a morphism φP from X(P ) to Y (P ) such that
xφPx

−1 = φxP if x ∈ K, and if L is a subgroup of K, I define a morphism φL from
(⊕P⊆LX(P ))L to (⊕Q⊆LY (Q))L by

φL(πL(u))Q =
∑

x∈P\L/Q

tQQ∩xP .x.r
P
Qx∩P .φP (u)

This identification allows to check that the resulting isomorphism is indeed an
isomorphism of Mackey functors, which proves Lemma 5.7.

Then ifX isR-projective and if Y is T -injective, the functorH(X,Y ) is a direct
summand of a functor of the form H(I(A),J (B)), isomorphic to J (h(A,B)), hence
it is T -injective. To prove the corollary, it remains then to apply Proposition 5.4
and the following lemma :
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Lemma 5.9. Let X and Y be G-Mackey functors, and K be a subgroup of G.
Then H(X,Y )P identifies with H(XP , YP )

This lemma shows indeed that

H(X,Y )(P ) = H(XP , YP )(P/P ) = HomR(X(P ), Y (P ))

hence that (⊕P∈sp(G)H(X,Y )(P ))G = ⊕P∈sp(G)/GHomNG(P )/P (X(P ), Y (P )).
So it remains to prove Lemma 5.9. Let K be a subgroup of G. Then by

definition, H(X,Y )(K) is the group of homomorphisms (as K-Mackey functors)
from ResG

KX to ResG
KY . An element of H(X,Y )(K) is hence a sequence (φL) of

homomorphisms from X(L) to Y (L), for L ⊆ K, which commute with restrictions,
traces, and elements of K.

If P is a normal subgroup of K, such an element is in H(X,Y )P (K/P ) if its
restriction to any subgroup M of K not containing P is zero, i.e. if φM = 0 if
P 6⊆M .

If L/P is a subgroup of K/P , then rL
MφL = φMrL

M = 0 if P 6⊆ M , and the
image of φL is contained in YP (L/P ). Similarly, since φLt

L
M = tML φM = 0, the map

φL factors through XP (L/P ). I define that way for all subgroup L/P of K/P a
morphism from XP (L/P ) to YP (L/P ). It is clear that these morphisms commute
with restrictions, traces and elements of K, hence I have defined a morphism of
K/P -Mackey functors from XP to YP .

This construction can be obviously reversed, and this proves Lemma 5.9.

5.3. Projective functors and Cartan matrix.
5.3.1. Notation and recall. I will suppose in this section that R is a field k, of

characteristic p > 0.
Under these conditions, the simple Mackey functors inMackk(G, 1) are indexed

by the G-conjugacy classes of pairs (Q,V ), where Q is a p-subgroup of G and V a
simple kNG(Q)/Q-module (cf.[5] Theorem 8.3 and [6] Theorem 9.7).
The simple functor SG

Q,V is defined for Q 6= 1 by

SG
Q,V = IndG

NG(Q)InfNG(Q)
NG(Q)/QS

NG(Q)/Q
1,V

and the functor SG
1,V is the unique minimal subfunctor of the fixed points func-

tor FPV . The value at a subgroup H is given by SG
1,V (H) = TrH

1 (V ).
Denoting by FQV the functor of coinvariants on V , whose value at H is

FQV (H) = VH , the functor SG
1,V is also the quotient of FQV by its unique maximal

subfunctor.
I will denote by PG

Q,V the projective cover of the functor SG
Q,V . Then PG

Q,V

is in Mackk(G, 1). Denoting by bQ the Burnside functor for the group Q, the
functor PG

Q,V is a direct summand of the functor IndG
QbQ. The module PQ,V (1) is

an indecomposable p-permutation kG-module (cf.[6] Theorem 12.7). Conversely, if
W is a p-permutation kG-module, there exists a unique projective Mackey functor
L in Mackk(G, 1) such that L(1) = W .

Thus the projective Mackey functors in Mackk(G, 1) are characterized by their
value at the trivial subgroup of G. The main result of this section will be a formula
to compute the Cartan matrix of Mack(G, 1) from the p-permutation modules.

If M is a Mackey functor, I will denote by M∗ its dual, defined by M∗(H) =
M(H)∗, by tKH(φ) = φ ◦ rK

H , by rK
H (φ) = φ ◦ rK

H and x.φ = φ ◦ x−1. If M and N are
Mackey functors, then Hom(M,N) identifies with Hom(N∗,M∗), hence the dual
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of a projective functor is an injective functor, and the dual of an injective functor
is a projective functor.

The dual of the functor SG
Q,V being the functor SG

Q,V ∗ , the dual of the functor
PG

Q,V is the injective hull IG
Q,V ∗ of the functor SG

Q,V ∗ .
If L is a projective Mackey functor, then the natural morphisms from FQL(1)

to L and from L to FPL(1) are respectively injective and surjective (cf.[6] Lemma
12.4). The same is true by duality if L is an injective functor, since the dual of the
functor FPV is the functor FQV ∗ .

Finally if K is a subgroup of G, the dual of the functor MK is the functor
(M∗)K .

5.3.2. Residues. The Mackey functors in MackR(G, 1) which are moreover pro-
jective (resp. injective) are R-projective (resp. T -injective). I can apply Corol-
lary 5.8 to these functors (and this argument also holds when R is an arbitrary
ring). When R is a field k, the residues projective or injective Mackey functors can
be easily computed :

Lemma 5.10. Let M be a projective (resp. injective) functor in Mackk(G, 1),
and P a p-subgroup of G. Then M(P ) (resp. M(P )) is isomorphic to M(1)[P ].

(for the notation V [P ], see Remark 3.5)
It suffices by duality of prove this lemma when M is projective : indeed, if M

is injective, then M∗ is projective and

M(P ) = MP (P/P ) = ((M∗)∗)P (P/P ) = ((M∗)P )∗(P/P ) = ((M∗)P (P/P ))∗ =

(M∗(1)[P ])∗ = (M(1)[P ]∗)∗ = M(1)[P ]

since if V is a p-permutation module, then V ∗[P ] = (V [P ])∗.
So letM be a projective Mackey functor inMackk(G, 1), andQ be a p-subgroup

of G. The natural morphism α from M(Q) to FPM(1)(Q) = M(1)Q is the map
sending v to rQ

1 v. This morphism is surjective. On the other hand, if v is a relative
trace tQSw from a proper subgroup S of Q, then

rQ
1 v =

∑

x∈Q/S

t11xr
S
1w = TrQ

S (w)

and the morphism α passes down to quotients, giving a surjective morphism α from
M(Q) to M(1)[Q]. I must now show that this morphism is injective. This property
being inherited by direct sums and direct summands, I can suppose that M is of
the form IndG

S bS , where S is a p-subgroup of G.
In this case, the moduleM(1) is isomorphic to IndG

S k, and denoting by TG(Q,S)
the quotient NG(Q)\G/S, I have (cf.[2])

M(1)[Q] = (IndG
S k)[Q] =

∑

x∈T G(Q,S)

IndNG(Q)/Q
NxS(Q)/Qk

On the other hand, if L is a Mackey functor for the group NG(Q)/Q, then

Hom((IndG
S bS)Q, L) = Hom(IndG

S bS , IndG
NG(Q)InfNG(Q)

NG(Q)/QL)

or
Hom((IndG

S bS)Q, L) = Hom(ResG
NG(Q)IndG

S bS , InfNG(Q)
NG(Q)/QL)
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Moreover

ResG
NG(Q)IndG

S bS =
∑

x∈NG(Q)\G/S

IndNG(Q)
NG(Q)∩xSbNG(Q)∩xS

hence

Hom((IndG
S bS)Q, L) =

∑

x∈NG(Q)\G/S

Hom(bNG(Q)∩xS ,ResNG(Q)
NG(Q)∩xSInfNG(Q)

NG(Q)/QL)

Since for any group S and any S-Mackey functor X, the group Hom(bS , X) is
isomorphic to X(S), and since (InfNG(Q)

NG(Q)/QL)(NxS(Q)) is zero if Q is not contained
in xS, i.e. if x 6∈ TG(Q,S), and equal to L(NxS(Q)/Q) otherwise, I have

Hom((IndG
S bS)Q, L) =

∑

x∈T G(Q,S)

L(NxS(Q)/Q)

Finally, for any L, I have

Hom((IndG
S bS)Q, L) =

∑

x∈T G(Q,S)

Hom(IndNG(Q)/Q
NxS(Q)/QbNxS(Q)/Q, L)

But the functor sending M to MQ being left adjoint of an exact functor, it fol-
lows that MQ is projective if M is. Then the functors X = (IndG

S bS)Q and Y =∑
x∈T G(Q,S) IndNG(Q)/Q

NxS(Q)/QbNxS(Q)/Q are both projective, and such that Hom(X,L) =
Hom(Y, L) for any L. Hence they are isomorphic.

So they have the same value at Q/Q, which gives

M(Q) =
∑

x∈T G(Q,S)

IndNG(Q)/Q
NxS(Q)/Qk = M(1)[Q]

and completes the proof of Lemma 5.10.
5.3.3. Cartan matrix. I suppose moreover here that the field k is big enough

(i.e. that it is a splitting field for all the groups NG(Q)/Q, for Q ∈ sp(G)).
Let Q (resp. L) be a p-subgroup of G, and V (resp. W ) be a simple kNG(Q)/Q-

module (resp. a simple kNG(L)/L-module). Lemma 5.10 and Corollary 5.8 show
that

Hom(PG
Q,V , (P

G
L,W )∗) = ⊕S∈sp(G)/GHomkNG(S)/S(PG

Q,V (1)[S], (PG
L,W )∗(1)[S])

On the other hand, in the Grothendieck group of Mackey functors

PG
L,W =

∑

H,M

C(L,W ),(H,M)S
G
H,M

where the sum runs over the indexing pairs of simple Mackey functors inMackk(G, 1),
denoting by C(L,W ),(H,M) the coefficient of the Cartan matrix corresponding to the
simple functors SG

L,W and SG
H,M . The dual of SG

H,M being SG
H,M∗ , it follows that

(PG
L,W )∗ =

∑

H,M

C(L,W ),(H,M)S
G
H,M∗

and since Hom(PG
Q,V , S

G
H,M∗) is zero if the pair (H,M∗) is not conjugate to the pair

(Q,V ), and one dimensional k (since k is big enough), it follows that

C(L,W ),(Q,V ∗) =
∑

S∈sp(G)/G

dimkHomkNG(S)/S(PG
Q,V (1)[S], (PG

L,W )∗(1)[S])
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But (PG
L,W )∗(1) = (PG

L,W (1))∗, and (PG
L,W (1))∗ = PG

L,W∗(1) (because PG
L,W (1) is

the Green correspondent of the projective cover of W by Theorem 12.7 of [6], and
since the Green correspondence commutes with the duality). Changing V to V ∗ in
the above equality gives

C(L,W ),(Q,V ) =
∑

S∈sp(G)/G

dimkHomkNG(S)/S((PG
Q,V (1))∗[S], (PG

L,W (1))∗[S])

i.e.

C(L,W ),(Q,V ) =
∑

S∈sp(G)/G

dimkHomkNG(S)/S(PG
L,W (1)[S], PG

Q,V (1)[S])

Finally, by linearity, this gives :

Proposition 5.11. Let k be a “big enough” field. If M and N are projective
Mackey functors in Mackk(G, 1), then

dimkHom(M,N) =
∑

S∈sp(G)/G

dimkHomkNG(S)/S(M(1)[S], N(1)[S])

Corollary 5.12. Let pg(G) the Green ring of p-permutation kG-modules. The
bilinear form on pg(G) defined by

< X,Y >G=
∑

S∈sp(G)/G

dimkHomkNG(S)/S(X[S], Y [S])

is symmetric, positive, and definite. Moreover, if H is a subgroup of G, then

< IndG
HX,Y >G=< X,ResG

HY >H

This corollary follows from the fact that the Cartan matrix of Mackk(G, 1) is
symmetric, positive, and definite, and that the corresponding bilinear form satisfies
Frobenius reciprocity (moreover, if M is a kH-Mackey functor, then (IndG

HM)(1) =
IndG

HM(1)).
5.3.4. Another formula. I suppose here that R is a field k of characteristic p.

The notation about the generalized Steinberg modules was introduced in [1].

Proposition 5.13. Let L be a projective Mackey functor in Mackk(G, 1), and
X be any Mackey functor for G over k. Then

dimk Hom(L,X) =
∑

P∈sp(G)/G

dimk HomkNG(P )/P (St(NG(P )/P, L(1)[P ]), X(P ))

To prove this proposition, I use the following ingredients :
1) If N is a normal subgroup of G, there exists a natural algebra homomorphism
from µk(G/N) to µk(G), mapping the element tK/N

xL/N
xr

H/N
L/N to tKxLxr

H
L . If N is a

normal p-subgroup of G, then this morphism maps the algebra µ1
k(G/N) in the

algebra µ1
k(G) : indeed, if P/N is a p-subgroup of G/N , then the image of tH/N

P/N

(resp. rH/N
P/N ) is tHP (resp. rH

P ), and P is a p-subgroup of G.
2) This morphism induces an exact functor ρG

G/N from the category of G-Mackey
functors to the category of G/N -Mackey functors : if M is a G-Mackey functor,
then the functor ρG

G/N (M) is such that

ρG
G/N (M)(H/N) = M(H)
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Moreover, if N is a normal p-subgroup of G, the functor ρG
G/N maps Mackk(G, 1)

in Mackk(G/N, 1).
The functor ρG

G/N admits a left adjoint, denoted by ιGG/N . Since the functor
ρG

G/N is exact, the functor ιGG/N (M) is projective if M is. If N is a normal p-
subgroup of G, and if M is in Mackk(G/N, 1), then ιGG/N (M) is in Mackk(G, 1).
3) If M is a G/N -Mackey functor, then for any kG-module V

Hom(ιGG/N (M), FPV ) = Hom(M,ρG
G/N (FPV ))

and it is easy to see that ρG
G/N (FPV ) identifies with FPV N . Then

Hom(ιGG/N (M), FPV ) = HomkG/N (M(N/N), V N ) = HomkG(M(N/N), V )

On the other hand, since

Hom(ιGG/N (M), FPV ) = HomG(ιGG/N (M)(1), V )

it follows that ιGG/N (M)(1) is isomorphic as a kG-module to the module M(N/N).
4) If M = A−B is a virtual projective kG-module, I denote by FQM the Mackey
virtual projective functor FQA − FQB , in the Green ring of projective Mackey
functors in Mackk(G, 1). If X and Y are virtual projective Mackey functors in
Mackk(G, 1) such that X(1) = Y (1) in the ring of Green of kG-modules, then
X = Y .
The previous considerations prove the following lemma :

Lemma 5.14. Let L be a projective Mackey functor in Mackk(G, 1). Then

L =
∑

P∈sp(G)/G

IndG
NG(P )ι

NG(P )
NG(P )/P (FQSt(NG(P )/P,L(1)[P ]))

in the Green ring of projective functors in Mackk(G, 1).

Indeed, the module L(1) can be written (cf.[1])

L(1) =
∑

P∈sp(G)/G

IndG
NG(P )St(NG(P )/P, L(1)[P ])

Then both sides of the equality of the lemma are virtual projective Mackey functors
in Mackk(G, 1), which have the same value at the trivial subgroup. Hence they are
equal.

The proposition follows, applying the functor Hom(−, X) to both sides.

Remark 5.15. It is possible to compute effectively the functor ιGG/N : let M
be a kG/N -Mackey functor, and K be a subgroup of G. Let ωN (K) the set of
subgroups of K ordered by the relation

L ¹ L′ ⇔
{
L ⊆ L′
L ∩N = L′ ∩N

I denote by
lim−→

L∈ωN (K)

M(LN/N)

the quotient of ⊕L⊆KM(LN/N) by the submodule generated by elements of the
form t

L′N/N
LN/N m−m, for L ¹ L′ and m ∈M(LN/N).
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The group K acts on lim−→
L∈ωN (K)

M(LN/N), and then

ιGH(M)(K) =
(

lim−→
L∈ωN (K)

M(LN/N)
)

K

is the largest quotient on which K acts trivially. If L is a subgroup of K, and m
an element of M(LN/N), I denote by mK

L the image of m in ιGH(M)(K).
If K ⊆ K ′, then tK

′
K (resp. rK′

K ) is the map from ιGH(M)(K) to ιGH(M)(K ′)
(resp. from ιGH(M)(K ′) to ιGH(M)(K)) defined by

tK
′

K (mK
L ) = mK′

L rK′
K (m′K′

L′ ) =
∑

x∈K\K′/L′

(
xr

L′N/N
(Kx∩The)N/Nm

′
)K

K∩xL′

Finally if x ∈ G, then x(mK
L ) = (xm)

xK
xL .

6. Projective functors and image of I
I will try to see in this section under which conditions a projective Mackey

functor in Mack(G, 1) lies in the image of I. I will suppose that R is a complete
local ring, with residue field of characteristic p.

6.1. Finite projective resolutions. I will state the following equivalence :

Theorem 6.1. Let X be an rµR(G)-module. The following conditions are
equivalent :

(1) The functor I(X) is projective.
(2) The module X has a finite projective resolution.

The proof of this theorem requires a series of preliminary results.

Lemma 6.2. Let X and Y be projective functors in MackR(G, 1). The mor-
phism φ 7→ φ(1) of evaluation at 1 from Hom(X,Y ) to HomRG(X(1), Y (1)) is
surjective. Moreover φ is a split injective (resp. a split surjective) if and only if
φ(1) is a split injective (resp. a split surjective).

I have already recalled that the natural morphism from Y to FPY (1) is surjective
if Y is projective. Let then f in HomRG(X(1), Y (1)). It yields by adjunction a
morphism F of X in FPY (1). Then the diagram

Y
↓

X
F→ FPY (1)

can be completed to a commutative diagram by a morphism φ fromX to Y , because
the vertical arrow is surjective, and the functor X is projective. It is clear that φ(1)
is equal to f , which proves the first assertion.

It is clear moreover that if φ is a split injection, then φ(1) is also split injective.
Conversely, if φ(1) is a split injection, then there exists a morphism f from Y (1)
to X(1) such that fφ(1) = IdX(1). The morphism f can be lifted to a morphism
f̃ from Y to X, and then the morphism ψ = f̃φ is an endomorphism of X such
that ψ(1) = Id. Then some power of ψ is a Fitting element4. Its image I is then a

4This probably requires X to be finitely generated



34 S. BOUC

direct summand of X, hence I is a projective Mackey functor in Mack(G, 1) such
that I(1) = X(1), which proves that I is isomorphic to X, hence that ψ = f̃φ is
invertible, and φ is a split injection. The case of a split surjection is similar.

Lemma 6.3. Let X and Y be projective functors in MackR(G, 1), and φ be a
morphism from X to Y . The following conditions are equivalent :

(1) The morphism φ is a split injection (resp. a split surjection).
(2) For any p subgroup P of G, the morphism φ(P ) of X(P ) in Y (P ) is

injective (resp. surjective).

Since one can lift projective objects and morphisms between them from k to R,
I can assume that R is a field k of characteristic p. In this case, the module
X(P ) identifies with X(1)[P ], and the morphism φ(P ) to φ(1)[P ]. I will prove
simultaneously Lemma 6.3 and the following proposition :

Proposition 6.4. Let M and N be p-permutation kG-modules, and f be a
morphism from M to N . The following conditions are equivalent :

(1) The morphism f is a split injection (resp. a split surjection).
(2) For any p subgroup P of G, the morphism f [P ] of M [P ] in N [P ] is injec-

tive (resp. surjective).

Indeed let X, Y and φ be as in Lemma 6.3. It is clear that if φ is a split
surjection, then for any P , the morphism φ(P ) is (split) surjective. Conversely, if
φ(P ) is surjective for all P , then φ(1) = φ(1) is surjective. Let Q be a p-subgroup
such that φ(R) is surjective for all proper subgroup R of Q. Let moreover v ∈ Y (P ).

Since φ(P ) is surjective, there exists elements vR ∈ Y (R), for R ⊂ Q, and an
element w ∈ X(Q) such that

v = φ(Q)(w) +
∑

R⊂Q

tQRvR

Then each vR can be written vR = φ(R)(wR) since φ(R) is surjective, and then

v = φ(Q)(W ) +
∑

R⊂Q

tQRφ(R)(wR) = φ(Q)(w) +
∑

R⊂Q

φ(Q)(tQRwR)

which proves that φ(Q) is surjective for all Q. Then φ is surjective, hence φ is a
split surjection since Y is projective. This shows the equivalence of conditions of
Lemma 6.3 in the surjective case.

Then let M , N and f be as in Proposition 6.4. If f is a split surjection, it
is clear that f [P ] is (split) surjective for all P . Conversely, if f [P ] is surjective
for all P , let LM (resp. LN ) the projective Mackey functor in Mackk(G, 1) such
that LM (1) = M (resp. LN (1) = N). The morphism f can be extended to a
morphism φ of LM in LN , such that φ(1) = f . The hypothesis implies that φ(P ),
which identifies with f [P ], is surjective for all P . Then φ is a split surjection, and
f = φ(1) is also split surjective. Which proves the equivalence of conditions of
Proposition 6.4 in the surjective case.

But by duality, this proves the equivalence of the conditions of Proposition 6.4
in the injective case5.

5This proof is not correct for infinitely generated modules. This was fixed in Le complexe de
châınes d’un G-complexe simplicial acyclique J. Alg. 220 (1999) 415-436
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Let then again X, Y , and φ be as in Lemma 6.3. It is clear that if φ is a split
injection, then φ(P ) is (split) injective for all P . Conversely, if φ(P ) is injective for
all P , let f = φ(1). Then f is a morphism from X(1) to Y (1) such that f [P ] is
injective for all P , hence f is a split injection, and Lemma 6.2 implies that φ is a
split injection, which completes the proof of the Lemma 6.3 and Proposition 6.4.

By the same argument as above about lifting of projective modules, it suffices
to prove Theorem 6.1 in the case where R is a filed k of characteristic p.

If M is a kG-module, and P a p-subgroup of G, I will denote by BrP the
projection morphism from MP to M [P ]. If X is an rµR(G)-module, as the image
of rP

1 is contained in X(1)P , I can abuse notation, and denote by BrP r
P
1 the

composite map from X(P ) to X(1)[P ]. With this notation :

Proposition 6.5. Let X be an rµk(G)-module. The following conditions are
equivalent :

(1) The module X has a finite projective resolution.
(2) The module X(1) is a p-permutation kG-module, and for any p-subgroup P

of G, the map BrP rP
1 is a isomorphism from X(P ) to X(1)[P ].

I will show that Assertion 1 of the proposition implies Assertion 2 by induction
on the length of a finite projective resolution of X.

I already observed (in Section 2) that Assertion 2 is true if X is projective :
indeed, if P is a p-subgroup of G, if E is a projective kNG(P )/P -module projective,
and if X = LP,E , then

X(Q) = ⊕x∈TG(Q,P )/NG(P )x⊗ E
On the other hand, the module X(1) identifies with IndG

NG(P )E. Hence an element
v of X(1)Q can be written

∑
x∈G/P x⊗vx, the sequence vx being such that vσq(x) =

hq,xvx, denoting by x 7→ σq(x) the permutation of G/P induced by q, and hq,x the
element of NG(P ) defined by qx = σq(x)hq,x. In particular, the element vx is
invariant by Q ∩ xP , and v can also be written

v =
∑

x∈Q\G/NG(P )

TrQ
Q∩xP (x⊗ vx)

It is then clear that rQ
1 X(Q) is a supplement in X(1)Q of the kernel of BrQ.

So let X be an rµk(G)-module having a finite projective resolution. There
exists a projective rµk(G)-module L and an rµk(G)-module Y having a strictly
shorter finite projective resolution than the one of X, and an exact sequence

0→ Y
i→ L→ X → 0

The induction hypothesis implies that Y (1) is a p-permutation module, and that
BrP r

P
1 is an isomorphism from Y (P ) to Y (1)[P ]. Then the commutative diagram

0 → Y (P )
i(P )→ L(P )

↓ BrP rP
1 ↓ BrP rP

1

Y (1)[P ]
i(1)[P ]→ L(1)[P ]

where the vertical arrows are isomorphisms, shows that the map i(1) is an injection
from Y (1) in L(1) such that i(1)[P ] is injective for all P . Thus i(1) is a split
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injection by Proposition 6.4, and the sequence

0→ Y (1)
i(1)→ L(1)→ X(1)→ 0

is split exact. In particular, the module X(1) is a direct summand of L(1). Hence
it is a p-permutation module. Then the completed diagram

0 → Y (P )
i(P )→ L(P ) → X(P ) → 0

↓ BrP rP
1 ↓ BrP rP

1 ↓ BrP rP
1

0 → Y (1)[P ]
i(1)[P ]→ L(1)[P ] → X(1)[P ] → 0

shows that the vertical arrow on the right is an isomorphism, which proves Asser-
tion 2 of the proposition.

Now I will show that Assertion 2 of the proposition implies Assertion 1. First a
notation : if X is an rµk(G)-module, I denote by Supp(X) the set of subgroups P
such that X(P ) 6= 0, and Supp(X) its “downwards closure” for inclusion, i.e. the
set of subgroups which are contained in a element of Supp(X).

Let X be an rµk(G)-module with the properties of Assertion 2 of the proposi-
tion. I will proceed by induction on the cardinality of Supp(X).

There is nothing to prove if this cardinality is zero, since then X is zero, hence
projective. I postpone the proof of the following lemma :

Lemma 6.6. Let X be an rµk(G)-module, and for any p-subgroup P of G, let
EP be a projective cover of the kNG(P )/P -module

X(P )/(
∑

Q⊃P

rQ
PX(Q))

Then ⊕P∈sp(G)/GLP,EP is a projective cover of X.

The properties of Assertion 2 show indeed that if P is a maximal element of
Supp(X) (or equivalently of Supp(X)), then the module X(P ) is a p-permutation
kNG(P )/P -module. Moreover, if P ⊂ Q ⊆ NG(P ), thenX(P )[Q/P ], isomorphic to
X(1)[P ][Q/P ], hence toX(1)[Q], hence toX(Q), is zero. ThenX(P ) is a projective
kNG(P )/P -module. Since moreover rQ

PX(Q) is zero if Q strictly contains P , I see
that X(P ) is equal to EP for any maximal element P of Supp(X).

Let then L = ⊕PLP,EP
be a projective cover of X, and Y the kernel of a

surjection s from L to X. Since LP,EP (P ) = EP = X(P ), I see that Y (P ) is zero if
P is maximal in Supp(X). Moreover L(Q) is zero if Q is not in Supp(X) : indeed,
the support of LP,EP is the set of subgroups of G which are contained in P up to
conjugation, if EP , hence X(P ) are non zero.

Hence the cardinality of Supp(Y ) is strictly smaller than the cardinality of
Supp(X). On the other hand, the commutative diagram

L(P )
s(P )→ X(P ) → 0

↓ BrP rP
1 ↓ BrP rP

1

L(1)[P ]
s(1)[P ]→ X(1)[P ]

shows as above that s is a split surjection. Similarly, the completed diagram

0 → Y (P ) → L(P )
s(P )→ X(P ) → 0

↓ BrP rP
1 ↓ BrP rP

1 ↓ BrP rP
1

0 → Y (1)[P ] → L(1)[P ]
s(1)[P ]→ X(1)[P ] → 0
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shows then that Y has the properties of Assertion 2. The induction hypothesis
implies that Y has a finite projective resolution. It follows that X has a finite
projective resolution, and this completes the proof of Proposition 6.5.

Remark 6.7. The previous proof also shows that if pn is the p-part of the order
of G, then any rµk(G)-module having a finite projective resolution has a resolution
of length smaller than n. The length of minimal finite projective resolutions is
hence bounded6.

I must now prove to Lemma 6.6. Recall that the simple rµk(G)-modules, that
I have denoted by NP,V , are indexed by pairs {P, V }, where P is a p-subgroup
of G and V a simple kNG(P )/P -module. They are defined by NP,V (Q) = 0 if
Q is not conjugate to P , and NP,V (P ) = V . It is then easy to see that for all
rµk(G)-module X

Hom(X,NP,V ) = HomkNG(P )/P (X(P )/
∑

Q⊃P

rQ
PX(Q), V )

which shows that, denoting by J(X) the radical of X,

J(X)(P ) = J(X(P )) +
∑

Q⊃P

rQ
PX(Q)

Lemma 6.6 follows easily.

I can now prove Theorem 6.1 : let X be an rµk(G)-module such that I(X) is
projective. Then, since X(1) = I(X)(1), the module X(1) is a p-permutation
module. On the other hand, the module I(X)(P ) identifies with X(1)[P ] if I(X)
is projective, by Lemma 5.10. But for any X, it also identifies with X(P ). Moreover
the diagram

X(P ) → I(X)(P )
↓ rP

1 ↓ rP
1

X(1) → I(X)(1)
is commutative, hence X fulfills the conditions of Assertion 2 of Proposition 6.5.
Thus X has a finite projective resolution, which proves Assertion 2 of the theorem.

To show that Assertion 2 of the theorem implies Assertion 1, I proceed by
induction on the length of a finite projective resolution of X. If X is projective,
then I(X) is projective, because the functor I is left adjoint to an exact functor.

If X has a finite projective resolution, then there exists a projective rµk(G)-
module L, an rµk(G)-module Y having a finite projective resolution, strictly shorter
than the one of X, and an exact sequence

0→ Y
i→ L→ X → 0

Then I(Y ) and I(L) are projective Mackey functors. Moreover, since I(i)(P ) =
i(P ) is injective for all P , the morphism I(i) is a split injection by Lemma 6.3.
Since the functor I is right exact, it follows that the sequence

0→ I(Y )
I(i)→ I(L)→ I(X)→ 0

is split exact, hence the functor I(X) is projective, which completes the proof of
Theorem 6.1.

6In other words, the finitistic dimension of rµk(G) is at most equal to n
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6.2. Examples. Let M be a p-permutation module. There exists a unique
projective Mackey functor LM in Mackk(G, 1), such that LM (1) = M . Proposi-
tion 6.5 and Lemma 5.10 give a necessary and sufficient condition for the existence
of an rµk(G)-module X such that LM is isomorphic to I(X) : indeed in this case,
the module X(P ) must be isomorphic to LM (P ), hence to M [P ]. Hence there must
exist maps rP

Q, defined for Q ⊆ P , from M [P ] to M [Q], such that

• rQ
S r

P
Q = rP

S if S ⊆ Q ⊆ P .

• rP
P = Id for all P ∈ sp(G).

• xrP
Qx

−1 = r
xP
xQ for any x ∈ G and any Q ⊆ P .

• rP
1 is injective and its image is a supplement of KerBrP in MP = M [1]P

Conversely, if such maps exist, then they define an rµk(G)-module X such that
I(X) is projective, and moreover I(X)(1) = X(1) = M , hence I(X) is isomorphic
to LM .

6.2.1. Permutation modules. A simple example of this situation is the case
where M is a permutation module : indeed, if B is a G-stable basis of M , then
the inclusion of BP in BQ yields the required map rP

Q. For example, if M = k,
the functor LM is the functor bp(G) of Mackk(G, 1) associated Burnside to the
Burnside functor (i.e. the subfunctor of the functor of Burnside such that bp(H) is
generated by the elements H/P , where P is a p-subgroup of H). The associated
rµk(G)-module X is such that X(P ) = k for all P , the maps rP

Q being identity
maps, as well as the conjugations by the elements of G. In other words, the module
X is isomorphic to R(FPk). Thus

Proposition 6.8. The module R(FPk) has a finite projective resolution.

I will now give other examples of this situation.
6.2.2. Some indecomposable p-permutation modules. Recall (cf.[2]) that the in-

decomposable p-permutation modules can be indexed by the pairs (P,E), where P
is a p-subgroup of G and E is an indecomposable projective kNG(P )/P -module :
the module M(P,E) corresponding to the pair (P,E) is the unique indecomposable
p-permutation module with vertex P such that M(P,E)[P ] = E. The multiplicity
of M(P,E) as a direct summand of a p-permutation module N is equal to the
multiplicity of E as a direct summand of N [P ]. This multiplicity is given by the
following :

Lemma 6.9. Let N be a kG-module, and E be a projective kG-module. The
multiplicity of E as a direct summand of N is equal to

dimkTr
G
1 Homk(N,E/J(E))/dimkEndkG(E/J(E))

Indeed dimk Tr
G
1 Homk(N,E/J(E)) is the dimension of the space of kG-homo-

morphisms f from N to E/J(E) which factor through a projective module, i.e.
which can be written f = πg, where π is the projection from E to E/J(E) (since
E is a projective cover of E/J(E)). Since π is essential, the morphism g is then
surjective if f is non zero, hence surjective. Then E is a direct summand of N .
Conversely, if N can be written N = En ⊕M , where the module M has no di-
rect summand isomorphic to E, then dimkTr

G
1 Homk(M,E/J(E)) is equal to zero,
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and dimkTr
G
1 Homk(N,E/J(E)) is equal to ndimkTr

G
1 Homk(E,E/J(E)), hence to

ndimkEndkG(E/J(E)).

Proposition 6.10. Let P (resp. Q) be a p-subgroup of G, and E (resp. F )
be an indecomposable projective kNG(P )/P -module (resp. kNG(Q)/Q)-module) If
M(P,E) is direct summand of IndG

NG(Q)F , then there exists an element x ∈ G such
that Qx ∩Op(NG(P )) = P , and in particular

Q ∩Op(G) ⊆ xP ⊆ Q
Corollary 6.11. If Q ⊆ Op(G), then the module IndG

NG(Q)F is indecompos-
able (equal to M(Q,F )), and the functor LM(Q,F ) is isomorphic to I(LQ,F ).

Indeed (cf. [1] Lemme 3), if N = IndG
NG(Q)F , then

N [P ] =
∑

x∈NG(P )\TG(P,Q)/NG(Q)

IndNG(P )/P
NG(P,xQ)/P

xF

moreover assuming for simplicity x = 1, hence P ⊂ Q
dimk Tr

NG(P )/P
1 Homk(IndNG(P )/P

NG(P,Q)/PF,E/J(E)) = . . .

. . . = dimk Tr
NG(P,Q)/P
1 Homk(F,E/J(E))

But NQ(P )/P acts trivially on F , hence

dimk Tr
NG(P,Q)/P
1 Homk(F,E/J(E)) = . . .

. . . = dimk Tr
NG(P,Q)/P
NQ(P )/P HomNQ(P )/P (F, TrNQ(P )/P

1 (E/J(E))

But Op(NG(P )/P ) acts trivially on the simple kNG(P )/P module E/J(E). This
expression is hence equal to zero if NQ(P ) ∩Op(NG(P )) is different from P , hence
if Q ∩Op(NG(P )) 6= P .

Since NG(P ) normalizes POp(G), I have NPOp(G)(P ) ⊆ Op(NG(P )), hence I
must have Q ∩NPOp(G)(P ) = P , i.e. Q ∩ POp(G) = P , or Q ∩Op(G) ⊆ P , which
proves the proposition.

The first part of the corollary follows, since the only indecomposable summand
with vertex Q of N is M(Q,F ), with multiplicity 1. On the other hand the func-
tor I(LQ,F ) is projective, and its value at the trivial subgroup is IndG

NG(Q)F =
M(Q,F ).

Proposition 6.12. The following conditions are equivalent :
(1) For any p-subgroup of G and any indecomposable projective kNG(P )/P -

module, the module IndG
NG(P )E is indecomposable.

(2) For any indecomposable p-permutation module M , there exists a p-subgroup
P and an indecomposable projective kNG(P )/P -module E such that M is
isomorphic to IndG

NG(P )E.
(3) The group G has a normal Sylow p-subgroup.
(4) Any rµk(G)-module having a finite projective resolution is projective.

If Assertion 1) holds, as M(P,E) is a direct summand of IndG
NG(P )E, which is

indecomposable, these modules are isomorphic, and Assertion 2) holds.
It is clear that Assertion 2 implies Assertion 3 : indeed, if the module k is

isomorphic to IndG
NG(P )E, then [G : NG(P )] dimk E = 1 by consideration of dimen-

sions, hence P is a normal subgroup of G. Since p does not divide the dimension
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of the projective kNG(P )/P -module E, the group NG(P )/P is a p’-group, and P
is a Sylow p-subgroup of G.

Similarly, if G has a normal Sylow p-subgroup, equal to Op(G), then all the
p-subgroups of G are contained in Op(G), and Assertion 1) holds by the previous
proposition.

Assertion 4) implies Assertion 3), since if R(FPk) has a finite projective res-
olution, it is a projective rµk(G)-module, indecomposable since R(FPk)(1) = k.
Hence there exists P and E such that R(FPk) is isomorphic to LP,E . Then k

is isomorphic to IndG
NG(P )E, and G has a normal Sylow p-subgroup by the above

argument.
To show that Assertion 1) implies Assertion 4), I will use the following lemma :

Lemma 6.13. Let P be a p-subgroup of G and E be a projective kNG(P )/P -
module such that the module IndG

NG(P )E is indecomposable. Let X be an rµk(G)-
module having a finite projective resolution. If M(P,E) = IndG

NG(P )E is a direct
summand of X(1), then there exists a submodule of X isomorphic to LP,E.

Let indeed α be a split injection from IndG
NG(P )E into X(1) : the map α is

determined by a NG(P )-homomorphism from E to X(1), i.e. by a NG(P )/P -
homomorphism β from E to X(1)P . Composing this map with the projection BrP
onto X(1)[P ], and next with the isomorphism σ, inverse of BrP rP

1 , I get the map
φ = σBrPβ from E to X(P ), which gives by adjunction a morphism Φ from LP,E

to X. The morphism Φ(1) is defined by

Φ(1)(x⊗ e) = xrP
1 σBrPβ(e)

whereas α is defined by
α(x⊗ e) = xβ(e)

Let then γ be a morphism from X(1) to IndG
NG(P )E such that γα = Id. In par-

ticular, I have γβ(e) = 1 ⊗ e. The morphism γΦ(1) is an endomorphism of the
indecomposable module IndG

NG(P )E. Hence it is hence invertible or nilpotent. But

γΦ(1)(1⊗ e) = γrP
1 σBrPβ(e)

and
BrP r

P
1 σBrPβ(e) = BrPβ(e)

by definition of σ. Thus rP
1 σBrPβ(e)− β(e) ∈ KerBrP , hence

γΦ(1)(1⊗ e)− 1⊗ e ∈ KerBrP
i.e.

γΦ(1)[P ] = IdE

proving that γΦ(1) is not nilpotent, hence that it is invertible. Thus Φ(1) is a split
injection, which proves that Φ(1)[Q] is injective for all Q, hence that Φ is injective,
which proves the lemma.

Then if the conditions of Assertion 1) of the proposition hold, and if X is a
minimal counter example to Assertion 4), let M(P,E) = IndG

NG(P )E be an inde-
composable direct summand of X(1), and L be a submodule of X isomorphic to
LP,E . The quotient Y of X by L has a finite projective resolution : indeed, a
module Y has a finite projective resolution if and only if there exists an integer n
such that Extm(Y,Z) = 0 for all Z and any m ≥ n. Then if

0→ A→ B → C → 0
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is an exact sequence, the associated long exact sequence of Ext groups shows that
if two of the modules A, B, C have a finite projective resolution, then so does the
third.

Then the minimality of X implies that Y is projective, hence direct summand
of X, which is hence a direct sum of two projective modules, hence projective. This
contradicts the hypothesis on X, and completes the proof of the proposition.

6.2.3. Quasi trivial intersection. I will say that a p-subgroup P of G is a quasi
trivial intersection subgroup if for any x ∈ G, either P = P x, or P ∩ P x ⊆ Op(G).
In the case where Op(G) = (1), a quasi trivial intersection subgroup is a trivial
intersection subgroup.

Proposition 6.14. Let P be a quasi trivial intersection p-subgroup of G, and
M be an indecomposable p-permutation kG-module with vertex P . Then there exists
an rµk(G)-module X such that I(X) = LM .

Indeed, if M(Q,F ) is a direct summand of IndG
NG(P )E, then there exists x ∈ G

such that P x ∩ Op(NG(Q)) = Q. Then if Q 6⊆ Op(G), the group Q is contained
in a unique conjugate P x of P , hence NG(Q) normalizes P x, which proves that
NP x(Q) ⊆ Op(NG(Q)). Then it follows that P x = Q. Hence the module IndG

NG(P )E

is the direct sum of M(P,E) and indecomposable modules with vertex contained
in Op(G).

Let then M be an indecomposable p-permutation kG-module with vertex P .
I denote by E the projective kNG(P )/P -module M [P ]. If P is contained in Op(G),
then IndG

NG(P )E is indecomposable, equal to M(P,E), and the rµk(G)-module
X = LP,E is such that I(X) is projective, and X(1) = IndG

NG(P )E = M(P,E).
Thus X is a solution to the question for the module M = M(P,E).

If P is not contained in Op(G), let X be a minimal quotient of LP,E such that
X has a finite projective resolution, and that X(P ) = E. Such a quotient exists,
since LP,E(P ) = E.

Since X is a quotient of LP,E , and since X has a finite projective resolution,
I know that X(1) is a direct summand of IndG

NG(P )E = LP,E(1).
Then if M(Q,F ) is an indecomposable direct summand of X(1), either Q is

conjugate to P , or Q is contained in Op(G). In this case, the module IndG
NG(Q)F is

indecomposable, equal to M(Q,F ), and the split injection from M(Q,F ) to X(1)
yields an injection from LQ,F into X, hence an exact sequence

0→ LQ,F → X → Y → 0

Then Y is a quotient of LP,E , since X is, and moreover Y (P ) is equal to E,
since LQ,F (P ) = 0. Since Y has a finite projective resolution, this contradicts the
hypothesis on X, which proves that Q is conjugate to P , hence that F = E, and
that X(1) is indecomposable with vertex P , such that X(1)[P ] = E. Hence X is a
solution to the question, which proves the proposition.

Proposition 6.15. If the Sylow p-subgroups of G are trivial intersection p-
subgroups, then :

(1) For any p-subgroup P of G and any projective kNG(P )/P -module E, there
exists a projective kNG(P ∩Op(G))/(P ∩Op(G))-module F such that

IndG
NG(P )E = M(P,E)⊕ IndG

NG(P∩Op(G))F
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(2) For any p-permutation kG-module M , there exists an rµk(G)-module X
such that I(X) = LM .

Indeed, if the Sylow p-subgroups ofG/Op(G) are trivial intersection p-subgroups,
then they are quasi trivial intersection p-subgroups. If P is a p-subgroup of G, not
contained in Op(G), if S is a Sylow p-subgroup of G containing P , then S is the
only Sylow subgroup of G containing P .

Then if M(Q,F ) is an indecomposable direct summand of IndG
NG(P )E, there

exists x ∈ G such that P x ∩ Op(NG(Q)) = Q, and P x ∩ Op(G) ⊆ Q. If Q is
not contained in Op(G), then Sx is the only Sylow p-subgroup of G containing Q.
In particular NG(Q) ⊆ NG(Sx), and NSx(Q) ⊆ Op(NG(Q)). Thus NP x(Q) ⊆
Op(NG(Q)), which proves that Q = P x. And if Q is contained in Op(G), then
Q = P x ∩Op(G), which proves Assertion 1).

Let then M be a p-permutation indecomposable module with vertex P , and
E = M [P ]. Let as above X be a minimal quotient of LP,E having a finite projective
resolution, and such that X(P ) = E.

In particular, the module X(1) is a direct summand of IndG
NG(P )E. Thus if

P ⊆ Op(G), then X(1) is equal to IndG
NG(P )E = M(P,E), and X fulfills the

conditions of Assertion 2).
If P is not contained in Op(G), let M(Q,F ) be an indecomposable direct sum-

mand of X(1). Then M(Q,F ) is a direct summand of IndG
NG(P )E. Thus if Q is not

conjugate to P , then Q ⊆ Op(G), and M(Q,F ) = IndG
NG(Q)F is a direct summand

of X(1). The module LQ,F is then a submodule of X, and the quotient Y is a
quotient of LP,E strictly smaller than X, having a finite projective resolution, and
such that Y (P ) = X(P ) = E, since LQ,F (P ) = 0. This contradicts the definition
of X, and proves that Q = P , hence that F = E, and that X(1) is indecompos-
able. Since X(1)[P ] = X(P ) = E, this prove that X(1) is isomorphic to M , and
Assertion 2) follows.

6.2.4. The case of cyclic groups. Let M is a p-permutation indecomposable
module with vertex P , then M is a direct summand of IndG

P k. This is equivalent
to saying that there exists a P -invariant linear form φ on M and a vector f of MP ,
such that

IdM = TrG
P (φ⊗ f)

denoting by φ⊗ f the endomorphism of M defined by

(φ⊗ f)(v) = φ(v)f

Let then Q be a p-subgroup of G. I define an endomorphism αQ of M by

αQ(v) =
∑

x∈TG(Q,P )/P

φ(x−1v)xf

so that α1 is the identity map. Then :

Lemma 6.16. With this notation :
(1) If Q ∈ sp(G) and x ∈ G, then xαQx

−1 = αxQ.
(2) The image of αQ is contained in MQ, and its kernel contains [Q,M ].
(3) If A ⊇ B ⊆ C, then αAαBαC = αAαC

(4) In particular, for all p-subgroup Q of G, I have

α3
Q = α2

Q
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and α2
Q is a projector whose image is isomorphic to M [Q].

Assertion 1) follows from the fact that TG(xQ,P ) = TG(Q,P )x. For Asser-
tion 2), I observe that if q ∈ Q, then

qαQ(v) = q
∑

x∈TG(Q,P )/P

φ(x−1v)xf =
∑

x∈TG(Q,P )/P

φ(x−1v)xqxf = αQ(v)

since f is P -invariant. The second part of Assertion 2) follows then from Asser-
tion 1), since αQ(qv) = qαQ(v) = αQ(v).
Under the assumptions of Assertion 3), let v ∈ MB . Since α1 is the identity map,
I can write

v =
∑

x∈B\G/P

∑

y∈B/B∩xP

φ(x−1y−1v)yxv

i.e., since v is B-invariant

v =
∑

x∈B\G/P

φ(x−1v)TrB
B∩xP (xv)

But αA(TrB
B∩xP (xv)) = 0 if B 6⊆ xP , and hence

αA(v) = αAαB(v) si v ∈MB

and Assertion 3) follows, as the image of αC is contained in MC , hence in MB .
The first part of Assertion 4) follows, taking A = B = C = Q. The second one

follows from the fact that for v ∈MQ, the vector v−αQ(v) is in the kernel of BrQ,
which is contained in the kernel of αQ.

In the case where P is cyclic, this gives :

Proposition 6.17. Let P a cyclic p-subgroup of G, and M be an indecompos-
able p-permutation kG-module with vertex P . Then there exists an rµk(G)-module
X such that I(X) = LM .

If the Sylow p-subgroups of G are cyclic, then for any indecomposable p-permuta-
tion module M there exists an rµk(G)-module X such that I(X) = LM .

With the previous notation, I set, for any p-subgroup Q of G

βQ = αΦn(Q)αΦn−1(Q) . . . αΦ(Q)α
2
Q

where Φ(Q) is the Frattini subgroup of Q, the integer n being chosen such that
Φn+1(Q) = (1) (the definition of βQ does not depend on the choice of such an
integer n, since α1 = Id). It is clear that if x ∈ G, then

xβQx
−1 = βxQ

Moreover, if S is a subgroup of Q, there exists k such that S = Φk(Q), and

αSβQ = αΦk(Q)αΦn(Q)αΦn−1(Q) . . . αΦ(Q)α
2
Q

hence
αSβQ = αΦk(Q)αΦk+1(Q) . . . α

2
Q

which gives
βSβQ = βQ

It follows that βQ is a projector. Moreover, it is clear that βQαQ = βQ, and that
αQβQ = α2

Q (it is the case S = Q, hence k = 0, of the above equality). In particular,
the projectors βQ and α2

Q have the same kernel, hence images isomorphic to M [Q].
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Moreover if S is a subgroup of Q, then βSβQ = βQ, and the image of βQ is contained
in the image of βS .

Denoting by rQ
S this inclusion, I get the required maps from M [Q] to M [S] I de-

fine that way an rµk(G)-module X such that I(X) is projective and I(X)(1) = M ,
hence I(X) is isomorphic to LM , which proves the proposition. The corollary
follows trivially.

6.2.5. A counter example. Let G be the group symmetric S5, and k be the field
with two elements7. I will build a p-permutation kG-module M for which there is
no rµk(G)-module X such that I(X) is isomorphic to LM .

Let M be a 6-dimensional vector space over k. The standard generators of S5

act on M by the following correspondence ρ :

ρ((12)) =




1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1




ρ((23)) =




0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0




ρ((34)) =




1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1




ρ((45)) =




1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




Then ρ((12)), ρ((23)), and ρ((34)) act on the basis of M via the following permu-
tations

ρ((12)) 7→ (23)(45) ρ((23)) 7→ (12)(56) ρ((34)) 7→ (24)(35)

It is then clear that the restriction of ρ to the subgroup S4 generated by (12), (23),
and (34) is a permutation representation of S4.

An elementary computation shows that ρ((45)) commutes with ρ((12) and
ρ((23)), and that the product ρ((34))ρ((45)) has order 3. It follows that ρ is a
representation of S5, and that M is a kS5 module.

Since the restriction of M to S4 is a permutation module, and since S4 contains
a Sylow 2-subgroup of S5, the module M is a 2-permutation kS5-module.

Let S the Sylow 2-subgroup of S5 generated by (12), (34) and (13)(24). Then
S stabilizes the canonical basis B = {e1, . . . , e6} of M . Since

(13)(24) = (23)(34)(12)(23)

the element (13)(24) of S acts on B by the permutation

(12)(56)(24)(35)(23)(45)(12)(56) = (16)(34)

The orbit of S on B are hence {e1, e6} and {e2, e3, e4, e5}. The stabilizer of e1
in S is the group P generated by (12) and (34), and the stabilizer of e2 in S is the
group T generated by (13)(24). It follows that

ResS5
S M = IndS

P k ⊕ IndS
T k

7so p = 2 here
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The indecomposable direct summands of M are hence of vertex contained in P or
in T up to conjugation. The module M has no projective direct summand, since
its dimension is smaller than the 2-part of the order of S5. On the other hand, the
module M [T ] has a basis in one to one correspondence with BT = {e2, e5}. Since
NS5(T )/T has order 4, it follows that M [T ] has no kNS5(T )/T -projective direct
summand. Hence the module M only has indecomposable direct summands with
non trivial vertex contained in P .

The module M [P ] has a basis in one to one correspondence with BP , consisting
of the vectors e1 and e6. The normalizer of P in S5 is equal to S, and the group S
switches e1 and e6. It follows that the module M [P ] is kNS5(P )/P -indecomposable
and projective, hence that M has a direct summand isomorphic to M(P,Ek), where
Ek denotes a projective cover of the trivial kNS5(P )/P -trivial.

Let then Q be the subgroup of P generated by (12). The module M [Q] has a
basis in one to one correspondence with BQ, i.e. {e1, e6}. The normalizer of Q,
isomorphic to Z/2Z×S3, is generated by Q and the elements (34) and (45), which
act trivially on the quotient ofM by the subspace generated by {e2, e3, e4, e5}. Thus
NS5(Q)/Q acts trivially on M [Q], hence this kNS5(Q)/Q-module has no projective
direct summand. It follows that M has no direct summand with vertex Q.

The only proper non trivial subgroup of P which is not conjugate to Q is
the group U generated by (12)(34), which acts on B by the permutation (25)(34).
Thus M [U ] has dimension 2. Since NS5(U)/U has order 4, the module M [U ] has
no projective direct summand as kNS5(U)/U -module, and the module M has no
direct summand with vertex U .

The module M is hence indecomposable of vertex P . Since M [P ] is the pro-
jective cover of the trivial module, the module M is the Scott module of S5 for the
subgroup P (cf. [2]).

Then if it is possible of find suitable restriction maps, in particular, the map rP
1

must be injective, as well as that the map rP
Q, since rP

1 = rQ
1 r

P
Q. Since M [P ] and

M [Q] have the same dimension, the map rP
Q must be surjective. Then rP

1 and rQ
1

have the same image W , which must be a subspace of MP invariant by the group
H generated by NS5(P ) and NS5(Q).

The group H is a transitive subgroup of S5 which contains a transposition.
Thus H = S5. On the other hand, a vector v of MP is of the form

v =




a
b
b
b
b
c




The image of v by ρ((23)) is the vector

ρ((23))(v) =




b
a
b
b
c
b



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Thus if v ∈ W , then ρ((23))(v) ∈ W and then a = b = c. Hence the only subspace
of MP which is invariant by S5 has dimension 1, generated by the vector

v =




1
1
1
1
1
1




It is the module MS5 . The space W cannot have dimension 2, hence it is impossible
to find an rµk(G)-module X such that I(X) = LM .

7. Complexes of projective Mackey functors

I suppose here that the ring R is a complete local ring, whose residue field k
has characteristic p.

7.1. Split complexes. Let A be a ring and L∗ be a complex of A-modules,
whose differential d has degree 1. In [7], Webb gives the following definition of a
split complex : the complex L∗ is split if there exists maps αn from Ln to Ln−1

such that for all n,
dnαn+1d

n = dn

Lemma 7.1. The following conditions are equivalent :
(1) The complex L∗ is split.
(2) The complex L∗ is homotopic to a complex with zero differentials.

Indeed, if M∗ is a complex with zero differentials, and if f is a homotopy
equivalence from L∗ to M∗, with inverse g, then there exists maps αn from Ln to
Ln−1 such that

Id− gnfn = dn−1αn + αn+1d
n

Then dnαn+1d
n = dn−dngnfn, and dngn is zero since g is a morphism of complexes

and since the differential of M∗ is zero.
Conversely, if L∗ is split, let Mn = Hn(L∗) its n-th homology group. I consider

M∗ as a complex with zero differentials. Let Zn be the kernel of dn, let in be the
injection from Zn to Ln, and pn the projection from Zn to Mn. The image of
Id− αn+1d

n is contained in Zn by hypothesis, and I set

fn = pn(Id− αn+1d
n)

Conversely, the map Id − dn−1αn sends Zn inside itself, and its restriction to Zn

factors through Mn, i.e.
Id− dn−1αn = hnpn

and I denote by gn the composition of hn and in. It is then clear that if u = pn(v) ∈
Mn

fngn(u) = pn(Id− αn+1d
n)inhnpn(v) = pn(Id− αn+1d

n)(Id− dn−1αn)(v)

i.e., since dn(v) = 0

fngn(u) = pn(v − dn−1αn(v)) = pn(v) = u

Conversely, if w ∈ Ln, then

gnfn(w) = inhnpn(Id− αn+1d
n)(w) = in(Id− dn−1αn)(Id− αn+1d

n)(w)
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or
gnfn = Id− αn+1d

n − dn−1(αn − αnαn+1d
n)

and setting βn = αn − αnαn+1d
n, I have indeed

gnfn = Id− βn+1d
n − dn−1βn

which shows that L∗ is homotopic to M∗.
It follows from this lemma that L∗ is homotopic to the zero complex if and

only if L∗ is acyclic and split in the sense of the above definition.

Corollary 7.2. Let L∗ be a complex of A-modules. If for any integer n,
there exists a complex M∗ (possibly depending on n) homotopic to L∗ and such
that Mn = 0, then L∗ is homotopic to the zero complex.

Indeed in those conditions, the complex L∗ is certainly acyclic, since Hn(L∗) =
Hn(M∗) = 0. Moreover, if f is a homotopy equivalence from L∗ to M∗, with
inverse g, then there exists maps αm from Lm to Lm−1 and βm from Mm to Mm−1

such that for all m
Id− gmfm = αm+1d

m + dm−1αm

In particular, I see that dn − dngnfn = dnαn+1d
n, and since Mn = 0, I have

dngn = 0. Then the complex L∗ is split, hence it is homotopic to the zero complex.

7.2. Split complexes of projective Mackey functors. Lemma 6.3 and
Proposition 6.4 have the following generalization :

Proposition 7.3. Let L∗ be a complex of projective functors in MackR(G, 1),
such that there exists n with Ln = 0. The following conditions :

(1) The complex L∗ is acyclic and split.
(2) For any p-subgroup P of G, the complex L

∗
(P ) is acyclic.

It is clear that Assertion 1) implies Assertion 2). Conversely, I can e.g. suppose
that L−1 is zero. Lemma 6.3 shows then that d0 is a split injection, which amounts
to saying that the complex L∗ is homotopic to the complex

. . . L−2 d−2

→ 0→ 0→ 0→ L1/L0 d′1→ L2 → . . .

Lemma 6.3 also shows that d−3 is a split surjection. By induction, it follows that
the complex L∗ is homotopic to a complex with an arbitrary number of consecutive
zero modules around L0, and the result follows by Corollary 7.2.

Similarly :

Proposition 7.4. Let M∗ a complex of p-permutation RG-modules, such that
there exists n with Mn = 0. The following conditions are equivalent :

(1) The complex M∗ is acyclic and split.
(2) For any p-subgroup of G, the complex M∗[P ] is acyclic.

If K∗ and L∗ are complexes of modules over an arbitrary ring, to any morphism
f fromK∗ to L∗ is associated a third complex, the cone of f , denoted by C∗(K,L, f)
with the following properties :

• The complex C∗(K,L, f) is acyclic if and only if Hn(f) is a isomorphism
for all n (i.e. if f is a quasi isomorphism)

• The complex C∗(K,L, f) is acyclic and split if and only if f is a homotopy
equivalence.
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• The module Cn(K,L, f) is the direct sum of Kn and Ln−1.
The third property shows that if K∗ and L∗ are complexes of Mackey functors in
MackR(G, 1), then so is C∗(K,L, f). Similarly, if K∗ and L∗ are complexes of p-
permutations modules, then so is C∗(K,L, f). The above propositions and remarks
yield then the following two propositions :

Proposition 7.5. Let K∗ and L∗ be complexes of projective Mackey functors
in MackR(G, 1), such that there exists n with Kn = Ln = 0 and Kn−1 = Ln−1 = 0.
Let f be a morphism from K∗ to L∗. The following conditions are equivalent :

(1) The morphism f is a homotopy equivalence.
(2) For any p-subgroup P of G, the morphism f(P ) is a quasi isomorphism.

Proposition 7.6. Let M∗ and N∗ be complexes of p-permutation kG-modules,
such that there exists m with Mn = Nn = 0 and Mn−1 = Nn−1 = 0. Let f be a
morphism from M∗ to N∗. The following conditions are equivalent :

(1) The morphism f is a homotopy equivalence.
(2) For any p-subgroup P of G, the morphism f [P ] is a quasi isomorphism.

7.3. Complexes of p-permutations modules. I will try to see how to ex-
tend the previous results when the hypothesis “for all P” is replaced by “for all non
trivial P” : the consequence of this change will be the replacement of zero modules
by projective modules, of zero Mackey functors by projective Mackey functors with
trivial vertex, of split acyclic complexes by complexes homotopic to complexes of
projective modules.

I suppose that R is a field k. I call p-permutations complex a complex of p-
permutations kG-modules.

I will try to find here under which conditions such a complex is homotopic to
a complex of projective kG-modules. First, I can suppose that G is a p-group

Lemma 7.7. Let L∗ be a complex of finitely generated kG-modules, and S be a
Sylow p-subgroup of G. The following conditions are equivalent :

(1) The complex L∗ is homotopic to a complex of projective kG-modules.
(2) The restriction of L∗ to S is homotopic to a complex of projective kS-

modules.

It is clear that Assertion 1) implies Assertion 2). Conversely, let E∗ be a
complex of projective kS-modules, and a be a homotopy equivalence from E∗ to
ResG

SL
∗, with inverse b. Then the complex IndG

SE
∗ is a complex of projective

kG-modules, and by adjunction, the morphism a and b yield morphisms A and B
between IndG

SE
∗ and L∗. It is easy to see that the morphism AB is homotopic to

[G : S]Id. The lemma follows then from the following lemma :

Lemma 7.8. Let M∗ and L∗ be complexes of finitely generated kG-modules. Let
A be a morphism from M∗ to L∗ and B be a morphism from L∗ to M∗ such that
AB is homotopic to the identity of L∗. Then L∗ is homotopic to a direct summand
of M∗.

Indeed, let L∗1 = ∩n(AB)n(L∗), and L∗2 =
∑

nKer(AB)n. Then L∗1 and L∗2
are subcomplexes of L∗, invariant by AB, and L∗ identifies with the direct sum of
the complexes L∗1 and L∗2. The restriction of AB to L∗1 and L∗2 is homotopic to the
identity. Since in each degree n, the restriction of AB to Ln

2 is nilpotent, it follows
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that for any n, there exists a complex K∗ homotopic to L∗2, such that Kn = 0.
Then the complex L∗2 is homotopic to the zero complex, and the complex L∗ is
homotopic to the complex L∗1.

On the other hand, the complex L∗1 is isomorphic to the complex B(L∗1), which
is homotopic to ∩n(BA)n(M∗), which is direct summand of M∗. This proves the
lemma.

The previous lemmas allow to show the

Proposition 7.9. Let L∗ be a complex of p-permutation kG-modules, such that
there exists an integer n for which Ln is projective. The following conditions are
equivalent :

(1) The complex L∗ is homotopic to a complex of projective kG-modules.
(2) For any non trivial p-subgroup P of G, the complex L∗[P ] is acyclic.

It is clear that Assertion 1) implies Assertion 2). To prove the converse, I need
a notation :

IfX and Y are kG-modules, I will denote by JkG(X,Y ) the set of kG-homomor-
phisms f from X to Y such that for any kG-homomorphism g from Y to X, the
morphism gf is nilpotent.

For example, JkG(X,X) is the Jacobson radical of EndkG(X). It is easy to see
on the other hand that this definition is additive with respect to X and Y : the
canonical isomorphism between HomkG(X,Y⊕Z) and HomkG(X,Y )⊕HomkG(X,Z)
induces indeed an isomorphism between JkG(X,Y ⊕Z) and JkG(X,Y )⊕JkG(X,Z).
Similarly, if X∗ and Y ∗ are the respective duals of X and Y , then φ ∈ JkG(X,Y )
if and only if φ∗ ∈ JkG(Y ∗, X∗) : indeed, the morphism ψ∗φ∗ is nilpotent if and
only if the morphism φ∗ψ∗ = (ψφ)∗ is.

By the previous lemma, I can suppose that G is a p-group. Let then n be an
arbitrary integer, and φ be a morphism from Ln+1 to Ln, such that φdn is not
nilpotent. The diagram

. . . Ln−1 → Ln dn

→ Ln+1 → Ln+2 . . .

0 ↓ φdn ↓
φ

↙ ↓ dnφ ↓ 0

. . . Ln−1 → Ln dn

→ Ln+1 → Ln+2 . . .

defines then a endomorphism γ of L∗, homotopic to 0. I can then replace L∗ by
its direct summand ∩m(Id+ γ)m(L∗), which is homotopic to it. The only modules
modified by this operation are Ln and Ln+1, which are replaced by some direct
summands L′n and L′n+1. The differentials dn−1, dn and dn+1 become respectively
d′n−1, d′n and d′n+1. If dn−1 ∈ JkG(Ln−1, Ln), then d′n−1 ∈ JkG(L′n−1, L′n).
Similarly, if dn+1 ∈ JkG(Ln+1, Ln+2), then d′n+1 ∈ JkG(L′n+1, L′n+2).

Hence I can suppose that dn ∈ JkG(Ln, Ln+1) for all n.
Let then l be an integer such that Ll is a projective kG-module. If one of the

modules Ln, for n > l, is not projective, let n be the smallest integer greater than
l such that Ln is not projective.

Let moreover Q be a maximal subgroup of G which is a vortex of some in-
decomposable direct summand of Ln. The only indecomposable p-permutation
kG-module with vertex Q is IndG

Qk, because G is a p-group. The module M is then
the sum of its part A with vertex Q, isomorphic to a sum of copies of IndG

Qk, and
a module X such that X[Q] = 0. On the other hand, the module Ln+1 is the sum
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of its part B of vortex Q, of a module Z such that Z[Q] = 0, and of a module Y
having only indecomposable summands with vertex strictly bigger than Q.

Then dn can be represented by a matrix


φB,A φB,X

φY,A φY,X

φZ,A φZ,X




The morphism dn[Q] can then be represented by the matrix
(
φB,A[Q]
φY,A[Q]

)

Then if Q 6= (1), as the complex L∗[Q] is acyclic, and as Ln−1[Q] = 0, the map
dn[Q] must be injective.

The morphism φB,A is a matrix with coefficients in EndkG(IndG
Qk), whose every

coefficient is actually in J(EndkG(IndG
Qk)), hence maps the socle of IndG

Qk (isomor-
phic to k) to zero, since φ ∈ JkG(M,N). Thus φB,A maps the socle of A to zero.

But this socle maps onto the socle of A[Q]. Thus φY,A[Q] restricted to this socle
must be injective, hence φY,A[Q] must be injective. Then A[Q], which is projective
as anNG(Q)/Qmodule, maps injectively into Y [Q], henceA[Q] is a direct summand
of Y [Q]. But since Y only has direct summands with vertex strictly bigger than Q,
this is impossible, and this contradiction proves that Q = (1), hence that Ln is
projective.

Thus Ln is projective for all n ≥ l. I can then apply the same argument to the
dual complex Homk(L∗, k) to show that Ln is projective for all n ≤ l, hence that
L∗ is a complex of projective modules. The proposition follows.

It yields the following corollary, which is a slightly more precise version of a
precise a result of Webb (cf.[8]) :

Corollary 7.10. Let ∆ be a simplicial complex on which acts the group G.
The following conditions are equivalent :

(1) The chain complex C(∆) of ∆ over k is homotopic to a complex of pro-
jective kG-modules.

(2) For any subgroup P of order p of G, the set ∆P is acyclic modulo p.

Indeed, a classical argument shows that if Assertion 2) holds, then ∆P is acyclic
modulo p for all non trivial p-subgroup P of G. On the other hand, the complex
C(∆)[P ] is the chain complex of ∆P .

7.4. Complexes of projective Mackey functors. I suppose here again
that R is a field k of characteristic p. Propositions 7.4 and 7.6 have the following
consequence :

Proposition 7.11. Let X∗ be a complex of projective functors in Mackk(G, 1),
such that there exists an integer n for which Xn = Xn+1 = 0. The following
conditions are equivalent :

(1) There exists a complex L∗ of projective kG-modules such that X∗ is ho-
motopic to the complex FQL∗ .

(2) For any non trivial p-subgroup P of G, the complex X
∗
(P ) is acyclic.

(3) The complex X∗(1) is homotopic to a complex of projective modules.
(4) The complex X∗ is homotopic to the complex FQX∗(1).
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Indeed, if M is a kG-module and Y is a Mackey functor of the form FQM , it
is easy to see that Y (P ) is zero when P is non trivial, because the traces tPR are
surjective for R 6= P . It is then clear that Assertion 1) implies the Assertion 2).
Similarly, Assertion 4) implies Assertion 2).

Similarly, Assertion 2) implies that the complex X∗(1) fulfills the hypothesis
of Assertion 2) of Proposition 7.9. Then there exists a complex L∗ of projective
kG-modules such that X∗(1) is homotopic to L∗. Thus Assertion 2) implies Asser-
tion 3).

It is clear that Assertion 3) implies Assertion 2), since X
∗
(P ) identifies with

X∗(1)[P ].
Let then L∗ be a complex of projective modules homotopic to the complex

X∗(1). Up to replacing L∗ by a direct summand, I can suppose that Ln = Ln+1 = 0.
Let then a be a homotopy equivalence from L∗ to X∗(1). By adjunction, the
morphism a yields a morphism A from the complex FQL∗ to the complex X∗ : the
morphism An(H) from (Ln)H to Xn(H) is given by

An(v) = tH1 a
n(v)

The complex X∗(1)[P ] is homotopic to the complex X
∗
(P ), and to the complex

L∗[P ], which is zero if P 6= (1). The complex X
∗
(P ) is hence acyclic and split in

this case. The complex FQ∗L(P ) is zero if P 6= (1). Then the morphism A(P ) is
trivially a quasi isomorphism if P 6= (1). Since the morphism A(1) is equal to A(1),
hence to a, it is a homotopy equivalence, hence a quasi isomorphism.

Then the complexes FQL∗ and X∗ fulfill the hypotheses of Assertion 2 of
Proposition 7.5, and A is a homotopy equivalence, which proves that Assertion 3)
implies Assertion 1). Hence Assertions 1), 2) and 3) are equivalent.

Then if Assertion 1) is true, i.e. if X∗ is homotopic to the complex FQL∗ ,
the complex X∗(1) is homotopic to the complex FQL∗(1), i.e. to the complex L∗,
hence the complex FQX∗(1) is homotopic to the complex FQL∗ , hence also to the
complex X∗. Thus Assertion 1) implies Assertion 4), and this completes the proof
of the proposition.

I will use this result to give a slightly more precise version of a theorem of Webb
(cf.[8] Theorem 1) in a particular case. For this, I need a notation : if the group G
acts on the set X, then X can be decomposed in a disjoint union of G-orbits, which
are G-sets of the form G/H. Then if M is a Mackey functor, Webb denotes by MX

the Mackey functor defined by

MX
‘

Y = MX +MY MG/H = IndG
HResG

HM

On the other hand, if ∆ is a simplicial complex, then ∆i denotes the set of simplices
of ∆ of dimension i (or of cardinal i+ 1). Webb’s Theorem is then the following :
Theorem (Webb) : Let ∆ be a simplicial complex on which acts the
group G. Let Y ⊂ X be sets of subgroups of G, closed under inclusion
and G-conjugation. Suppose that :

(1) For any simplex s of ∆, the vertices of s are in distinct G-orbits.
(2) The functor M is projective relative to X.
(3) For any H ∈ X − Y , the complex ∆H is contractible.
(4) For any H ∈ Y , the module M(H) is zero.

Then there exists a split exact sequence of Mackey functors

0→M →M∆0 → . . .→M∆i → . . .→ 0
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I will consider here the case where X is the set of p-subgroups of G, and
Y consists only of the trivial subgroup of G. Then a Mackey functor projective
relative to X is a functor in Mackk(G, 1). Denoting by Ci(∆) the kG-module with
k-basis ∆i,

Proposition 7.12. Let M be a Mackey functor in Mackk(G, 1), and ∆ be a
simplicial complex on which G acts. If :

(1) For any simplex s of ∆, the vertices of s are in distinct G-orbits,
(2) For any p-subgroup P of order p of G, the complex ∆P is acyclic modulo p,

then the complex

0→M →M∆0 → . . .→M∆i → . . .→ 0

is homotopic to the complex

0→ FQM(1) → FQM(1)⊗C0(∆) → . . .→ FQM(1)⊗Ci(∆) → . . .→ 0

To prove this proposition, I will apply Proposition 7.11 to the complex b∗

0→ (bp)→ (bp)∆0 → . . .→ (bp)∆i → . . .→ 0

where I denote by bp the functor z(fG
1 )bG. It is a projective functor in Mackk(G, 1),

and since the above complex is finite, it vanishes in two consecutive degrees. The
value at (1) of this complex is the chain complex of ∆, which is homotopic to a
complex of projective modules by Corollary 7.10. Proposition 7.11 now shows that
the complex b∗ is homotopic to the complex FQb∗(1) = FQC∗(∆).

But for any Mackey functor M in Mackk(G, 1), the functor H(bp,M) is isomor-
phic to the functor M . Then the functor H((bp)∆i ,M), isomorphic to H(bp,M∆i),
is isomorphic to M∆i . Then if N denotes the dual functor of M , the complex

0← H((bp), N)← H((bp)∆0 , N)← . . .← H((bp)∆i , N)← . . .← 0

is isomorphic to the complex

0← N ← N∆0 ← . . .← N∆i ← . . .← 0

and this complex is homotopic to the complex H(FQC∗(∆), N). It is clear on
the other hand that for any kG-module V , the functor H(FQV , N) is isomor-
phic to the functor FPHomk(V,N(1)). Since the dual of this functor is the functor
FQHomk(N(1),V ), and since Hom(N(1), Ci(∆)) is isomorphic to Ci(∆)⊗M(1), the
dual of the above complex, which is the complex

0→M →M∆0 → . . .→M∆i → . . .→ 0

is indeed homotopic to the complex

0→ FQM(1) → FQM(1)⊗C0(∆) → . . .→ FQM(1)⊗Ci(∆) → . . .→ 0

which proves the proposition.

Remark 7.13. Hypothesis 1) plays no role in the proof, but it is necessary to
build the complex of the proposition (cf.[8]).
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[5] Jacques Thévenaz and Peter Webb, Simple Mackey functors, Proceedings of the 2nd Inter-

national group theory conference Bressanone 1989, Rend. Circ. Mat. Palermo, vol. 23, 1990,
Serie II, pp. 299–319.

[6] , The structure of Mackey functors, Trans. Amer. Math. Soc. 347 (1995), no. 6, 1865–
1961.

[7] Peter Webb, Subgroup complexes, The Arcata conference on representations of finite groups,
vol. 47, AMS Proceedings of Symposia in pure mathematics, 1987.

[8] , A split exact sequence for Mackey functors, Comment. Math. Helv. 66 (1991), 34–69.

S. Bouc, Equipe des groupes finis, UFR de Mathématiques, Université Paris 7-Denis
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