Resolutions of Mackey functors!

S. Bouc

ABSTRACT. I will build some standard resolutions for Mackey functors which
are projective relative to p-subgroups. Those resolutions are closely related to
the poset of p-subgroups. They lead to generalizations of known results on co-
homology. They give a way to compute the Cartan matrix for Mackey functors,
in terms of p-permutation modules, and to precise the structure of projective
Mackey functors. They also provide results on complexes of projective Mackey
functors and complexes of p-permutation modules.

1. Introduction

I will build some standard resolutions for Mackey functors which are projective
relative to p-subgroups. Those resolutions are closely related to the poset of p-
subgroups. They lead to generalizations of known results on cohomology. They
give a way to compute the Cartan matrix for Mackey functors, in terms of p-
permutation modules, and to precise the structure of projective Mackey functors.
They also provide results on complexes of projective Mackey functors and complexes
of p-permutation modules.

2. Notation

2.1. The Mackey algebra. Most of the results I will need can be found in
J.Thévenaz and P.Webb’s paper ([6]) on the structure of Mackey functors : among
other possible definitions, a Mackey functor is a module over the Mackey algebra.
A possible definition of this algebra is the following :

DEFINITION 2.1. Let G be a finite group, and R be a commutative ring. The
Mackey algebra pr(G) is the algebra generated by the elements t5, r& and ¢, ,
where H and K are subgroups of G such that H C K, and g is an element of G,
subject to the relations :

tht® =tk forall HC K C L
rirl =rL forall HCK CL
CghKCh K = Cgni¢ forall g, h, K
t = ¢ — ¢, g for all h, H such that h € H
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cg’th = tjgcng for all g,h, H K

Cg,KT;Ig = T_jgcgﬂ for all g,h,H, K
H H
SRR

H H

i = Z e rihepcor forall K C HD L (Mackey axiom)
zeK\H/L
any other product of 7‘5, tﬁ and ¢y, being equal to zero.

Setting ¢, = > 5 ¢, for x € G, it follows that ¢, g = cg;tg, and that the map
x +— ¢, endows pg(G) with a structure of interior G-algebra (in Puig’s sense [3]).

Proposition (3.4) of [6] proves that the c; 1, hence also the ¢,, are linearly
independent, which allows for an identification of x and ¢,. With this notation,
Proposition (3.2) of [6] proves that pur(G) admits a basis over R, consisting of the
elements tﬁ{L:Crf, where H and K are subgroups of G, where € K\G/H, and L
is a subgroup of H N K” up to conjugation by H N K*.

If H is a subgroup of G, the defining relations of ur(G) allow to define a
morphism from the Burnside ring bgr(H) of H with coefficients in R, to the algebra
pr(G), sending the element H/K to the element t:rf. T will denote by X — [X]
this morphism.

On the other hand, there is a natural morphism z from the Burnside ring of G
to the center of the Mackey algebra ([6], Proposition (9.2)), defined by

2(X) = Z [Res% X
KCG
which allows the use of the idempotents of the Burnside ring to split the Mackey
algebra into smaller pieces.

In the remainder of this paper, I will only consider the “characteristic p” case :
I will assume that any prime number different from p is invertible in the ring R.
Under these conditions (cf [6] Section 9-10), the algebra pug(G) is Morita-equivalent
to a direct product of algebras indexed by the p-perfect subgroups of G (i.e. the
subgroups with no non trivial quotient p-group).

More precisely, the algebra pr(G) is Morita~equivalent to the direct product
over the p-perfect subgroups H of G (up to G-conjugation) of the algebras I will de-
note by k(N (H)/H) (the category of uk(G)-modules is denoted by Mackr(G, 1)
in [6]) : the algebra uk(G) is the piece of pr(G) corresponding to the idempotent
fE of the Burnside ring of G. Denoting by 5,(G) the set of p-subgroups of G, the
idempotent f& of the Burnside ring bo(G) with rational coefficients is defined par

=Y %

Pes, (G)/G
with 1
6= —— 3 7Q.PlQIG

where ¥]Q, P| is the reduced Euler-Poincaré characteristic of the set of p-subgroups
strictly containing ) and strictly contained in P. An easy computation shows then
that
X(sp(Na(P)/P))
= G/P
2 [Na(P)/P|

=

Pes,(G)/G
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with 5,(G) = 5,(G) — {1}.

This expression shows that f& is p-integral, hence f& in br(G) (it is indeed
well known that X (s,(G)) is divisible by the p-part of the order of G, since e.g. it
is the degree of a projective character of G (cf. [4])).

With this notation, the algebra uk(G) identifies to z(f&)ur(G). Another way
of seeing this algebra up to Morita equivalence is given by the following lemma :

LEMMA 2.2, Let e =} pey (@) th. Then eur(Q)e is a subalgebra of ph(G),
and the inclusion of epr(G)e in uk(G) is a Morita equivalence.

First I have to check that eur(G)e is a subalgebra of ph(G) : it suffices to
check that z(f&)e = e, which will follow from the equality z(f&)t5 = t5 for all
p-subgroup P of G. But it follows from Section 9 of [6] that

(f)tp = Resp(F)]tp = [Resp (1) P/ P] = [Res(f17)]
and the result will follow, if I know that Res% ¢ = fF, since the expression of f{’
shows that f{" = P/P if P is a p-group. This in turn follows from the

LEMMA 2.3. Let H be a subgroup of G. Then Resflff =fH

The computation can be done inside bgo(G) : the idempotents e§ are such that

for all X of bg(G)
X= ) |XFef

LeG
Lmod.G
Then
G .G _ G G H _ G G\L| H
Respep = E Respep.ef = E |(Resgrep)”ler
LCH LCH
Lmod.H Lmod.H

and since |(Res$e$)?| is non zero only if L is a conjugate of P in G, in which case
it is equal to 1, T see that Res%e$ is the sum of the e, where L runs through
the conjugates of P contained in H, up to H-conjugation. Then Resg fE is the
sum over the p-subgroups L of H, modulo H, of the efl. Lemma 2.3, and the first
assertion of Lemma 2.2. The second one follows then from

LEMMA 2.4. 2 Let A be a ring (with identity element), and e be an idempotent
of A. The following assertions are equivalent :

1) The inclusion of eAe in A is a Morita equivalence.
2) The two sided ideal of A generated by e is equal to A (i.e. AeA=A).

The inclusion of eAe in A defines a functor of restriction r from the category A-
mod of left A-modules to eAe-mod, by (M) = eM. This functor has a left adjoint 4,
defined by (M) = A®cae M. Then ri(M) = eA ®cae M = eAe ®cae M = M and
ir(M) identifies with AeM. Hence if 1) holds, then in particular AeA = A, hence
2) holds. Conversely, if 2) holds, then ir(M) = AeM = AeAM = AM = M, hence
1) holds.

To complete the proof of Lemma 2.2, it remains to check that the identity
element of ukL(G), i.e. 2(fF), lies in the two sided ideal of uk(G) generated by e.
It suffices to show that 27 lies in this ideal, for any subgroup H of G and any
p-subgroup P of H. But this is clear, since t2rf = tHerf. Lemma 2.2 follows.

2This lemma is true, but the proof given here is not quite complete
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REMARK 2.5. The eur(G)e-modules are actually very natural objects : they
are exactly the Mackey functors “defined only over p-subgroups ”. Whereas the
ph(G)-modules are the Mackey functors which are projective relative to p-subgroups
([6] Theorem 9.7). The algebra pk(G) identifies with the subalgebra of pr(G) gen-
erated by the x € G, and the rg and tZ, where @ is a p-subgroup of G and H an
arbitrary subgroup of G.

On the other hand, Lemma 2.2 has the following consequence :

COROLLARY 2.6. Let S be a Sylow p-subgroup of G, and M, be a complex of
Mackey functors in Mackr(G,1). Then M, is acyclic (resp. split acyclic) if and
only if its restriction to S is.

Indeed, a Morita equivalence maps an exact sequence (resp. a split exact
sequence) to an exact sequence (resp. to a split exact sequence).

2.2. Another algebra. I will use also here another algebra, that I denote by
rur(G), defined similarly by considering only p-subgroups of G, and “forgetting”
the generators t5 and the Mackey axiom.

More precisely, let A be a free R-module on the set of triples (z, @, P), where
x is an element of G, and P, @ are p-subgroups of G such that Q@ C P. T turn A
into an algebra by defining the multiplication of the basis elements by

(‘T7 Qv P)(y7 Rv S) = 6P9,R(xy7 an S)
It is easy to see that A is an associative algebra. Moreover, let

e= Y (1,PP)

Pes,(G)
then
e.(y,Q,R)= > 6puq(y,P’,R)=(y,Q,R)
Pes, (G)
and

¥.Q.R).e= >  Orry.Q.P)=(y.Q.R)

Pes, (G)

hence e is an identity element of A.

Let then I the R-submodule of A generated by the elements of the form
UpzQp = (22,Q% P) — (2,Q,P), where z € P. Then I is a two sided ideal
of A. Indeed

(U B, S)u,2.q.p = 052 = (yrz, R, P) = 65+ o (yx, R, P)
= 0s=@((yzz, R™, P) — (yx, R", P)) = 65+ ,QUyz,2,R=,P
Similarly
uz,z,Q,P(ya R7 S) = 6P9,R(xzya sza S) - 5P9,R($y7 va S)
= (5py7Ruwy)zy’Qy7s
which makes sense, since if PY = R, then z¥ €¢ RC S.
I will denote by rur(G) the quotient algebra A/I. It is easy to find a basis of
rur(G) :
LEMMA 2.7. The elements (x,Q, P), for Q C P € 5,(G), and v € G/P, form
a basis of rug(G).
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Lemma 2.7 is just a reformulation of the following :

LEMMA 2.8. Let A be an R-algebra, admitting a basis B over R. Let E be an
equivalence relation over B such that the elements x —y, with xEy, generate a two
sided ideal T of A. Then A/I admits a basis over R, consisting of the images in
A/I of the elements of B/E.

Indeed, it is clear that the images of B/E generate A/I. since all the elements of
the equivalence class of » € B are congruent to z modulo I. Andif )’ 5 JE T2l € I,
with r, € R, then there exists scalars s, , € R such that

Z T = Z SLy(x - y)

z€B/E zEy

Te = E Sz,y — E :SyJ

zEy yEx

Then for all z

Summing this relation for z in the equivalence class of z, I can suppose that r,
alone is non zero, hence

T, = Z(Z Spy — Z Syz) = Z Spy — Z Spy =0

zEz zEy yEx z,yEz z,yEz

since the relation F is symmetric and transitive. The above lemmas follow.

I can then define an application f from rug(G) to epkh(G)e by sending (z, Q, P)
to xrg. It is easy to check that the map f is a morphism of algebras (with identity
elements).

LEMMA 2.9. The morphism f is injective.

(In the sequel, T will identify rur(G) with its image in pr(G).)
To show this, I must check that the elements xrg , for x € G/P and Q C P, are
linearly independent in pgr(G) : but if

Z ’I"m,Q,Pl"I“g =0 in ur(QG)
z€G/P,Q,P

then multiplying this relation on the left by t£ and on the right by 75, for given
subgroups R and P, it follows that

Z Tw’Q’ptgmrS =0
z€G/P,Q
ie.
Z T4 e PURTT R =0

z€G/P
R*CP

Then using the above basis of pr(G), it follows that, for any double coset RxoP
and any subgroup Qo of R** N P

E Tg,Re,p = 0

z€RxzoP/P
R*=Qomod.R*ONP
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i.e.

> Tyao,Rvvo,p =0

yER/(RN"OP)
RY70=Qomod.R"ONP

> Tywo,R7o,p =0

yER/(RN"0 P)
R"0=Qomod.R*ONP

or equivalently

In particular taking Qo = R*® N P, I conclude that r,, geonp,p = 0, and as this
relation is true for all zg, R, P, the above linear independence claim holds, and the
injectivity of f follows.

It is also natural to consider here the algebra tur(G) defined similarly to
rur(G) by “forgetting” the generators r&. This algebra identifies with the subal-
gebra of ur(G) generated by the elements tgx. It also identifies to the opposite
algebra of rug(G) : the map sending tg to ’I“S and ¢, g to c;—1 ¢ defines indeed an
anti-isomorphism from tpg(G) to rur(G). The results I will prove here for rur(G)
will have a “dual” version for tur(G), and the previous argument will allow for a
single proof for both.

The algebra homomorphism from rug(G) to uk(G) yields a forgetful functor
from the category of Mackey functors which are projective relative to p-subgroups
to the category of rur(G)-modules. I will denote this functor by R : if M is a
Mackey functor, then R(M) is the functor M, for which I only consider evaluations
at p-subgroups, and restrictions and conjugation by elements of G.

The functor R admits a left adjoint : let N be a rugr(G)-module. Iset N(P) =
rEN. If H is a subgroup of G, then H acts on @p€§p(H)N(P), and I set

I(N)(H) = Ho(H, ®pes, ()N (P))

that I will also denote by (®pe§p(H)N(P))H.

If P is a p-subgroup of H, and v is an element of @peﬁp(H)N(P), I denote by
g (v) its image in Z(N)(H).

If H C K are subgroups of G, and if v € @peﬁp(H)N(P), I set

ti(mr(v)) = 7 (v)

which makes sense since H C K.

Similarly, if @ is a p-subgroup of K, and v € N(Q), I set

’I"g (NK(’U)) = Z TH (THQmel"U)
r€H\K/Q

It is easy to see that the map % is well defined.
Finally in the same situation, if z € G, I set

Co, k(T (V) = T= g (2V)
‘With this notation :

LEMMA 2.10. The correspondence sending N to Z(N) defines a functor from
the category of rur(G)-modules in Mackr(G, 1), and this functor is left adjoint to
the functor R.
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I must check that Z(N) is a Mackey functor, which is moreover in Mackr(G, 1),
and then check the adjunction property. For the first property, the only non obvious
points are the transitivity of restrictions and the Mackey axiom. Solet H C K C L
be subgroups of G, and z = 7r,(n) € Z(N)(L), with P € s,(L) and n € N(P).

Then

ri(x) = Z K(TKmlPln)

IEK\L/P

k K lP
r&rl(z) = Z Z WH(TH(QIQKFZ[P)]CTKI’TZPZ”)
k€ H\K/KNPIeK\L/P

= Z Z erMPkln)
keH\K/KN'PleK\L/P
But the map (k,l) — kl is a bijection from the set of pairs (k,!) such that [ €
K\L/P and k € H\K/K N'P to the set H\L/P. Thus indeed r&rk (z) = r&(z),
and restrictions are transitive.
For the Mackey axiom, let H C K O L be subgroups of G, and =z = wr(n) €
Z(N)(L), with P € s,(L). Then ¢} (x) = 7 (n) hence

k
@ = Y i pkn)
keH\K/P

Thus

On the other hand

H v, _ H V[
§ UHAvLTHAYLYT = § thw LT How L Tv L (yn)
yEH\K/L yEH\K/L

H vp
= § lhavr § T L (T Ay LAz pZYN)
yeEH\K/L z€HNYL\YL/YP

- Z Z TH (T;;jr}:zypzyn)
yEH\K/L ze HNYL\YL/YP
Replacing z by z¥ in this sum, I get
KK Yz p
Mt = Y. Y. ma(rghepyan)
yeH\K/L ze HYNL\L/P

and as above, the map (y, z) — yz induces a bijection from the set of pairs (y, 2)
such that y € H\K/L and z € HY N L\L/P to the set H\K/P. Then indeed

Tgtf(x) = Z tgmyLT;{LmyLyx
yeH\K/L
and the Mackey axiom holds. Thus Z(N) is indeed a Mackey functor.

To check that it is in Mackr(G,1), I must check that z(f{) acts trivially on
it. So let H be a subgroup of G, and x = ng(n) € Z(H)(N), with n € N(P). As
r = td(7p(n)), I have z(fF)z = [f]tE (xp(n)). Then if I know that [f{]td =
tH[Resk ], the proof will be complete, since Resh fff = f' = P/P. But this
follows from

LEMMA 2.11. Let K C H be subgroups of G, and X € b(H). Then
(X]tt = tRestLX] in pin(G)
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Indeed if X = H/L, then [X] = tdrH and

H _ ,H, H,H _ H TK _ H K
(Xt =tiritg = E lpre kT KT = § Lok T LrNK
c€I\H/K c€L\H/K
_ H K
= E oAk Lok
c€I\H/K

since x € H, which can be written as
[X]tg = t% Z tfmeTﬁmK = t%[Reng/L]
zeL\H/K
proving Lemma2.11.

It remains to check the adjunction property : so let « be a morphism from
Z(N) to a Mackey functor M. Such a morphism is characterized by specifying, for
all subgroup H of G, of a morphism ap of Z(N)(H) in M (H), such that

aHtg = tgaK , aKTg = r,lgaH , Co, HOH = Q[ Cq |

for all K C H and all z € G.
Then if P is a p-subgroup of G, I define a map Bp from N(P) to M(P) by
Bp = apmp . If Q is a subgroup of P, and if n € N(P), then

ro(mp(n) = Y molrghspan) = mq(rh(n))
ze€Q\P/P
hence
rgﬂp(n) = rgapm:(n) = aQrng(n) = aQerg(n) = ﬁQrQP(n)
Similarly
Ce,pBp(n) = cz papmp(n) = aspcy pp(n) = aepepcy p(n) = o pcy p(n)

and [ defines a morphism from N to R(M).
Conversely, if 3 is such a morphism, then for any p-subgroup P of G, I have a
morphism Sp of N(P) in M(P), such that

roBp = Bary CapBp = Bepcap
Then if H is a subgroup of G, I define a map oy from Z(N)(H) to M(H) by
ag(rp(n)) = tABp(n), if P is a p-subgroup of H, and if n € N(P). If K is a
subgroup of H, if Q) is a subgroup of P, and if n € N(Q), then
agti(mx(n)) = an(ta(n) = t5 6 (n)
whereas
ticak (mx(n)) = titg bo(n)

which proves that othg = tgaK.
Similarly, if n € N(P), then

H *p K TP
agrg(Ta(n) = ax( Z T (e pn)) = Z tkne pBKN= PT K= pTTL
zeK\H/P ze€K\H/P

K P K P
= Z thmPTKmmpﬂmP.'I}n = Z thzPermpxﬁPn
xeK\H/P z€K\H/P

= ritp Bp(n) = rgam(ta(n))
which proves that arrfl = rilay.
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Finally

coanmh(n) = cp gt Bp(n) =t B, pBp(n) = ta 2 Bepey p(n) = aepce g (tm(n))

which proves that ¢, papg = a=gc, o, hence that o defines a morphism from Z(N)
to M.

These correspondences between Hom,, () (Z(N), M) and Hom,,, ) (N, R(M))
are clearly mutual inverse bijections, and this proves the adjunction property, com-
pleting the proof of Lemma 2.10.

3. Examples of rur(G)-modules

Let I the R-submodule of rur(G) generated by the :1:7“5, where x € G, and @
is a proper subgroup of P. Then :

LEMMA 3.1. The submodule I is a nilpotent two sided ideal of rur(G), and the
quotient rur(G)/1 is isomorphic to the direct product over the p-subgroups P of G
up to G-conjugation, of the algebras IndgG(P)/PRNg(P)/P.

(about the notion of induced algebra, see [3])

Indeed, if @ is a proper subgroup of P, and if A C B are p-subgroups of G,
and if ¢ € G, then crfzrg is equal to zero if B® # Q, and to cark, otherwise, and
then A® is a proper subgroup of P. Similarly, the product xrgcrff is equal to zero
if P¢# A, and to xcrgc otherwise, and then Q¢ is a proper subgroup of B.

It is clear moreover that I is nilpotent : indeed, if xlrgll asgrg‘; ...a:nrg:’ £ 0,
then P2 = Q2, Py® = Q3, etc, and the sequence P2, Py3=*n P, is strictly
decreasing. Its length is hence bounded by the p-valuation of the order of G.

Then if P is a p-subgroup of G, let ep = ZQ:cPrg' The elements ep are
idempotents of rur(G). Moreover ep and eg are orthogonal if P and R are not
conjugate in G. Finally > p, . ~ep =3 prk is the identity element of rup(G).

On the other hand, if the product r5erfrL is non zero, then P = A C B = P,
hence the algebra r5rup(G)rE has a basis consisting of the elements a5, for z €
Ng(P)/P (which form a subset of the basis of rur(G) of Lemma 2.7). Moreover,
the map z € Ng(P)/P +— zrL defines a morphism of algebras a of RNg(P)/P
in rBrup(G)rE, which is hence an isomorphism. It is then clear that the map
from Ind%G(P)/PRNG(P)/P to eprur(G)ep, sending g @ u ® h to ga(u)h is a
isomorphism, and this completes the proof of Lemma 3.1.

But if H is a subgroup of G, and A is an interior H-algebra, the inclusion of A
in IndgA is a Morita equivalence : this follows e.g. from Lemma 2.4. This remark,
together with Lemma 3.1, yields a classification of the simple rur(G)-modules.

Indeed, let P be a p-subgroup of G and V be an RNg(P)/P-module. I define
an rug(G)-module Npy by Npy = Ind%G(P)/PV. The element crf acts by 0
on Npy if A is a proper subgroup of B, or if B is not conjugate to P. And if
A= B = P% then er§.(y @ v) = 0 if 7y ¢ Ng(P), and er§.(y @ v) = cx ! @ ayv
otherwise (note that this element does not depend on the choice of the element x
such that B = P%).

This defines a genuine rug(G)-module : T must essentially check that @ acts
trivially on Npy (Q) and that

erba(drby (z @) = (erbedrb,).(z @ v)
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The left hand side is equal to 0 if yz &€ Ng(P), and to erb, .(dy~' ® yzv) otherwise.
This is equal to zero if zdy~' & Ng(P), and to cx ™! @ zdzv = cx ™! @ xdy~lyzv =
cdy™' ® yzv otherwise. But the right hand side is equal to zero if P*® #£ PV,
ie. if zdy~' & Ng(P), and to cdrb,.(z ® v) otherwise. This is equal to zero if
yz & Ng(P), and to edy~! ® yzv otherwise. Hence the two sides are equal.

The definition of Npy implies that Npy (Q) = rng,V is equal to zero if Q) is
not conjugate to P in G. And if Q = P”, then Npy(Q) identifies with 27! @ V.
Then if ¢ € Q, and if 7' ® v € Npy(Q), I have ¢.(z7' ®@v) = gz ' @ v =
r % ®v=2"1®%qu=2"'®v since *Q = P and since P acts trivially on V.
Thus Npy is a genuine rpg(G)-module.

The previous remarks, together with Lemma 3.1, yield the following

PROPOSITION 3.2. The modules Npy, when P runs through a set of repre-
sentatives of conjugacy classes of p-subgroups of G, and V' through a set of repre-
sentatives of isomorphism classes of simple RNg(P)/P-modules, form a full set of
representatives of isomorphism classes of simple rugr(G)-modules.

In order to describe the indecomposable projective rug(G)-modules, I need a
notation : if A and B are subgroups of G, I denote by T¢ (A, B) the set of x € G such
that A* C B. Let then P be a p-subgroup of G, and V be a RNg(P)/P-module.

If @ is a p-subgroup of G, I define an R-submodule of Indg «(p),/pV, denoted by
Lpv(Q), by
Lpv(Q) = @zers(Q.P)/No(P)T®V

and I set LP,V = @QLR\/(Q).

If @ O R, then the inclusion of T¢(Q, P)/Ng(P) in T¢(R, P)/Ng(P) induces
a morphism r% from Lpy(Q) to Lpy(R). And if x € G, the natural bijection
yNg(P) — zyNg(P) from T¢(Q, P)/Ng(P) to Te(*Q, P)/Ng(P) induces a mor-
phism, that I still denote by z, from Lpy(Q) to Lpy(*Q). Then

PROPOSITION 3.3. These definitions turn Lpy into an rugr(G)-module, and
the functor from RNg(P)/P-Mod to rur(G)-Mod sending V' to Lpy is left adjoint
to the restriction functor induced by the inclusion u — urk from RNg(P)/P to
rur(G).

The action of erf on the element x ® v of Lpy(Q) is defined by
crf.x ®v=0B0Ccr QU

where, when B = @), the element cx ® v is seen in Lp(°A). In particular, if ¢ € Q,
then ¢.(x ®v) =gqr v =2¢" v =2 ® ¢°v =z ® v, since Q* C P. Thus Q acts
trivially on Lp v (Q).

Similarly,

drE.(crf.a @ v) = 6peadp gder @ v
with dex ® v € Lpy (YE) if B=Q and F = °A.
Since drk.crf = §pe aderB., 1 have

(drE.crB) e @ v =0pc 40%dcx ® v

with dex ® v € Lpy(9(E°)) if F© = A and B = Q. Thus Lpy is indeed an
rugr(G)-module.
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It is clear that the construction sending V' to Lpy is functorial in V. If M is
an rpupr(G)-module, a morphism « from Lpy to M is defined by specifying, for any
p-subgroup Q of G, a morphism ag from Lpy (Q) to M(Q), such that

aRrg = ’I"gaQ TOQ = QzQT

Since Lp v (P) identifies with V' as an RNg(P)/P-module, this yields a morphism
8 = ap from V to M(P). And since the element z ® v of Lpy(Q) is equal to
rZéP(x ®wv), I have
ag(r®@v) = T;Pamp(x ®v) = rIQPmap(l ®uv) = xrgmﬁ(v)
and [ determines entirely a.
Conversely, if 8 is a morphism from V to M (P), if @ is a p-subgroup of G, and
ifr@veLlpy(Q),Iset ag(z®@v) = :107"&6(1))7 which makes sense since Q" C P.

Then TgaQ(x ®v) = rgmrgmﬁ(v) = rE.Bv) = aRrg(x ® v), hence am‘g =

TgaQ.

On the other hand, yag(z ® v) = yxrgzﬂ(v), whereas avg(y.(z @ v)) =
ag(yr @ v) = yzrﬁ,Q)Wﬁ(v), which proves that a is a morphism of rur(G)-
modules.

Finally it is clear that these correspondences between Hom,., . (@) (Lp,v, M) and
Hompy, (py/p(V, M(P)) are mutual inverse bijections. The proposition follows.

COROLLARY 3.4. If Ey is a projective cover of the simple RNg(P)/P-module V,
then Lp g, is a projective cover of the simple rugr(G)-module Npy .

This follows indeed from the isomorphisms
HommR(G) (LP,EV , M) = HOHIRNG(p)/p(EV7 M(P))

~

and Npy(P) =2 V : if f is an essential morphism from Ey to V, then f defines
a morphism L(f) of Lp g, in Npy, which is also essential : if Ly is a submodule
of Lp g, which maps onto Npy by L(f), then Li(P) maps onto V by f, hence
Li(P) = Ey. And since Li(Q) is the sum for z € Tg(Q, P) of xrgw (L1(P)), it
follows that L1(Q) = Lpy(Q) for all @, hence that Ly = Lpy.

REMARK 3.5. The module Lp g, (1) identifies with X = Ind%G(P)/pEv as an
RG-module. In the case where R is a field of characteristic p, it is easy to check
that the module Lp g, (Q) identifies with the module

X[Q)=Xx9/(Y_ Trig(x™)
RCQ

The projective indecomposable rug(G)-modules are then in one to one correspon-
dence with p-permutation RG-modules of the form Ind% o) pEv, where P is a
p-subgroup of G and Ey is an indecomposable projective RN (P)/P-module.

The restriction functor induced by the inclusion u +— urf from RNg(P)/P
to rur(G) also admits a right adjoint : if V' is an RNg(P)/P module, and Q a
p-subgroup of G, then @ acts on the right on Ng(P)\T¢(P,Q), hence on the left
on @meNG(p)\TG(P’Q)ﬂ?_l ® V, and I set

Pv(Q) = (@zENG(P)\TG(P,Q)x_l & V)Q

Then if @ C R, the inclusion of Ng(P)\T¢(P,Q) in Ng(P)\T (P, R) allows to de-
fine a morphism 7‘5 from L% 1, (R) to L 1, (Q), by rS(EBxx_l(wa) = @p:cQr”  Qu,.
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Similarly, the natural bijection y — yz ! from Ng(P)\Tg (P, Q) to Ng(P)\T¢(P* Q)
allows to define a morphism denoted by x from L% (Q) to Ly (“Q), by setting
2. @y (Y ®vy) = @y(yz ) T @ vy = Byay~ @y
It is then clear that @ acts trivially on L$,(Q). Moreover
dri(crf (@™t ®v,)) = 6p gdry(Specacr™ @ vy)
=0B,Q0F A ®poca pec—icy dex™' @ v,
But if F' = €A, then pr ' CE implies that P* C E¢ C F° = A, hence
dri(erB (@ ' @v,)) = 0B,Q0FcA ®poc—1cp dex™ @ v,

On the other hand, since drfcr® = §pc aderB. | 1 also have

(drgcrf) @2 ' @, = 0B,Q0Fc. A ®pscpe dex ™' @ v,

and L%y = ©qLpy(Q) is indeed an rug(G)-module.

This construction is clearly functorial in V. And if « is a morphism from an
rur(G)-module M to Ly, then as L}y, (P) = 1@V, this yields a morphism 3 from
M(P) to V, such that ap =1® 4. If Q is a p-subgroup of G, if m € M(Q), and if
aQ(m) = BreNg(P)\Te(P.O)E ' @y, let 2 € Ng(P)\Ta(P, Q). Since TIQDI ag(m) =
2~ '®v,, I must hence have z~'®uv, = TgmaQ(m) = apwrgm (m) = x’lapxrgl. (m),

hence v, = B(mr%x (m)), and (8 determine entirely a.

Conversely, if 3 is given, I define ag from M(Q) to L%, (Q) by
aq(m) = Beeng(P\Ta(p)® " © B(arE. (m))
It is easy to see that « is a morphism from M to L% ,,. These two constructions

are clearly inverse to each other. Thus

PROPOSITION 3.6. The functor which maps V' to L%, is right adjoint to the
restriction functor from rugr(G)-Mod to RNg(P)/P-Mod.

This allows of course for a description of injective rur(G)-modules.

4. Resolutions

4.1. Projectivity relative to a functor. ? The following definition gener-
alizes the notion of relative projectivity, when R is a functor of restriction to a
subgroup.

DEFINITION 4.1. Let C and D be categories, and R a functor from C to D. 1
will say that an object M of C is projective relative to R (or R-projective) if for
any diagram

M
1B

«
X — Y

such that the morphism R(«) is a split epimorphism, there exists a morphism ¢
from M to X such that a¢ = f.

3The content of this section is very close to the notion of comonad or cotriple in category
theory. See e.g. C.A. Weibel. An introduction to homological algebra, Cambridge studies in
advanced mathematics 38, Chapter 8.6
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The following lemma is a straightforward consequence of the definitions :

LEMMA 4.2. a) If M is projective relative to R, and if f : M — N is a split
epimorphism, then N is projective relative to R.
b) If My and My are projective relative to R, and if N is a coproduct of My and
Ms, then N 1is projective relative to R

The following lemma is a formalization of known results in the classical cases
of relative projectivity, when R has a left adjoint :

LEMMA 4.3. Let C and D be categories, and R be a functor of C in D, admitting
a left adjoint T. Let M be an object of C. The following conditions are equivalent :

(1) The object M is projective relative to R.
(2) The counit morphism TR(M) — M is a split epimorphism.
(3) There exists an object Y of D and a split epimorphism Z(Y) — M.

If X is an object of C, if Y is an object of D, and « (resp. () is a morphism
from Y to R(X) (resp. a morphism from Z(Y) to X), I denote by a* (resp. [)
the morphism from Z(Y) to X (resp. from Y to R(X)) associated by adjunction.
Then (o), = a and (B,)* = 0.

Since the isomorphism from Home(Z(—),—) to Homp(—, R(—)) is an isomor-
phism of bifunctors, if f € Homp(Y7,Y2), and if @ € Homp(Ys, R(X)), I have
(af)* = «*Z(f). Similarly, if g € Home (X1, X2), and if € Home(Z(Y), X1),
then (g8), = R(g)..

Then if 1) holds, the diagram

M
1 Idar
(Idr(a))*
IR(M)  — M

shows that 2) holds, if I know that the morphism u = R((Idr())*) is a split
epimorphism. But if I set v = (Idzr(ar))«, I have
uwv = ((Idra))* Idr ()« = ((Ldr(ar)™)« = Idr(ar)
It is clear that 2) implies 3).
Conversely, if u : Z(Y) — M is a split epimorphism, then there exists v : M — Z(Y)
such that wv = Idps. On the other hand, the morphism Z(u,) is a morphism from
Z(Y) to ZR(M) and
(Idra)) T(us) = (Idranyus)™ = u
hence
(Idr ) T(us)v = uv = Idpy
which prove 2).

Finally if 2) holds, let 7: M — ZR(M) be such that (Idgp))*T = Idy. If T have
a diagram

M
1B

«
X — Y

such that R(«) is a split epimorphism, then there exists a morphism
v:R(Y) — R(X)
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such that R(a)y = Idg(y). Setting then

¢ = (Idr(x))"Z(v)IR(B)T
it follows that
ap = a(ldrx))"Z(YR(B))
= (R(a)Idr(x))"Z(vR(B))T
= (R(a)YR(B))"T = (R(B))"T
= (R(B)Idr )" = B(Idr(ar))"T =
which proves 1), and the equivalence of the three conditions.
LEMMA 4.4. Let C and D be categories, and R be a functor from C to D,

admitting a left adjoint T. Then R is faithful if and only if for any object M of C,
the counit morphism from IR(M) to M is an epimorphism.

Y

)
)

Indeed, the morphism from ZR(M) to M is an epimorphism if and only if for
any object X, the morphism

Hom(M, X) — Hom(ZR(M), X)
is injective, i.e. by adjunction if and only if the morphism
Hom(M, X) — Hom(R(M),R(X))

is injective.

REMARK 4.5. It follows that if R is faithful, then any projective object is
projective relative to R.

I suppose now that C' and D are abelian categories, that R is faithful and
admits a left adjoint Z. I denote by K (M) the kernel of the epimorphism from
IR(M) to M.

Then K (M) is the quotient of ZRK (M) by K(K(M)) = K?(M), which itself
is the quotient of ZRK?(M) by K(K?(M)) = K*(M), and 1 can build that way
a resolution of M by objects of C of the form Z(L), which are projective relative
to R. Actually :

LEMMA 4.6. Let C and D be abelian categories, and R be a faithful functor
from C to D admitting a left adjoint Z. Then for any object M of C, there exists
a resolution

.—-Li—=Li1—...—>Ly—M-—0
where the L;’s are projective relative to R, such that the complex
oo R(Li) = R(Li—1) — ... = R(Lp) = R(M) — 0
is exact and split, and such a resolution of M is unique to homotopy.

The existence of such a resolution follows from the previous argument, and
from the fact that the morphism RIR(M) — R(M) is a split epimorphism (see
the proof of Lemma 4.3).

A standard homological argument shows that if M and N are objects of C, if
X, is a resolution of M by R-projective objects, and Y, a resolution of IV such that
the complex R(Y,) — R(N) is split, any homomorphism of M in N can be lifted
to an homomorphism from X, to Y, and that such a lift is unique up to homotopy.
The uniqueness of the resolution follows.
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REMARK 4.7. If M is projective, a resolution of M with the properties of
Lemma 4.6 is split, because M is projective relative to R.

4.2. Resolutions of Mackey functors. The functors R and Z defined above
between the categories rur(G)-Mod and Mackr(G, 1) fulfill the assumptions of
Lemma 4.6 (the functor R is faithful because it is the composition of a forgetful
functor and an equivalence of categories).

Thus, any Mackey functor in Mackg(G, 1) admits a resolution by R-projective
functors, whose image by R is split. This means that this resolution can be split
by homomorphisms which commute with conjugations by G, and with restrictions
(but dot not commute, in general, with transfers). Moreover such a resolution is
unique up to homotopy. The additional fact here is that this resolution can be
chosen to be finite.

Indeed, let M a Mackey functor. Then K (M)(H) is the image in the quotient
(@Peép(H)M(P))H of the set of sequences np such that Y, t2np = 0. In particu-

lar, if H is a p-subgroup @ of G, this condition is equivalent to ng = — ZPCQ tgnp.
It follows that RK (M )(Q) identifies with

R(M)1(Q) = (8rcoM(P))q
More generally, let M a rugp(G)-module : I will set My = M, and if ¢ is a positive
integer, I set
M;(Q) = (®p,cp..chcoM(Fo))a
If n € M(P,), I denote by np, p,,.. p,_,,¢o the corresponding element of
(@pycpy...cPiicoM(Py)), and mg(np, py,....p_,,0) its image in M;(Q). If z € G,
I set
xﬁQ(nP0w~~aPi—l7Q) = Ter((xn)wPOw")mPiflme)
and if S is a subgroup of @, I set

P
TgﬂQ(nPOx‘-wPi—l;Q) = Z 7TS((.737“52mpon)Smprw”)SmeFl75)
z€S\Q/Po
szP()?éSmmPl...;fSﬂzPi_l;éS
LEMMA 4.8. The previous definitions turn M; into an rugr(G)-module.

The only non-trivial point is the transitivity of restrictions. Solet T C R C )
be p-subgroups of G, and s = (P,...,P;—1,Q) be an increasing sequence of sub-
groups of . I will say that s is a proper sequence if s is strictly increasing. If A is
a subgroup of G, I will denote by AN s the sequence (AN Fy,...,ANP,_1,ANQ).

Then if n € M(P), I have

Smama)) = 3 ws((@rtapn)sacs)
z€S\Q/Po
SN¥s proper
Thus
S SN® P, P
rird (rq(ns)) = Z Z TR((YT Runshe oy TT 5% R, ) R (802 5))
z€S\Q/Py  yER\S/SN" Py
SN*s proper RNY(SN*s) proper
ie.

S,.Q

rprg(mq(ns)) = Z Z WR((yxrggrmPon)RﬁWS)

z€S\Q/ Py yeR\S/SN" Py
SN¥s proper RNY®s proper
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Then the element z = ya runs through a set of representatives of doubles cosets
R\Q/ Py such that RN ~#s is proper. Thus

rird(mona)) = Y wr((zrfRapn)rass) = 18 (1o (ns))

zER\Q/ Py
RN?s proper

which proves the lemma.

The previous construction associates to any rugr(G)-module M some rug(G)-
modules M;, and moreover M; = 0 if ¢ is greater than (or equal to) the p-valuation
of the order of G. If M is a Mackey functor in Mackr(G,1), and ¢ a non negative
integer, I will denote by §;(M) the functor Z(R(M);), and I will build a resolu-
tion of M from these functors. The functor §;(M) admits the following simple
description :

LEMMA 4.9. Let M in Mackr(G,1), and H a subgroup of G. Then
6:i(M)(H) = (®p,c...cpes, (M (FPo))u

If s = (Py,...,P;)is asequence of p-subgroups of H, and if n € M (P,), I denote
by ns the corresponding element of (®p,c..c Pies,( myM(P)) if the sequence s is
strictly increasing, and I set ny = 0 otherwise. I denote by 7 (ns) the image of ng
in (@pocmcpieép(H)M(P))H. I can then define a linear map f from 6;(M)(H) to

(@PUC..ACPiEg’p(H)M(P))H by
f(ramg(ns)) = T (nsug)

which makes sense since if h € H and q € @, then
f(ru(hmq(gns))) = f(ramng((hqn)nas)) = mr((hgn)rasung))

= m (h.(qn)esuq) = Tr(¢ns0Q) = Tr(NsUQ)
Conversely, I define a linear map g from (®p,c...cpes, ()M (P))m to 6;(M)(H) by

g(’lTH (ns)) = THTsups (nsfsups)

which makes sense because if h € H, then
g(ﬂ-H(hnS)) = g(ﬂ—H((hn)hs)) = T‘—Hﬂ—hsups((hn)hsfhsups))

- 7"-H(hjrsups (ns—sups)) = THTsups (ns—sups)
It is then clear that f and g are mutual inverse isomorphisms, which proves the
lemma.
If K is a subgroup of H, if s = (P, ..., P;) is a sequence of p-subgroups of K,
and if n € M(P), it follows from the definitions that

tIh([(T"K (ns)) =TH (ns)

Similarly, if s = (P, ..., FP;) is a sequence of p-subgroups of H, and if n € M(P),
then

rie(ma(ns)) = Z WK((xr?meon)KWS)

w€K\H/P,
KN®s proper
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Hence I can identify do(M) with ZR(M). I will denote by dy the canonical mor-
phism from do(M) to M. If i > 0, I define a linear map d; from §;(M) to d;—1(M)
by

di i (mr(ns)) = wu ((thn) %—FEZ 1)'ns,)

where s; denotes the sequence s — {P;}. Then

THEOREM 4.10. Let M in Mackgr(G,1). The sequence

0= ... "5 % BsM) R M -0

is an exact complex of Mackey functors in MackR(G, 1), and the complex

R(do)
AN

0— R(6;(M)) R(M)—0

is exact and split.

First I must that the maps d; are morphisms of Mackey functors. This is clear
for do. If i > 0, if H C K are subgroups of G, if s = (Py,...,FP;) is an increasing
sequence of p-subgroups of H, and if n € M(P,), then

di i (tmr (ns)) = di i (Tre (n5)) = T (R 050 + Y (—1)ns;)
j=1
whereas
i i
tydim (i (N)) = 5 (ma (Epn)se + (=1 ng;) = mr((tpn)sy + Y (=1)ns,)
j=1 j=1
and the maps d; commute with traces.

Similarly, if s = (Pp, ..., P;) is an increasing sequence of p-subgroups of K, and
if n € M(P), then

din(rfimingd) =dig( Y ma((@rfenpn)aes))

z€H\K/P,
HN*Py . P, P,
= Z ((tHgngxTHfﬂPo n)(HN=s) +Z WHmPo)(Hﬂ” )') (1)
Tz€H\K/Py J=1

On the other hand
(s (n) = i (652, +30(-1)7m,)

j=1
But if j > 0, then the smallest element of s; is Py, and
K P,
rh (TR (ns;)) = Z TH (27 e p, ) HO® s, )
ceH\K/P,
And these terms are equal to the corresponding terms of Equality (1), since for any

m of M(F), I have m(gnes), = manes,. Similarly

TETFK((H;;”)SO) = Z TH (yTII-DII?/ NPy (tllzén)HﬁySo)
yeEH\K/P;
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_ Z Z HYNP, 7Py

=Ty (y tHyﬂzPOTHyﬁngzn)HnySO)
yeEH\K/P, zeHYNP1\P1/Py

_ HNYP, Y*Py

= E E 7TH(thyzpoeryzpoyzn)Hﬂyso)

yEH\K/P1 z€ HYNP1\P1 /Py

and as z € Py = inf sg,  have VP, =Y*P; and H NYsqg = H NY?Py, and I can sum
over x = yz, which runs through the set H\K/P,. It follows that

i ((thn)s) = D Tt R g py ) HOrs)
z€H\K/P,
= D multinepaTienp, ) Hoes)
x€H\K/P,
which is equal to the corresponding term of Equality (1), since (HN%s)g = HN%sq,
which proves that the maps d; commute with restrictions.

Finally it is clear that the d;’s commute with conjugations by elements of G,
hence they are indeed morphisms of Mackey functors.

A standard computation shows that d;d;+; = 0 for all 4, and the sequence in the
statement of Theorem 4.10 is indeed a complex of Mackey functors (in Mackr(G, 1)
by definition of functors d;(M)).

To check that this complex is exact, it suffices to check that its image by R is
acyclic, since the functor R is a forgetful functor. I will show that this complex is
split and acyclic, as claimed in Theorem 4.10.

Let @ be a p-subgroup of G. If s = (P, ..., FP;) is a sequence of subgroups of
Q, and if n € M(P), Iset a; g(mg(ns)) = mg(nsug). Similarly, if n € M(Q), I set
a_1,g(n) = mg(nyqy). This yields for any ¢ a map from 6;(M)(Q) to d;11(M)(Q).
This map is actually a morphism from R(8;(M)) to R(d;+1(M)) : indeed, if S is a
subgroup of @, then

aisrdmon) =i Y we((@ropn)soes) = > ws((@rfopn)snesus)
2€S\Q/Po 2€S\Q/Po
But
P
rgai,QﬂQ(nS) = Tng(nsUQ) = Z Ts((2rg2npy ) 502 (5UQ))
z€S\Q/Po

SNT(sUQ) proper

and since for any m of M(S), I have m(gnes)us = Mgn=(sug) if SN (sUQ) is
proper, and msnesyus = 0 otherwise, the maps «; commute with restrictions. It
is clear on the other hand that they commute with conjugations, hence that this
are morphisms from R(8;(M)) to R(;+1(M)).

Finally
i+1
di11,004,07q(ns) = dig1,07q(ns0@) = To((trn) (L) + Y (1) n(sue),)
j=1

On the other hand

aio1,0dioTo(ns) = ai1,0m((tRn) s + Y _(=1)ny))
j=1
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= m((tpin)sue + Y _(=1)ns,00)
j=1

By difference, it follows that

i+1

dit1,004,07q(ns) — aic1,0diomo(ns) = (—1) ' 1o (nsug),,) = (—1) " mg(n,)

hence d; 10, —a;—1d; = (—1)i+1ld, and a suitable change of sign on the «;’s proves
the last assertion of the theorem.

4.3. Dual results. I have showed above that the algebra tur(G) identifies
with the opposite algebra of rug(G). The previous results have a translation in
terms of this algebra, obtained by replacing restrictions by traces, traces by restric-
tions, elements of G by their inverses, coinvariants by invariants, and reversing the
arrows.

I will denote by 7 the restriction functor associated to the inclusion from
tur(G) into pur(G). The functor 7 admits a right adjoint, that I denote by 7,
defined par

J(N)(H) = (@Pe§,,(H)N(P))H

when N is a tup(G)-module and H a subgroup of G.

If K is a subgroup of H, and if ®pnp € J(N)(H), then ri(®pnp) = ©ome,
with mg = ng if @ is a subgroup of K, and mg = 0 otherwise.

Similarly, if &gmeg € J(N)(K), then ti(®gmg) = ®pnp, with

§ P
np = thmeanmK
r€P\H/K

If M is a Mackey functor in Mackgr(G, 1), I can define similarly the functors 9¢(M)
by the formulas

&'(M)(H) = (®pyc...cres,mM(Po)
With this notation 7 (®sns) = ®ymy, with my = n, if sup t C K, and my = 0
otherwise. Similarly, tfL(®ym;) = @4ns, with
ng = Z tggmszmsmK where Py =infs
z€P)\H/K
The differential d’ from 8 (M) to &1 (M) is given by di(d4ns) = ®ymy where

7

me = rhing + 3 (<1,

j=1
The dual result to Theorem 4.10 is then the following :
THEOREM 4.11. Let M in Mackr(G,1). The sequence

o—-MT an S Saand . o

is an exact complex of Mackey functors in Mackgr(G,1), and the complex

T(d~ T(d°) T(d~1)

0700 TS 7o) T TED rgiany) T

.—0

is exact and split.
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5. Applications

5.1. Steinberg Modules. Theorem 4.11 allows to extend to any Mackey
functor in Mackr(G,1) a result of P.Webb expressing homology in terms of Stein-
berg modules (cf [7]) :

PROPOSITION 5.1. Let M be a Mackey functor in Mackr(G,1), and H be a
subgroup of G. Then

Ng(H)/H
MH)=- Y IdgE G o Homany, (pyp(Sty(Nu (P)/P), M(P))
Pes, (H)/Na(H)

in the Green ring of RNg(H)/H-modules.

REMARK 5.2. Webb’s Theorem is the case where H = G and M(K) = H"(K,V),,
where V' denotes a Z,G-module and n € Z : in this case, the term corresponding
to P = 1 in the above sum is equal to zero. On the other hand, the fact that
H™(—, V), lies in Mackg(G,1) is proved in [6] (section [16]).

Recall that the Steinberg module over R of the group G at the prime number
p is defined by

Stp(G) = —R—> (-1)*df R

where the summation runs over a set of representatives of G-conjugacy classes of
strictly increasing sequences s of non trivial p-subgroups of G, and |s| denotes the
cardinality of s. This sum is an element of the Green ring of finitely generated RG-
modules. On the other hand, if A, B and C are RG-modules, then Hompgg(A —
B, () is equal by definition to Homgg (A, C) — Homgag(B, C).

Proposition 5.1 follows from the fact that, by Theorem 4.11, if H is a subgroup
of G, the sequence

0— M(H)—°(M)(H) — ... > d(M)H)—...—0

is a split exact sequence of RNg(H)/H-modules. Denoting by A;(H) the set of
sequences Py C ... C P; of p-subgroups of H, I have

M(H) = 3 (<10 (M)(H) = 3 (~1) (@ye,0n) M(int )"
i>0 i>0

But ©gea, ()M (inf s) is an RNg(H )-module, isomorphic to

Ng(H .
@SeAi(H)/NG(H)InngEH,)s)M (inf 5)

Moreover, if H is a normal subgroup of the group G, if K is a subgroup of G, and
L is a RK-module, the module (Ind%L)¥ identifies to to Indf/KH/HLH”K as an
RG/H-module. This remark shows that

i Ng(H)/H . s
9"(M)(H) = @seAi(H)/NG(H)IndH?V(G(%s)/HM(lnf ) Nu(s)

On the other hand, the module St,,(Ng(P)/P) is a RNg(H, P)-module, isomorphic
to
i Ng(H,P
) > Ind (TR

s€N;(H)/Ng(H,P)
inf s=P
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hence the module Hompg(St,(Ng(P)/P), M(P)) is isomorphic to

=S (-1 3 Indy© (T Homp (R, M (P))
i s€A((H)/Ng(H,P)

inf s=P
Another application of the previous remark, for the group Ng(H, P) and its normal
subgroup Ny (P), gives then
Hompy,, (p)(Sty(Nu (P)/P), M(P)) =

i Ne(H.P)/Nu(P) ) 1/ o\ Nir (s
=2 (=1) > AN MDY

s€EN;(H)/Ng(H,P)
inf s=P

and the right hand side of the equality of the proposition becomes

i Na(H)/H Ny (s
> 2D > IS (0 vy (oM (P)N )
Pes,(H)/Ng(H) 1 SeAi(Hf)/NG(HJD)
inf s=P

ie.
i Ng(H)/H : Nu(s
> (-1 D IndE vy o M (inf 5) )
i s€Ai(H)/Na(H)
and this is equal to >,(—1)'0"(M)(H), which proves the proposition.

5.2. T-injective functors and R-projective functors.

5.2.1. Residues. The definitions and results of Section 3 about the projectivity
relative to R can be dualized by reversing the arrows and replacing “left” by “right”,
and “projective” by “injective” (in other words, I will say that an object M is
injective relative to the functor 7 if it is projective relative to the dual functor of
T for the opposite categories).

For the next statement, I will need the following notation :
Let M a Mackey functor for the group G, and K be a subgroup of G. I will denote
by M(K) the quotient

M(K)=M(K)/ Y tF M(L)
LCK
and M(K) the intersection

M(K)= () Kerrf

These definitions of “residues” of M at K are dual to each other : if N is a
Mackey functor for the group Ng(K)/K, I define (with Thévenaz and Webb cf.[5])
a functor from the category of R(Ng(K)/K)-Mackey functors to the category of
1r(G)-modules mapping N to the functor

_ G Ne (K)

Then the functor F' a a left adjoint, defined by

M¥(L/K)=M(L)/ Y tiM(H)
K¢HCL

N

and a right adjoint, defined by

Mg(L/K)= (] Kerrg
K¢gHCL
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Then M (K) is the value at K/K of M* and M(K) is the value at K/K of M.

Let then X be an rupr(G)-module, and P be a p-subgroup of G. It is easy to see
that Z(X)(P) identifies with X (P). If F'Py denotes the Ng(P)/P-Mackey functor
of fixed points on V, defined by FPy(H) = VI rfly = v, and ti(w) = Tri(v),
this implies that

Hom(I(X),IndgG(P Infxg Pg/PFPV) = Hom(Z(X)", FPy) =

Hompn, Py p(X(P),V)
the second equality following from the fact that that the functor sending V' to F Py
is right adjoint to the evaluation functor at P/P (from the category of RN¢(P)/P-
Mackey functors to the category of RN¢(P)/P-modules)(cf.[5] Proposition 6.1).
Since moreover

Hom(I(X),Ind )IanG Pi/PFPV) Hom(X, T\’,(IndNG )Ian

(P) /pFPV))

it follows that the functor mapping V to R(Ind§ ” P)IanG Pg pF Py) is right ad-

joint to the functor sending X to X (P) (from the category of rur(RNg(P)/P)-
modules to the category of RN¢(P)/P-modules), hence that it identifies with the
functor sending V' to L%y, (cf. Proposition 3.6).
The following proposition shows how to compute the values of an R-projective or
a 7T -injective Mackey functor from its residues :

PROPOSITION 5.3. Let M be a Mackey functor in Mackr(G,1).
(1) If M is R-projective (e.g. if M is projective), then
M(H) = (®pes,(m)M(P))u

as an RNg(H)/H-module.
(2) If M is T -injective (e.g. if M is injective), then

M(H) = (®pes, ()M (P)"
as an RNg(H)/H-module.

These two results are dual to each other, hence it suffices to prover the second
one, which will be a consequence of the following stronger (but more obscure)
result :

PROPOSITION 5.4. Let M be a Mackey functor in Mackr(G,1). If M is T -
injective, then

o Ng (P
R(M) = @ Ly vpy = R( @ Indgg(P)IangEP;/PFPM(P))
Pes, (G)/G Pes,(G)/G

Proposition 5.3 follows, since

Ne (P
( EB Indgc(P)Ianggpg/PFPM(P))(H):

Pes, (G)/G
Ng (P T
D @D Wi} FPyr)(Na(P)N " H)
Pes, (G)/G 2eNg(P)\G/H
= D &>, FPas(py(Nest (P)/P)

Pes, (G)/GzeNa(P)\Tc(P,H)/H
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and using rational coefficients for this computation, this sum is equal to

[Na(P)| |N=p1 (P)] Ne (P)/P
GB LA sld ) @ B M (P)Nen ()P =
Pes (G) | ‘ €T (PH)| G(P>|| |
N z€Ta (P,
|Nu (P7)]

M(Px)NH(PZ)/Pz
|G| H|

Pes, (G),x€G,P*CH

B T ar(p)¥ ) = @pen i daP)"
Pes, (H)

Proposition 5.4 shows that the identification of part 2 of Proposition 5.3 com-
mutes with restrictions.

In order to prove Proposition 5.4, I will first characterize those rug(G)-modules
which are isomorphic to direct sums of modules of the form L%, . First I notice
that I can define M (P) when M is an rug(G)-module and P is a p-subgroup of G,
since this definition uses only restriction maps. Then :

LEMMA 5.5. Let M be an rur(G)-module. The following conditions are equiv-
alent :

(1) There exists Ng(P)/P-modules Vp such that M is isomorphic to

o
P,Vp

Pes,(G)/G

(2) The module M is isomorphic to

D Loue

Pes, (G)/G

(3) For any p-subgroup P of G, the inclusion of M(P) in M(P) is a split
injection of RNg(P)/P-modules, and the quotient M (P)/M(P) is iso-
morphic to (lim M (Q))”.

“Qcp

I recall that L%, is defined by

pv(Q) = (®wENG(P)\Tg(P,Q)1'71 V)9
and
rS(EBmx_l ®v,) = @ngQx_l ® Vg
In particular L‘},yv(R) is zero if P is not contained in R up to conjugation, hence
L3y (R) =0 in this case.

Otherwise, if v = @xeNc(P)\TG(P,R)$71®U € Lpy(R), and if R is not conjugate
to P, let y € Tg(P, R). Since r&,(v) =y~ ® v, = 0, it follows that v = 0. This
proves that L% 1 (R) is zero if R is not conjugate to P, and equal to V' otherwise,
hence Assertion 1) implies Assertion 2).

It is clear conversely that Assertion 2) implies Assertion 1). The previous
argument also shows that Assertion 1) implies the first part of Assertion 3), because
if M = L%y, then the injection of M(R) in M(R) is zero if R is not conjugate
to P, and the identity map otherwise.
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To prove the second part, I notice that the kernel of the natural morphism from
M(R) to (ling RM(Q))R is equal to M(R). Hence it suffices to show that this
c

morphism is surjective.
So let M = L% . There is nothing to prove if P is not contained in R up to

conjugation. Similarly, if R = P, then (li(_mQ RM(Q))R =0, and M(R) = M(R)
c

in this case. Hence I can suppose that R contains P strictly up to conjugation.
Then if v € (l(iLnQ RM(Q))R, for any proper subgroup @ of R, I have an element
C

vg of M(Q), such that if § C @, then 7% (vg) = vs. In particular, if z € T (P, R),
then the element vp= can be written £~! ® v,. Since v is fixed by R, the element
W = @peng (P\Ta(P,R)T " @V, is in M(R), and it is clear that r§(w) = vg for any
proper subgroup @ of R, which proves the second part of Assertion 3).

It remains to show that Assertion 3) implies Assertion 2). Let X be the module
@p@p((;)/gLEM(P). I notice first that

Hom(M, X) = @ pHompgn, (py/p(M(P), M(P))

from the adjunction property of the functor V'~ L%,,. Then by the first part of
Assertion 3), I can choose, for any P modulo G, a section of the inclusion of M (P)
in M(P), and this choice determines a morphism ¢ from M to X.

This morphism is such that ¢(P) is the identity map for any P. Let then K be
the kernel of ¢, and @ be a minimal p-subgroup of G such that K(Q) # 0. Then
by definition of @,

K(Q) = K(Q) = Ker ¢(Q) = 0

and this contradiction proves that ¢ is injective. Let Y the cokernel of ¢. I postpone
the proof of the following lemma :

LEMMA 5.6. The functor sending M to M(P) is left exact, and its first derived
functor Dp is given by

Dp(M) = (lim_ M(@)" /(Image of M(P))

Then the exact sequence 0 — M X Sy =0 yields for any P the exact

sequence 0 — M (P) o) X(P) — Y(P) — 0, by the second part of Assertion 3).
Since ¢(P) is the identity map, it follows that Y (P) = 0 for all P.

Then if @ is minimal such that Y (Q) # 0, I have Y(Q) = Y (Q) = 0, and this
contradiction proves that Y is zero, hence that ¢ is surjective, and Assertion 2) of
Lemma 5.5 follows.

It remains to prove Lemma 5.6. If 0 - X — Y — Z — 0 is an exact sequence
of rpur(G)-modules, it is clear that X (P) is a submodule of Y (P). And if w is in
the kernel of the map Y (P) — Z(P), then w is an element of Y (P) which maps
to 0 in Z(P). Thus w is in X(P) NY(P) = X(P), which proves that the functor
M — M(P) is left exact.

To complete the proof of Lemma 5.6, it remains to see that its first derived
functor Dp is as claimed. I will denote by dp the functor which maps M to the
quotient of (I@QCPM(Q))P by the image of M (P).

I have already observed (in the proof of the implication 1)= 3) of Lemma 5.5),
that dp(M) = 0 if M is of the form L% . The adjunction property of the functor
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V + L%, shows that L%y is injective if V' is, and I have indeed Dp(L%y,) =
dp(L%y) = 0 in this case.

Let then M be an arbitrary rur(G)-module. I choose, for any P modulo G, an
injective RN¢(P)/P-module Ip containing M (P). The inclusion map from M (P)
into Ip extends to a morphism from M (P) to Ip, and I get this way a morphism
from M to X = @®pL% ., and X is an injective module. It is easy to see that this
morphism is moreover injective.

Let Y the cokernel of this morphism. If I show that any exact sequence
00— M — X —Y — 0 yields an exact sequence

0— M(P) = X(P) = Y(P) = dp(M) — dp(X)
I get then an exact sequence
0— M(P)— X(P)— Y(P) = dp(M) =0
Since moreover, by definition of Dp, I have the exact sequence
0— M(P)— X(P)— Y(P) = Dp(M)—0
Lemma 5.6 will be proved.
Solet 0 — M — X % Y — 0 be an exact sequence, in which I consider M

as a submodule of X, and y be an element of Y (P). Then there exists z in X (P)
such that y = b(x). Moreover, if @) is a proper subgroup of P, then rgx belongs to
M(Q).

The sequence (Tgl’)Qcp defines an element of (lim PM(Q))P, well defined

C
up to an element of the image of M(P), i.e. an element of dp(M). This element
is zero if and only if there exists an element m of M(P) such that rjz = rfm
for all subgroup proper @ of P, i.e. if y is in the image of X(P) (because then
y=>b(x —m), and £ —m € X(P)). Thus I have built an exact sequence
0 — M(P) — X(P) = Y(P) = dp(M)
The inclusion a from M to X yields a morphism dp(a) from dp(M) to dp(X).
Let m be an element of dp(M). Then m is represented by a sequence (mg)ocp
of elements of M(Q) such that r?(mQ) =mg if S C Q C P, and pmg = msg
if p € P. The element m is in the kernel of dp(a) if and only if there exists an
element x of X (P) such that mg = rgx for all @Q C P, hence if and only if m is in
the image of Y (P) (the element m is then the image by ¢ of b(z)).
Hence I have proved that the sequence

0 — M(P) — X(P) — Y(P) % dp(M) “™% dp(X)
is exact, which proves Lemma 5.6, and completes the proof of Lemma 5.5.

It remains to see how Lemma 5.5 implies Proposition 5.4. So let M be a 7-
injective Mackey functor in Mackg(G,1). I will show that R(M) fulfills Condition 3
of Lemma 5.5.

This condition being inherited by direct summands, I can suppose that M is
of the form J(X). Let then P be a p-subgroup of G. By definition

J(X)(P) = (P x@)°
Qcp

If R is a subgroup of P, and if v = (vg) € J(X)(P), then the Q-component of
rE(v) is equal to vg (for Q C R). Hence if v is in J(X)(P), then vq is zero for any
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subgroup of a proper subgroup of P, i.e. for any proper subgroup of P. Hence the
only non zero component of v is its P-component. But it is clear that J(X)(P)
splits as

T(X)(P) = X(P) DD X(Q)"

QCPp
as an Ng(P)/P-module, which proves that the injection of J(X)(P) in J(X)(P)
is a split.
Similarly, if w € (lim J(X)(Q))?, then w is a sequence of elements w¢ of

Qcp
J(X)(Q) such that Tg(wQ) =wg if Q@ C P, and z.wg = wa=q if z € P. Each
element wg is itself defined by a sequence wg g of elements of X (R), for R C Q.
Then if RC S C @Q C P, I must have rg(wQ) = wg, hence wr ¢ = wgr,g. Setting
up = wp,g for R C P, and up = 0, I define indeed a element u = (ugr) of J(X)(P)
(because w is invariant by P) such that rg(u) = wgq for Q@ C P. The natural
morphism from J(X)(P) to ((h_m J(X)(@Q))F is hence indeed surjective, which

QCP
proves Condition 3 of Lemma 5.5, and Proposition 5.4.

5.2.2. Homomorphisms. Let X be an rug(G)-module, and Y be a tugr(G)-
module. T define a tug(G)-module h(X,Y) by

h(X,Y)(P) = Homp(X(P),Y (P))
If P is a subgroup of @, and if ¢ € h(X,Y)(P), I set
t9(¢) = t9.6.r9
If x is a element of G, I define the conjugate of ¢ by x by
z(p) = x.0.x?

A similar (though more complicated) construction, exists for Mackey functors : if
X and Y are G-Mackey functors, I define the Mackey functor H(X,Y) by

H(X,Y)(K) = Hom(Res% X, Res%Y)
Hence an element of H(X,Y)(K) is a sequence of homomorphisms ¢, of X (L) in
Y (L), for all subgroups L of K such that
op.th =th.on iy =i oL si MCLCK
T.0 = Qap,.T ifre K, LCK
The restriction of such an element ¢ = (¢1) Lck to a subgroup M of K is defined by

r¥(¢)r = ¢, for L C M. The trace of ¢ from K to a subgroup N of G containing
K is defined by

t%(d))L = Z t%an.z71.¢anL.x.Téan
z€K\N/L

Finally, if x € G, then the conjugate of ¢ by z is defined par

(x¢)1 = v.fpp=.x"

Its a rather tedious calculation to check that H(X,Y) is indeed a Mackey functor.
This construction plays the same role for Mackey functors as the functor Hom(—, —)

plays for G-modules : for example, a Mackey functor X is projective relative to a
subgroup K of G if and only if H(X, X)(G) = t% H(X, X)(K) (Higman’s criterion).
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On the other hand, it is easy to see that if X and Y are in Mackgr(G, 1), then
so does H(X,Y) (this follows from the fact that Res% f& = fI).
The previous two constructions are related by the following lemma :

LEMMA 5.7. Let X be an rur(G)-module, and Y be a tur(G)-module. Then
H(I(X),J(Y)) = T (h(X,Y))
COROLLARY 5.8. Let X and Y be Mackey functors in Mackr(G,1). If X is
R-projective and if Y is T -injective, then H(X,Y') is T -injective, and in particular
Y(P))

Hom(X,Y) = @pes (6)/cHompng (p), p(X(P),

Let K be a subgroup of G. There is an obvious restriction functor from the
category of rugr(G)-modules to the category of rug(K)-modules : if P is a p-
subgroup of K, and X a rug(G)-module, then Res% (X)(P) = X(P). It is clear
moreover that this functor commutes with the functors Z and R : more precisely, if
T (resp. Ik ) denotes the functor Z for the group G (resp. for the group K), then
Resf(IG =1 KResf( (here the first Res denotes restriction for Mackey functors, the
second one restriction for rug(G)-modules).

Similarly, there is a restriction functor, that I still denote by Resf(, from the
category of tur(G)-modules to the category of tugr(K)-modules, which commutes
with functors J and 7.

With this notation

Hom(Res$Z¢(X), Res$ 7 (Y)) = Hom(Zx (Res$ X ), Res% T (V) =
Hom(Res$% X, RxRes$ Jo(Y)) = Hom(Res% X, R Jx (Res&Y))

But Jx (Res$%Y) is Tx-injective, and Jx (Res%)(Y)(P) = Y (P). Proposition 5.4
shows then that

RiJx(ResiY) = @ Lpy(p)
Pes, (K)/K
and then
Hom(Res%Zg(X),ResZ 7 (V) = @) Homy,py,p(X(P),Y(P))
Pées, (K)/K
hence

Hom(Res%Za(X),Resi T (V) = ( €D h(X,Y)(P)*
Pes (K)
which is also J(h(X,Y))(K). It is easy to describe this isomorphism precisely : if
for all p-subgroup P of K, I have a morphism ¢p from X (P) to Y (P) such that
xppr~ = ¢up if x € K, and if L is a subgroup of K, I define a morphism ¢y, from

(@pcLX(P))L to (©ocLY (Q))* by

or(mr(u))q = Z tgﬂmP'm'rng-(bP(u)
z€P\L/Q
This identification allows to check that the resulting isomorphism is indeed an
isomorphism of Mackey functors, which proves Lemma 5.7.

Then if X is R-projective and if Y is 7-injective, the functor H(X,Y) is a direct
summand of a functor of the form H(Z(A), J(B)), isomorphic to J (h(A4, B)), hence
it is 7-injective. To prove the corollary, it remains then to apply Proposition 5.4
and the following lemma, :
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LEMMA 5.9. Let X and Y be G-Mackey functors, and K be a subgroup of G.
Then H(X,Y)p identifies with H(XT Yp)

This lemma shows indeed that
H(X,Y)(P) = H(XP7YP)(P/P) = HomR(Y(P),Y(P))

hence that (Dpes (@) H(X,Y)(P))® = ©pes (6)/cHomng (), p(X(P),Y(P)).

So it remains to prove Lemma 5.9. Let K be a subgroup of G. Then by
definition, H(X,Y)(K) is the group of homomorphisms (as K-Mackey functors)
from Res$ X to Res%Y. An element of H(X,Y)(K) is hence a sequence (¢r1,) of
homomorphisms from X (L) to Y(L), for L C K, which commute with restrictions,
traces, and elements of K.

If P is a normal subgroup of K, such an element is in H(X,Y)p(K/P) if its
restriction to any subgroup M of K not containing P is zero, i.e. if ¢y = 0 if
P ¢ M.

If L/P is a subgroup of K/P, then v¥,¢; = ¢pyrl, = 0if P ¢ M, and the
image of ¢y, is contained in Yp(L/P). Similarly, since ¢tk = tM ¢y = 0, the map
¢1, factors through X7 (L/P). 1 define that way for all subgroup L/P of K/P a
morphism from X (L/P) to Yp(L/P). It is clear that these morphisms commute
with restrictions, traces and elements of K, hence I have defined a morphism of
K/P-Mackey functors from X* to Yp.

This construction can be obviously reversed, and this proves Lemma 5.9.

5.3. Projective functors and Cartan matrix.

5.3.1. Notation and recall. 1 will suppose in this section that R is a field k, of
characteristic p > 0.

Under these conditions, the simple Mackey functors in Macky (G, 1) are indexed
by the G-conjugacy classes of pairs (Q, V), where @ is a p-subgroup of G and V' a
simple kNg(Q)/@-module (cf.[5] Theorem 8.3 and [6] Theorem 9.7).

The simple functor Sg,v is defined for @ # 1 by

S§.v = Ind, ) Infxd(@) oSty ¢
and the functor va is the unique minimal subfunctor of the fixed points func-
tor FPy. The value at a subgroup H is given by Sy (H) = Tr{' (V).

Denoting by FQy the functor of coinvariants on V, whose value at H is
FQv(H) = Vg, the functor va is also the quotient of F'Qy by its unique maximal
subfunctor.

I will denote by ng the projective cover of the functor SS,V' Then Pg v
is in Macki(G,1). Denoting by bg the Burnside functor for the group @, the
functor ngv is a direct summand of the functor Indng. The module Pg v (1) is
an indecomposable p-permutation kG-module (cf.[6] Theorem 12.7). Conversely, if
W is a p-permutation kG-module, there exists a unique projective Mackey functor
L in Macky(G,1) such that L(1) = W.

Thus the projective Mackey functors in Macky (G, 1) are characterized by their
value at the trivial subgroup of G. The main result of this section will be a formula
to compute the Cartan matrix of Mack(G,1) from the p-permutation modules.

If M is a Mackey functor, I will denote by M* its dual, defined by M*(H) =
M(H)*, by tE(¢) = porE by rE(¢) = pork and 2.6 = pox~t. If M and N are
Mackey functors, then Hom(M, N) identifies with Hom(N*, M*), hence the dual
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of a projective functor is an injective functor, and the dual of an injective functor
is a projective functor.

The dual of the functor SQ v being the functor SQ’V*7 the dual of the functor
P v is the injective hull Ig v« of the functor SQ Ve

If L is a projective Mackey functor, then the natural morphisms from FQp )
to L and from L to F Py ) are respectively injective and surjective (cf.[6] Lemma
12.4). The same is true by duality if L is an injective functor, since the dual of the
functor F'Py is the functor FQy «.

Finally if K is a subgroup of G, the dual of the functor M¥ is the functor
(M*)k

5.3.2. Residues. The Mackey functors in Mackr(G, 1) which are moreover pro-
jective (resp. injective) are R-projective (resp. 7-injective). I can apply Corol-
lary 5.8 to these functors (and this argument also holds when R is an arbitrary
ring). When R is a field k, the residues projective or injective Mackey functors can
be easily computed :

LEMMA 5.10. Let M be a projective (resp. injective) functor in Macky(G,1),
and P a p-subgroup of G. Then M(P) (resp. M(P)) is isomorphic to M(1)[P].

(for the notation V[P], see Remark 3.5)
It suffices by duality of prove this lemma when M is projective : indeed, if M
is injective, then M™ is projective and

M(P) = Mp(P/P) = ((M")")p(P/P) = (M*)")"(P/P) = (M*)"(P/P))" =

(MEM[P)* = (MD)[P]")" = M(1)[P]

since if V' is a p-permutation module, then V*[P] = (V[P])*.

So let M be a projective Mackey functor in Macky(G, 1), and @ be a p-subgroup
of G. The natural morphism «a from M(Q) to F'Py1)(Q) = M(1)? is the map
sending v to r?’u. This morphism is surjective. On the other hand, if v is a relative
trace tgw from a proper subgroup S of @, then

r?v = Z thardw = Trg(w)
z€Q/S

and the morphism « passes down to quotients, giving a surjective morphism & from
M(Q) to M(1)[Q]. I must now show that this morphism is injective. This property
being inherited by direct sums and direct summands, I can suppose that M is of
the form Indgbg7 where S is a p-subgroup of G.

In this case, the module M (1) is isomorphic to Indgk, and denoting by T'¢(Q, S)
the quotient Ng(Q)\G/S, I have (cf.[2])

MOQ = malkQI = > Tdye!D/k
z€T¢(Q,S)

On the other hand, if L is a Mackey functor for the group Ng(Q)/Q, then

Hom((Ind$bs)¥9, L) = Hom(Ind$bs, Ind%G@)InfxiEg%/QL)
or

N,
Hom((Ind$bs)?, L) = Hom(Res§,, o, Ind$bs, IanGE% oL
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Moreover
G Gy Nc(Q)
Res%, (o) Ind$bs = Z Indy® () e sbva(@)nes
2€NG(Q\G/S
hence
N,
Hom((Ind§bs)?, L) = Hom(bNG(Q)ms,ResNGEQ;m In ngEgg ol)

zENG(Q)\G/S
Since for any group S and any S-Mackey functor X, the group Hom(bg, X) is
isomorphic to X (.5), and since (Inf%ggg;/QL)(st(Q)) is zero if @) is not contained

in 25, ie. if z ¢ Tg(Q,S), and equal to L(N-5(Q)/Q) otherwise, I have
Hom((Ind§bs)?, L) = ) L(N-s(Q)/Q)

z€Tc(Q,S)

Finally, for any L, I have

Hom((Ind$bs)?, L) = Y Hom(Indj¢'D/ by, (). L)
z€Tc(Q,S)
But the functor sending M to M® being left adjoint of an exact functor, it fol-
lows that M@ is projective if M is. Then the functors X = (Ind§bs)? and Y =
22T (Q.9) Indxfs(%g%bms(@/@ are both projective, and such that Hom(X, L) =
Hom(Y, L) for any L. Hence they are isomorphic.
So they have the same value at /@, which gives

M@= Y WmdyE@Qe k= M1)[Q]
z€Tc(Q,S)

and completes the proof of Lemma 5.10.

5.3.3. Cartan matriz. 1 suppose moreover here that the field k is big enough
(i.e. that it is a splitting field for all the groups Ng(Q)/Q, for Q € s,(G)).

Let @ (resp. L) be a p-subgroup of G, and V' (resp. W) be a simple kNg(Q)/Q-
module (resp. a simple kNg(L)/L-module). Lemma 5.10 and Corollary 5.8 show
that

Hom(PSW (PLa,W)*) = @Seﬁp(G)/GHomkNG(S)/S(Pg,v(1)[5]7 (PISW)*(l)[S])
On the other hand, in the Grothendieck group of Mackey functors
PEW = Z C(L,W),(H,M)SJCL;I,M
H,M

where the sum runs over the indexing pairs of simple Mackey functors in Macky (G, 1),
denoting by C(y, W) (m,m) the coefficient of the Cartan matrix corresponding to the
simple functors SL w and SH - The dual of Sg M being SH M it follows that

(PEw)™ =D Clw),(mnSiar
H M
and since Hom(PQGy, S,§7M*) is zero if the pair (H, M™*) is not conjugate to the pair
(Q,V), and one dimensional k (since k is big enough), it follows that

Cwyvy =,  dimgHompy,s)s(PG v (1S, (Pfw)*(1)[S])
Ses, (©)/G
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But (PEW)*(l) = (Pﬁw(l))*, and (Pﬁw(l))* = PLG_W*(l) (because Pﬁw(l) is
the Green correspondent of the projective cover of W by Theorem 12.7 of [6], and
since the Green correspondence commutes with the duality). Changing V' to V* in
the above equality gives

Cwyov) =,  dimgHomyygs)s((PSy(1)*[S], (Pfw (1)*[S)
Ses, (C)/G
i.e.
Ciwyevy= > dimgHomywgs)s(PEw (1)[S], PS v (1)[S)
Ses, (C)/G

Finally, by linearity, this gives :

PROPOSITION 5.11. Let k be a “big enough” field. If M and N are projective
Mackey functors in Macky(G,1), then

dimgHom(M, N) = > dimgHomyy,,s)/s(M(1)[S], N(1)[S])
Ses, (@)/a

COROLLARY 5.12. Let pg(G) the Green ring of p-permutation kG-modules. The
bilinear form on pg(G) defined by

< X)Y >g= Z dimgHomy, n, (sy,s (XS], Y[S])
Ses,(@)/G

is symmetric, positive, and definite. Moreover, if H is a subgroup of G, then
<Ind%X,Y >¢=< X,Res§Y >y

This corollary follows from the fact that the Cartan matrix of Macky(G,1) is
symmetric, positive, and definite, and that the corresponding bilinear form satisfies
Frobenius reciprocity (moreover, if M is a kH-Mackey functor, then (Ind M)(1) =
Ind$G M(1)).

5.3.4. Another formula. 1 suppose here that R is a field k of characteristic p.
The notation about the generalized Steinberg modules was introduced in [1].

PROPOSITION 5.13. Let L be a projective Mackey functor in Macky(G,1), and
X be any Mackey functor for G over k. Then

dimk Hom(L,X) = Z dimk HomkNG(p)/p(St(Ng(P)/P,L(l)[P]),X(P))
Pes, (G)/G

To prove this proposition, I use the following ingredients :
1) If N is a normal subgroup of G, there exists a natural algebra homomorphism
from pi(G/N) to uk(G), mapping the element tfjl/%vfrf//fvv to tK orfl If N is a
normal p-subgroup of G, then this morphism maps the algebra pj(G/N) in the

algebra pl(G) : indeed, if P/N is a p-subgroup of G/N, then the image of tg//jvv

(resp. rg//llvv) is tH (resp. rH), and P is a p-subgroup of G.
2) This morphism induces an exact functor pg /N from the category of G-Mackey

functors to the category of G/N-Mackey functors : if M is a G-Mackey functor,
then the functor pg/N (M) is such that

pén(M)(H/N) = M(H)
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Moreover, if N is a normal p-subgroup of GG, the functor pg/N maps Macky(G, 1)
in Macki(G/N,1).

The functor pg /N admits a left adjoint, denoted by Lg /N Since the functor
pg/N is exact, the functor Lg/N(M) is projective if M is. If N is a normal p-
subgroup of G, and if M is in Macky,(G/N,1), then Lg/N(M) is in Macki(G,1).
3) If M is a G/N-Mackey functor, then for any kG-module V/

Hom(1g (M), FPy) = Hom(M, pg x (FPy))
and it is easy to see that pg/N (F Py) identifies with F'Py-~. Then

Hom(.§y (M), FPy) = Homygn (M (N/N), V) = Homye (M(N/N), V)

On the other hand, since
Hom(: (M), FPy) = Homg (1 (M) (1), V)

it follows that Lg/N(M)(l) is isomorphic as a kG-module to the module M (N/N).
4) If M = A — B is a virtual projective kG-module, I denote by FQ s the Mackey
virtual projective functor FQ 4 — F@Qp, in the Green ring of projective Mackey
functors in Macki(G,1). If X and Y are virtual projective Mackey functors in
Macky(G,1) such that X(1) = Y(1) in the ring of Green of kG-modules, then
X=Y.

The previous considerations prove the following lemma :

LEMMA 5.14. Let L be a projective Mackey functor in Macky(G,1). Then

_ G Ng(P)
L= Z IndR.pying(py p(F@st(Na(P)/P,L(1)[P])
Pes,(G)/G

in the Green ring of projective functors in Macky(G,1).
Indeed, the module L(1) can be written (cf.[1])

L= 3 Id§, pSt(Na(P)/P,L(1)[P])
Pes, (G)/G

Then both sides of the equality of the lemma are virtual projective Mackey functors
in Macky (G, 1), which have the same value at the trivial subgroup. Hence they are
equal.

The proposition follows, applying the functor Hom(—, X') to both sides.

REMARK 5.15. It is possible to compute effectively the functor Lg/N s let M

be a kG/N-Mackey functor, and K be a subgroup of G. Let wx(K) the set of
subgroups of K ordered by the relation

/ Lcr

LjL@{LmN_UmN
I denote by
m M(LN/N)

Lewn (K)

the quotient of &cxM(LN/N) by the submodule generated by elements of the

L/N/Nm—m, for L < L' and m € M(LN/N).

form tLN/N
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The group K acts on h_m) M(LN/N), and then
Lewn(K)

GONEK) = lim MLN/N))
Lewn (K)

is the largest quotient on which K acts trivially. If L is a subgroup of K, and m
an element of M(LN/N), I denote by m¥ the image of m in 15 (M)(K).

If K C K', then t&' (resp. rK') is the map from (§(M)(K) to (5 (M)(K')
(resp. from (& (M)(K') to 1% (M)(K)) defined by

y / 'K z L'N/N
ti (mp)=mp ri (m'p ) = Z ( T(KzéThe)N/Nm)
wEK\K'/L'
Finally if x € G, then ®(m¥) = (*m).X.

K

Kn*L’

6. Projective functors and image of 7

I will try to see in this section under which conditions a projective Mackey
functor in Mack(G, 1) lies in the image of Z. I will suppose that R is a complete
local ring, with residue field of characteristic p.

6.1. Finite projective resolutions. I will state the following equivalence :

THEOREM 6.1. Let X be an rug(G)-module. The following conditions are
equivalent :

(1) The functor Z(X) is projective.
(2) The module X has a finite projective resolution.

The proof of this theorem requires a series of preliminary results.

LEMMA 6.2. Let X and Y be projective functors in Mackr(G,1). The mor-
phism ¢ +— (1) of evaluation at 1 from Hom(X,Y) to Hompgre(X(1),Y (1)) is
surjective. Moreover ¢ is a split injective (resp. a split surjective) if and only if
(1) is a split injective (resp. a split surjective).

I'have already recalled that the natural morphism from Y to F'Py () is surjective
if Y is projective. Let then f in Hompq(X(1),Y(1)). It yields by adjunction a
morphism F of X in F'Py(y). Then the diagram

Y
!
x & Fpyg

can be completed to a commutative diagram by a morphism ¢ from X to Y, because
the vertical arrow is surjective, and the functor X is projective. It is clear that ¢(1)
is equal to f, which proves the first assertion.

It is clear moreover that if ¢ is a split injection, then ¢(1) is also split injective.
Conversely, if ¢(1) is a split injection, then there exists a morphism f from Y (1)
to X (1) such that f¢(1) = Idx (). The morphism f can be lifted to a morphism
f from Y to X, and then the morphism ) = fcz) is an endomorphism of X such
that (1) = Id. Then some power of v is a Fitting element?. Its image I is then a

4This probably requires X to be finitely generated
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direct summand of X, hence [ is a projective Mackey functor in Mack(G, 1) such
that I(1) = X (1), which proves that I is isomorphic to X, hence that ¥ = f¢ is
invertible, and ¢ is a split injection. The case of a split surjection is similar.

LEMMA 6.3. Let X and Y be projective functors in Mackgr(G,1), and ¢ be a
morphism from X to Y. The following conditions are equivalent :
(1) The morphism ¢ is a split injection (resp. a split surjection).
(2) For any p subgroup P of G, the morphism ¢(P) of X(P) in Y(P) is
injective (resp. surjective).

Since one can lift projective objects and morphisms between them from k to R,
I can assume that R is a field k of characteristic p. In this case, the module
X (P) identifies with X(1)[P], and the morphism ¢(P) to ¢(1)[P]. T will prove
simultaneously Lemma 6.3 and the following proposition :

PROPOSITION 6.4. Let M and N be p-permutation kG-modules, and f be a
morphism from M to N. The following conditions are equivalent :
(1) The morphism f is a split injection (resp. a split surjection).
(2) For any p subgroup P of G, the morphism f[P] of M[P] in N[P] is injec-
tive (resp. surjective).

Indeed let X, Y and ¢ be as in Lemma 6.3. It is clear that if ¢ is a split
surjection, then for any P, the morphism ¢(P) is (split) surjective. Conversely, if
#(P) is surjective for all P, then ¢(1) = ¢(1) is surjective. Let @ be a p-subgroup
such that ¢(R) is surjective for all proper subgroup R of ). Let moreover v € Y (P).

Since ¢(P) is surjective, there exists elements vg € Y (R), for R C @, and an
element w € X(Q) such that

v=0(Q)(w)+ > thvr

RCQ

Then each vg can be written vg = ¢(R)(wgr) since ¢(R) is surjective, and then

v=¢(Q) W)+ Y t26(R)(wr) = ¢(Q)(w) + Y $(Q)(tPwr)

RCQ RCQ

which proves that ¢(Q) is surjective for all Q. Then ¢ is surjective, hence ¢ is a
split surjection since Y is projective. This shows the equivalence of conditions of
Lemma 6.3 in the surjective case.

Then let M, N and f be as in Proposition 6.4. If f is a split surjection, it
is clear that f[P] is (split) surjective for all P. Conversely, if f[P] is surjective
for all P, let Ly (resp. Ly) the projective Mackey functor in Macky(G,1) such
that Lps(1) = M (resp. Ly(1) = N). The morphism f can be extended to a
morphism ¢ of Ly, in Ly, such that ¢(1) = f. The hypothesis implies that ¢(P),
which identifies with f[P], is surjective for all P. Then ¢ is a split surjection, and
f = ¢(1) is also split surjective. Which proves the equivalence of conditions of
Proposition 6.4 in the surjective case.

But by duality, this proves the equivalence of the conditions of Proposition 6.4

in the injective case®.

5This proof is not correct for infinitely generated modules. This was fixed in Le compleze de
chaines d’un G-compleze simplicial acyclique J. Alg. 220 (1999) 415-436
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Let then again X, Y, and ¢ be as in Lemma 6.3. It is clear that if ¢ is a split
injection, then ¢(P) is (split) injective for all P. Conversely, if ¢(P) is injective for
all P, let f = ¢(1). Then f is a morphism from X (1) to Y (1) such that f[P] is
injective for all P, hence f is a split injection, and Lemma 6.2 implies that ¢ is a
split injection, which completes the proof of the Lemma 6.3 and Proposition 6.4.

By the same argument as above about lifting of projective modules, it suffices
to prove Theorem 6.1 in the case where R is a filed k of characteristic p.

If M is a kG-module, and P a p-subgroup of G, I will denote by Brp the
projection morphism from M* to M[P]. If X is an rugr(G)-module, as the image
of " is contained in X (1)”, I can abuse notation, and denote by Brpr{ the
composite map from X (P) to X (1)[P]. With this notation :

PROPOSITION 6.5. Let X be an ru(G)-module. The following conditions are
equivalent :

(1) The module X has a finite projective resolution.
(2) The module X (1) is a p-permutation kG-module, and for any p-subgroup P
of G, the map Brprf is a isomorphism from X (P) to X (1)[P].

I will show that Assertion 1 of the proposition implies Assertion 2 by induction
on the length of a finite projective resolution of X.

I already observed (in Section 2) that Assertion 2 is true if X is projective :
indeed, if P is a p-subgroup of G, if E is a projective kNg(P)/P-module projective,
and if X = LP,E, then

X(Q) = ®rers(@.P)/Na(P)T O E

On the other hand, the module X (1) identifies with Ind% «(p)E. Hence an element
v of X(1)% can be written ZweG/P T ® vy, the sequence v, being such that v, () =
hg Vs, denoting by = +— o4(z) the permutation of G/P induced by ¢, and h . the
element of Ng(P) defined by gz = oy4(x)hg,. In particular, the element v, is
invariant by @ N*P, and v can also be written

v = Z Trgmp(x ® Vy)
z€Q\G/Ng(P)

It is then clear that 72X (Q) is a supplement in X (1)@ of the kernel of Brg.

So let X be an ruk(G)-module having a finite projective resolution. There
exists a projective rug(G)-module L and an ruk(G)-module Y having a strictly
shorter finite projective resolution than the one of X, and an exact sequence

0—>Y—i>L—>X—>O

The induction hypothesis implies that Y (1) is a p-permutation module, and that

Brpr¥ is an isomorphism from Y (P) to Y (1)[P]. Then the commutative diagram

0 —  Y(P) D)
lBrpr{J lBrprf
vy, U e

where the vertical arrows are isomorphisms, shows that the map i(1) is an injection
from Y (1) in L(1) such that ¢(1)[P] is injective for all P. Thus i(1) is a split
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injection by Proposition 6.4, and the sequence

0—-v(1)'Y L) - x(1)—0

is split exact. In particular, the module X (1) is a direct summand of L(1). Hence
it is a p-permutation module. Then the completed diagram

0 —  Y(P) *E) L(P) —  X(P) — 0
l Brpr{) _ 1 Brprf 1 Brpr{D
o — vorrp Yoo - x@Pp] - 0

shows that the vertical arrow on the right is an isomorphism, which proves Asser-
tion 2 of the proposition.

Now I will show that Assertion 2 of the proposition implies Assertion 1. First a
notation : if X is an ruk(G)-module, I denote by Supp(X) the set of subgroups P
such that X (P) # 0, and Supp(X) its “downwards closure” for inclusion, i.e. the
set of subgroups which are contained in a element of Supp(X).

Let X be an ru(G)-module with the properties of Assertion 2 of the proposi-
tion. I will proceed by induction on the cardinality of Supp(X).

There is nothing to prove if this cardinality is zero, since then X is zero, hence
projective. I postpone the proof of the following lemma :

LEMMA 6.6. Let X be an rug(G)-module, and for any p-subgroup P of G, let
Ep be a projective cover of the kNg(P)/P-module

X(P)/() " r2X(@Q)

QDP
Then @P€§p(g)/GLP’EP s a projective cover of X.

The properties of Assertion 2 show indeed that if P is a maximal element of
Supp(X) (or equivalently of Supp(X)), then the module X (P) is a p-permutation
kN¢(P)/P-module. Moreover, if P C @ C Ng(P), then X (P)[Q/P], isomorphic to
X (1)[P][Q/P], hence to X (1)[Q], hence to X (Q), is zero. Then X (P) is a projective
kN¢(P)/P-module. Since moreover T’IQ;.X(Q) is zero if () strictly contains P, I see
that X (P) is equal to Ep for any maximal element P of Supp(X).

Let then L = ®pLp g, be a projective cover of X, and Y the kernel of a
surjection s from L to X. Since Lp g, (P) = Ep = X (P), I see that Y (P) is zero if
P is maximal in Supp(X). Moreover L(Q) is zero if @ is not in Supp(X) : indeed,
the support of Lp g, is the set of subgroups of G which are contained in P up to
conjugation, if Ep, hence X (P) are non zero.

Hence the cardinality of Supp(Y') is strictly smaller than the cardinality of
Supp(X). On the other hand, the commutative diagram

Ly % X(P) ~ 0
| Brprf | Brprf
s(D[P]
Lpy = X(1)[P]
shows as above that s is a split surjection. Similarly, the completed diagram
0 - Y — LP) *(E) X(P) — 0

1 Brpr{) l Brprf) l Brpr{)

0o - vy — Lwr Y oxap - o
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shows then that Y has the properties of Assertion 2. The induction hypothesis
implies that Y has a finite projective resolution. It follows that X has a finite
projective resolution, and this completes the proof of Proposition 6.5.

REMARK 6.7. The previous proof also shows that if p™ is the p-part of the order
of G, then any ruy(G)-module having a finite projective resolution has a resolution
of length smaller than n. The length of minimal finite projective resolutions is
hence bounded®.

I must now prove to Lemma 6.6. Recall that the simple rug(G)-modules, that
I have denoted by Npy, are indexed by pairs {P,V}, where P is a p-subgroup
of G and V a simple kNg(P)/P-module. They are defined by Npy(Q) = 0 if
@ is not conjugate to P, and Npy(P) = V. It is then easy to see that for all
ruk(G)-module X

Hom(X, Npy) = Homw (p)/p(X(P)/ Y r3X(Q),V)
QDP
which shows that, denoting by J(X) the radical of X,
J(X)(P) = J(X(P))+ Y r2X(Q)
QDP

Lemma 6.6 follows easily.

I can now prove Theorem 6.1 : let X be an rui(G)-module such that Z(X) is
projective. Then, since X (1) = Z(X)(1), the module X (1) is a p-permutation
module. On the other hand, the module Z(X)(P) identifies with X (1)[P] if Z(X)
is projective, by Lemma 5.10. But for any X, it also identifies with X (P). Moreover
the diagram

X(P) — I(X)(P)
Lrf Lr{
X(1) — I(x)(1)
is commutative, hence X fulfills the conditions of Assertion 2 of Proposition 6.5.
Thus X has a finite projective resolution, which proves Assertion 2 of the theorem.
To show that Assertion 2 of the theorem implies Assertion 1, I proceed by
induction on the length of a finite projective resolution of X. If X is projective,
then Z(X) is projective, because the functor Z is left adjoint to an exact functor.
If X has a finite projective resolution, then there exists a projective rug(G)-
module L, an ru(G)-module Y having a finite projective resolution, strictly shorter
than the one of X, and an exact sequence

O—>Y—i>L—>X—>O

Then Z(Y') and Z(L) are projective Mackey functors. Moreover, since Z(i)(P) =
i(P) is injective for all P, the morphism Z(¢) is a split injection by Lemma 6.3.
Since the functor 7 is right exact, it follows that the sequence

0-7(V) () - 7(x) -0

is split exact, hence the functor Z(X) is projective, which completes the proof of
Theorem 6.1.

6n other words, the finitistic dimension of ru(G) is at most equal to n
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6.2. Examples. Let M be a p-permutation module. There exists a unique
projective Mackey functor Lps in Macky(G, 1), such that Lps(1) = M. Proposi-
tion 6.5 and Lemma 5.10 give a necessary and sufficient condition for the existence
of an rug(G)-module X such that Ly, is isomorphic to Z(X) : indeed in this case,
the module X (P) must be isomorphic to L;(P), hence to M[P]. Hence there must
exist maps rg , defined for Q C P, from M[P] to M[Q], such that

° 7"?7"5:7"5 ifSCQCP.
o rp =1Idforall P € 5,(G).

1

° xrng = rig for any z € G and any @ C P.

P

e P is injective and its image is a supplement of KerBrp in M = M[1]?

Conversely, if such maps exist, then they define an rug(G)-module X such that
Z(X) is projective, and moreover Z(X)(1) = X (1) = M, hence Z(X) is isomorphic
to LM

6.2.1. Permutation modules. A simple example of this situation is the case
where M is a permutation module : indeed, if B is a G-stable basis of M, then
the inclusion of BY in B? yields the required map 7“5 . For example, if M = k,
the functor Ly is the functor b,(G) of Macky(G,1) associated Burnside to the
Burnside functor (i.e. the subfunctor of the functor of Burnside such that b,(H) is
generated by the elements H/P, where P is a p-subgroup of H). The associated
rug(G)-module X is such that X(P) = k for all P, the maps TS being identity
maps, as well as the conjugations by the elements of G. In other words, the module
X is isomorphic to R(F Py). Thus

PROPOSITION 6.8. The module R(F Py) has a finite projective resolution.

I will now give other examples of this situation.

6.2.2. Some indecomposable p-permutation modules. Recall (cf.[2]) that the in-
decomposable p-permutation modules can be indexed by the pairs (P, E), where P
is a p-subgroup of G and E is an indecomposable projective kNg(P)/P-module :
the module M (P, E) corresponding to the pair (P, E) is the unique indecomposable
p-permutation module with vertex P such that M (P, E)[P] = E. The multiplicity
of M(P,FE) as a direct summand of a p-permutation module N is equal to the
multiplicity of E as a direct summand of N[P]. This multiplicity is given by the
following :

LEMMA 6.9. Let N be a kG-module, and E be a projective kG-module. The
multiplicity of E as a direct summand of N is equal to

dim Tr{Homy, (N, E/J(E))/dimEndyg (E/J(E))

Indeed dimy, Tr{*Homy (N, E/J(E)) is the dimension of the space of kG-homo-
morphisms f from N to E/J(E) which factor through a projective module, i.e.
which can be written f = g, where 7 is the projection from E to E/J(FE) (since
E is a projective cover of E/J(FE)). Since 7 is essential, the morphism g is then
surjective if f is non zero, hence surjective. Then F is a direct summand of N.
Conversely, if N can be written N = E™ @& M, where the module M has no di-
rect summand isomorphic to F, then dimyTrfHomy (M, E/J(E)) is equal to zero,
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and dim Tr{fHomy (N, E/J(E)) is equal to ndim; Tr{Homy, (E, E/J(E)), hence to
ndim;Endgq(E/J(E)).

PROPOSITION 6.10. Let P (resp. Q) be a p-subgroup of G, and E (resp. F)
be an indecomposable projective kNg(P)/P-module (resp. kNg(Q)/Q)-module) If
M (P, E) is direct summand of Ind%G(Q)F, then there exists an element x € G such
that Q* N Op(Ng(P)) = P, and in particular

QNO,G) C"PCQ

COROLLARY 6.11. If Q C O,(G), then the module Ind]C\;,G(Q)F is indecompos-
able (equal to M(Q, F)), and the functor Lyyq,r) is isomorphic to Z(Lq,r).

Indeed (cf. [1] Lemme 3), if N = Ind%G(Q)F7 then

B Ne(P)/P &
N[P] = > Indyg pegyp F
2€Ng(P)\Tc(P,Q)/Nc(Q)

moreover assuming for simplicity x = 1, hence P C Q

dimy, 771" Homy (Ind N (D)) . F B/ (E)) = ...

= dimy, TrY e PO P Hom, (F, E/J(E))
But Ng(P)/P acts trivially on F, hence
dimy, TrY ¢ P PHom, (F, E/J(E)) = ...
= dimy, Try e (I Hom, (py p(F, Try @ (B 10(B))
But O,(Ng(P)/P) acts trivially on the simple kNg(P)/P module E/J(E). This
expression is hence equal to zero if Ng(P) N O,(Ng(P)) is different from P, hence
if QN 0,(Na(P)) # P.

Since Ng(P) normalizes PO, (G), I have Npo, () (P) € O,(Ng(P)), hence I
must have Q@ N Npo, (@) (P) = P, i.e. QN PO,(G) = P, or QN O,(G) C P, which
proves the proposition.

The first part of the corollary follows, since the only indecomposable summand
with vertex @ of N is M(Q, F), with multiplicity 1. On the other hand the func-
tor Z(Lg.r) is projective, and its value at the trivial subgroup is Ind$ s F =
M(Q,F).

PRrROPOSITION 6.12. The following conditions are equivalent :

(1) For any p-subgroup of G and any indecomposable projective kNg(P)/P-
module, the module IndgG(P)E 15 indecomposable.

(2) For any indecomposable p-permutation module M, there exists a p-subgroup
P and an indecomposable projective kNg(P)/P-module E such that M s
isomorphic to Ind%G(P)E.

(3) The group G has a normal Sylow p-subgroup.

(4) Any ruk(G)-module having a finite projective resolution is projective.

If Assertion 1) holds, as M (P, E) is a direct summand of Indgc( py &, which is
indecomposable, these modules are isomorphic, and Assertion 2) holds.

It is clear that Assertion 2 implies Assertion 3 : indeed, if the module k is
isomorphic to Ind%G(P)E, then [G : Ng(P)]dimy, E = 1 by consideration of dimen-
sions, hence P is a normal subgroup of G. Since p does not divide the dimension
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of the projective kNg(P)/P-module E, the group Ng(P)/P is a p’-group, and P
is a Sylow p-subgroup of G.

Similarly, if G has a normal Sylow p-subgroup, equal to O,(G), then all the
p-subgroups of G are contained in O,(G), and Assertion 1) holds by the previous
proposition.

Assertion 4) implies Assertion 3), since if R(F Py) has a finite projective res-
olution, it is a projective rux(G)-module, indecomposable since R(FPy)(1) = k.
Hence there exists P and F such that R(FPy) is isomorphic to Lpg. Then k
is isomorphic to Ind%c( pyE, and G has a normal Sylow p-subgroup by the above
argument.

To show that Assertion 1) implies Assertion 4), I will use the following lemma :

LEMMA 6.13. Let P be a p-subgroup of G and E be a projective kNg(P)/P-
module such that the module Ind%G(P)E is indecomposable. Let X be an ru(G)-
module having a finite projective resolution. If M(P,E) = Ind%G(P)E 15 a direct
summand of X (1), then there exists a submodule of X isomorphic to Lp .

Let indeed « be a split injection from Ind%G(P)E into X (1) : the map « is
determined by a Ng(P)-homomorphism from E to X(1), i.e. by a Ng(P)/P-
homomorphism £ from E to X(1). Composing this map with the projection Brp
onto X (1)[P], and next with the isomorphism o, inverse of Brpr{, I get the map
¢ = oBrpf from E to X(P), which gives by adjunction a morphism ® from Lp g
to X. The morphism ®(1) is defined by

®(1)(z ®e) = arfoBrpp(e)
whereas « is defined by
a(z @) = 6(e)
Let then 7 be a morphism from X (1) to Ind%G(P)E such that ya = Id. In par-
ticular, T have v8(e) = 1 ® e. The morphism v®(1) is an endomorphism of the
indecomposable module Ind$, «(p)E. Hence it is hence invertible or nilpotent. But

7®(1)(1®e) = yr¥ o Brpp(e)

and
BrprfoBrpp(e) = BrpA(e)

by definition of o. Thus 7o BrpB3(e) — 3(e) € KerBrp, hence

¥P(1)(1®e) —1®e € KerBrp
i.e.

Ye(1)[P] = Idg

proving that v®(1) is not nilpotent, hence that it is invertible. Thus ®(1) is a split
injection, which proves that ®(1)[Q)] is injective for all @), hence that @ is injective,
which proves the lemma.

Then if the conditions of Assertion 1) of the proposition hold, and if X is a
minimal counter example to Assertion 4), let M (P, E) = Ind§ +(p)E be an inde-
composable direct summand of X(1), and L be a submodule of X isomorphic to
Lp . The quotient Y of X by L has a finite projective resolution : indeed, a

module Y has a finite projective resolution if and only if there exists an integer n
such that Ext™(Y,Z) = 0 for all Z and any m > n. Then if

0—A—-B—-C—0



RESOLUTIONS OF MACKEY FUNCTORS 41

is an exact sequence, the associated long exact sequence of Fxt groups shows that
if two of the modules A, B, C have a finite projective resolution, then so does the
third.

Then the minimality of X implies that Y is projective, hence direct summand
of X, which is hence a direct sum of two projective modules, hence projective. This
contradicts the hypothesis on X, and completes the proof of the proposition.

6.2.3. Quasi trivial intersection. 1 will say that a p-subgroup P of G is a quasi
trivial intersection subgroup if for any z € G, either P = P*, or P N P* C O,(G).
In the case where O,(G) = (1), a quasi trivial intersection subgroup is a trivial
intersection subgroup.

PROPOSITION 6.14. Let P be a quasi trivial intersection p-subgroup of G, and
M be an indecomposable p-permutation kG-module with vertex P. Then there exists
an 7k (G)-module X such that Z(X) = L.

Indeed, if M(Q, F) is a direct summand of Ind%G(P)E, then there exists z € G
such that P* N O,(Ng(Q)) = Q. Then if @ Z O,(G), the group @ is contained
in a unique conjugate P of P, hence N¢(Q) normalizes P*, which proves that
Np:(Q) € Op(Nc(Q)). Then it follows that P* = Q. Hence the module Indf p)E
is the direct sum of M (P, E) and indecomposable modules with vertex contained
in O,(G).

Let then M be an indecomposable p-permutation kG-module with vertex P.
I denote by E the projective kNg(P)/P-module M[P]. If P is contained in O, (G),
then IndgG(P)E is indecomposable, equal to M(P, E), and the rug(G)-module
X = Lpp is such that Z(X) is projective, and X (1) = Ind§,p)E = M(P,E).
Thus X is a solution to the question for the module M = M (P, E).

If P is not contained in O,(G), let X be a minimal quotient of Lp g such that
X has a finite projective resolution, and that X (P) = E. Such a quotient exists,
since LP7E(P) =F.

Since X is a quotient of Lp g, and since X has a finite projective resolution,
I know that X (1) is a direct summand of Indgc(p)E = Lpp(1).

Then if M(Q, F) is an indecomposable direct summand of X (1), either @ is
conjugate to P, or @ is contained in O,(G). In this case, the module Ind]C\;,G(Q)F is
indecomposable, equal to M(Q, F'), and the split injection from M(Q, F) to X(1)
yields an injection from Lg r into X, hence an exact sequence

0—=Logr—X—-Y —0

Then Y is a quotient of Lp g, since X is, and moreover Y (P) is equal to E,
since Lg rp(P) = 0. Since Y has a finite projective resolution, this contradicts the
hypothesis on X, which proves that @) is conjugate to P, hence that F' = E, and
that X (1) is indecomposable with vertex P, such that X (1)[P] = E. Hence X is a
solution to the question, which proves the proposition.

PROPOSITION 6.15. If the Sylow p-subgroups of G are trivial intersection p-
subgroups, then :
(1) For any p-subgroup P of G and any projective kNg(P)/P-module E, there
exists a projective kNg(P N OL(G))/(P N O,(G))-module F such that

IS, ) B = M(P, B) & ndS, (pro, ) F
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(2) For any p-permutation kG-module M, there exists an ruy(G)-module X
such that Z(X) = L.

Indeed, if the Sylow p-subgroups of G/O,(G) are trivial intersection p-subgroups,
then they are quasi trivial intersection p-subgroups. If P is a p-subgroup of G, not
contained in O,(G), if S is a Sylow p-subgroup of G containing P, then S is the
only Sylow subgroup of G containing P.

Then if M(Q,F) is an indecomposable direct summand of Ind§ «(p)E, there
exists € G such that P* N O,(Ng(Q)) = Q, and PP N O,(G) C Q. If Q is
not contained in O,(G), then S is the only Sylow p-subgroup of G containing Q.
In particular Ng(Q) C Ng(S®), and Ng=(Q) C O,(Ng(Q)). Thus Np=(Q) C
0p(N¢(Q)), which proves that @ = P*. And if @ is contained in O,(G), then
@ = P*” N O,(G), which proves Assertion 1).

Let then M be a p-permutation indecomposable module with vertex P, and
E = M|[P]. Let as above X be a minimal quotient of Lp g having a finite projective
resolution, and such that X (P) = E.

In particular, the module X (1) is a direct summand of Ind§ (B Thus if
P C 0,(G), then X(1) is equal to Ind]C\;,G(P)E = M(P,E), and X fulfills the
conditions of Assertion 2).

If P is not contained in O,(G), let M(Q, F') be an indecomposable direct sum-
mand of X (1). Then M(Q, F) is a direct summand of Ind%G(P)E. Thus if @ is not
conjugate to P, then @ C O,(G), and M(Q, F) = Ind%G(Q)F is a direct summand
of X(1). The module Ly r is then a submodule of X, and the quotient Y is a
quotient of Lp g strictly smaller than X, having a finite projective resolution, and
such that Y(P) = X(P) = E, since Lg p(P) = 0. This contradicts the definition
of X, and proves that Q = P, hence that FF = E, and that X (1) is indecompos-
able. Since X (1)[P] = X(P) = E, this prove that X (1) is isomorphic to M, and
Assertion 2) follows.

6.2.4. The case of cyclic groups. Let M is a p-permutation indecomposable
module with vertex P, then M is a direct summand of Indgk‘. This is equivalent
to saying that there exists a P-invariant linear form ¢ on M and a vector f of M T,
such that

Idy =Trg(¢ @ f)
denoting by ¢ ® f the endomorphism of M defined by
(@@ f)v) = o(v)f
Let then @ be a p-subgroup of G. I define an endomorphism ag of M by
agv) = Y. o v)af
©€Ts(Q,P)/P

so that a; is the identity map. Then :

LEMMA 6.16. With this notation :
(1) If Q € 5,(G) and z € G, then zagr™" = a=q.
(2) The image of aq is contained in M?, and its kernel contains [Q, M].
(3) If AD BCC, then apapac = apac
(4) In particular, for all p-subgroup @ of G, I have

3 _ 2
Qg = aq



RESOLUTIONS OF MACKEY FUNCTORS 43

and aé is a projector whose image is isomorphic to M[Q)].

Assertion 1) follows from the fact that T¢(*Q, P) = Ta(Q, P)x. For Asser-
tion 2), I observe that if ¢ € Q, then

gag)=q Y dawaf= Y a2’ f = agv)
z€Tc(Q,P)/P z€Ta(Q,P)/P
since f is P-invariant. The second part of Assertion 2) follows then from Asser-

tion 1), since ag(qv) = gag(v) = ag(v).
Under the assumptions of Assertion 3), let v € M. Since o is the identity map,

I can write
v = Z Z oz ty to)yav

©€B\G/P y€B/Bn=P

i.e., since v is B-invariant
v = Z o) TrE . p(zv)
x€B\G/P

But as(Tr5 . p(zv)) = 0 if B € “P, and hence

aa(v) = asap(v)si ve MP

and Assertion 3) follows, as the image of a¢ is contained in M, hence in M 5.
The first part of Assertion 4) follows, taking A = B = C' = Q. The second one
follows from the fact that for v € M@, the vector v — ag(v) is in the kernel of Brg,
which is contained in the kernel of aq.
In the case where P is cyclic, this gives :

PROPOSITION 6.17. Let P a cyclic p-subgroup of G, and M be an indecompos-
able p-permutation kG-module with vertex P. Then there exists an ruy(G)-module
X such that T(X) = Lyy.

If the Sylow p-subgroups of G are cyclic, then for any indecomposable p-permuta-
tion module M there exists an ru(G)-module X such that T(X) = L.

With the previous notation, I set, for any p-subgroup @ of G

ﬁQ = qu)n(Q)OapnA(Q) e Oéq>(Q)Oéé

where ®(Q) is the Frattini subgroup of @, the integer n being chosen such that
P"t1(Q) = (1) (the definition of 3o does not depend on the choice of such an
integer n, since a1 = Id). It is clear that if 2 € G, then

zﬂQ:cfl = (=0
Moreover, if S is a subgroup of @, there exists k such that S = ®*(Q), and

asfo = Qe Qe (@) Qan1(Q) -+ (@)Y
hence
asﬁQ = Qpk(Q)Xpk+1(Q) - -+ aé
which gives
BsBaq = Bq

It follows that (g is a projector. Moreover, it is clear that Soag = Bg, and that
agfo = a2Q (it is the case S = @, hence k = 0, of the above equality). In particular,
the projectors g and ag, have the same kernel, hence images isomorphic to M[Q)].
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Moreover if S is a subgroup of @), then Bs8g = B, and the image of 3¢ is contained
in the image of (g.

Denoting by rg this inclusion, I get the required maps from M[Q)] to M[S] I de-
fine that way an ru(G)-module X such that Z(X) is projective and Z(X)(1) = M,
hence Z(X) is isomorphic to Ljps, which proves the proposition. The corollary
follows trivially.

6.2.5. A counter example. Let G be the group symmetric S5, and k be the field
with two elements”. I will build a p-permutation kG-module M for which there is
no rui(G)-module X such that Z(X) is isomorphic to L.

Let M be a 6-dimensional vector space over k. The standard generators of Sy
act on M by the following correspondence p :

1 0 00 0 O 01 0 0 0 O
001 0 0O 1 0 00 0 O
01 0 0 0 O 0 01 0 0 O
PA2)=10 0 00 1 0 |[P®P)=10900100
00 0 1 00 0 0 0 0 01
00 0 0 01 000 0 10
1 0 00 0 O 1 0 01 1 0
00 0 1 0 O 01 01 01
00 0 0 1 0 0 01 011
PABO=1 01 0000 |PB)=10900100
001 0 0 O 000 0 10
00 0 0 0 1 0 0 00 01
Then p((12)), p((23)), and p((34)) act on the basis of M via the following permu-
tations
p((12)) — (23)(45) p((23)) = (12)(56) p((34)) = (24)(35)

It is then clear that the restriction of p to the subgroup Sy generated by (12), (23),
and (34) is a permutation representation of Sy.

An elementary computation shows that p((45)) commutes with p((12) and
p((23)), and that the product p((34))p((45)) has order 3. It follows that p is a
representation of S5, and that M is a k£S5 module.

Since the restriction of M to S is a permutation module, and since S4 contains
a Sylow 2-subgroup of S5, the module M is a 2-permutation kSs-module.

Let S the Sylow 2-subgroup of S5 generated by (12), (34) and (13)(24). Then
S stabilizes the canonical basis B = {ej,...,eg} of M. Since

(13)(24) = (23)(34)(12)(23)
the element (13)(24) of S acts on B by the permutation
(12)(56)(24)(35)(23)(45)(12)(56) = (16)(34)

The orbit of S on B are hence {e1,es} and {es,e3,eq,e5}. The stabilizer of e;
in S is the group P generated by (12) and (34), and the stabilizer of e5 in S is the
group T generated by (13)(24). It follows that

Reso’ M = Indpk ® Ind7k

"so p = 2 here
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The indecomposable direct summands of M are hence of vertex contained in P or
in T up to conjugation. The module M has no projective direct summand, since
its dimension is smaller than the 2-part of the order of S5. On the other hand, the
module M|T] has a basis in one to one correspondence with BT = {es,e5}. Since
Ng,(T)/T has order 4, it follows that M[T] has no kNg, (T')/T-projective direct
summand. Hence the module M only has indecomposable direct summands with
non trivial vertex contained in P.

The module M[P] has a basis in one to one correspondence with BY | consisting
of the vectors e; and eg. The normalizer of P in S5 is equal to S, and the group S
switches e; and eg. It follows that the module M[P] is kNg, (P)/P-indecomposable
and projective, hence that M has a direct summand isomorphic to M (P, Ey), where
E), denotes a projective cover of the trivial kNg, (P)/P-trivial.

Let then @ be the subgroup of P generated by (12). The module M[Q] has a
basis in one to one correspondence with B?, i.e. {e;,eg}. The normalizer of Q,
isomorphic to Z/27Z x Ss, is generated by @ and the elements (34) and (45), which
act trivially on the quotient of M by the subspace generated by {es, e3, €4, €5}. Thus
N5, (Q)/Q acts trivially on M[Q], hence this kNg, (Q)/Q-module has no projective
direct summand. It follows that M has no direct summand with vertex Q.

The only proper non trivial subgroup of P which is not conjugate to @ is
the group U generated by (12)(34), which acts on B by the permutation (25)(34).
Thus M[U] has dimension 2. Since Ng_(U)/U has order 4, the module M[U] has
no projective direct summand as kNg, (U)/U-module, and the module M has no
direct summand with vertex U.

The module M is hence indecomposable of vertex P. Since M|[P] is the pro-
jective cover of the trivial module, the module M is the Scott module of S5 for the
subgroup P (cf. [2]).

Then if it is possible of find suitable restriction maps, in particular, the map 71’
must be injective, as well as that the map rg, since rf = r?rg. Since M[P] and
M|Q] have the same dimension, the map 7“5 must be surjective. Then 77 and 7%
have the same image W, which must be a subspace of M* invariant by the group
H generated by Ng, (P) and Ng, (Q).

The group H is a transitive subgroup of S; which contains a transposition.
Thus H = S5. On the other hand, a vector v of MT is of the form

Q"SR

The image of v by p((23)) is the vector

SO ST e o



46 S. BOUC

Thus if v € W, then p((23))(v) € W and then a = b = ¢. Hence the only subspace
of M* which is invariant by S5 has dimension 1, generated by the vector

1

— e e

It is the module M 5. The space W cannot have dimension 2, hence it is impossible
to find an rug(G)-module X such that Z(X) = Lyy.

7. Complexes of projective Mackey functors

I suppose here that the ring R is a complete local ring, whose residue field k
has characteristic p.

7.1. Split complexes. Let A be a ring and L* be a complex of A-modules,
whose differential d has degree 1. In [7], Webb gives the following definition of a
split complex : the complex L* is split if there exists maps a,, from L™ to L™~!
such that for all n,

d"apd" =d"
LEMMA 7.1. The following conditions are equivalent :
(1) The complex L* is split.

(2) The complex L* is homotopic to a complex with zero differentials.

Indeed, if M* is a complex with zero differentials, and if f is a homotopy
equivalence from L* to M*, with inverse g, then there exists maps «, from L™ to
L™ 1 such that

Id - gnfn = dn_lan + an+1dn
Then d"ay1d™ = d"—d" g, fn, and d"g,, is zero since g is a morphism of complexes
and since the differential of M* is zero.

Conversely, if L* is split, let M™ = H™(L*) its n-th homology group. I consider
M* as a complex with zero differentials. Let Z™ be the kernel of d™, let i,, be the
injection from Z" to L™, and p,, the projection from Z™ to M"™. The image of
Id — ap1d™ is contained in Z™ by hypothesis, and I set

fn = pn(ld - anJrldn)

Conversely, the map Id — d" 'a, sends Z" inside itself, and its restriction to Z"
factors through M™, i.e.
Id —d" ‘o, = hop,

and I denote by g,, the composition of h,, and i,. It is then clear that if u = p, (v) €
M"
Fagn (W) = po(Id = any1d™)inhypn(v) = pu(Id — apy1d™)(Id — d™ay,)(v)
i.e., since d"(v) =0
Frgn(w) = pu(v —d""lan(v)) = pa(v) = u
Conversely, if w € L™, then
Infn(w) = inhnpn(ld — apyrd™)(w) = in(Id — d" " ay)(Id — ani1d"™)(w)
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or
Infn =1d — apd™ — d”fl(an — apap1d™)

and setting (3, = o, — apa,+1d"™, I have indeed
gnfn =1Id - ﬁnJrldn - dnilﬂn

which shows that L* is homotopic to M*.
It follows from this lemma that L* is homotopic to the zero complex if and
only if L* is acyclic and split in the sense of the above definition.

COROLLARY 7.2. Let L* be a complex of A-modules. If for any integer n,
there exists a complex M* (possibly depending on m) homotopic to L* and such
that M™ = 0, then L* is homotopic to the zero complez.

Indeed in those conditions, the complex L* is certainly acyclic, since H"(L*) =
H™(M*) = 0. Moreover, if f is a homotopy equivalence from L* to M*, with
inverse g, then there exists maps o, from L™ to L™~ ! and 3, from M™ to M™ !
such that for all m

Id — gm fm = aerldm + dm_lam
In particular, I see that d"* — d"g,fn = d"a,4+1d", and since M"™ = 0, I have
d"g, = 0. Then the complex L* is split, hence it is homotopic to the zero complex.

7.2. Split complexes of projective Mackey functors. Lemma 6.3 and
Proposition 6.4 have the following generalization :

PROPOSITION 7.3. Let L* be a complex of projective functors in Mackgr(G,1),
such that there exists n with L™ = 0. The following conditions :

(1) The complex L* is acyclic and split.
(2) For any p-subgroup P of G, the complex L (P) is acyclic.

It is clear that Assertion 1) implies Assertion 2). Conversely, I can e.g. suppose
that L~! is zero. Lemma 6.3 shows then that d is a split injection, which amounts
to saying that the complex L* is homotopic to the complex

U e S SN S S Sy B

Lemma, 6.3 also shows that d—3 is a split surjection. By induction, it follows that
the complex L* is homotopic to a complex with an arbitrary number of consecutive
zero modules around L, and the result follows by Corollary 7.2.

Similarly :

PROPOSITION 7.4. Let M* a complex of p-permutation RG-modules, such that
there exists n with M™ = 0. The following conditions are equivalent :
(1) The complex M* is acyclic and split.
(2) For any p-subgroup of G, the complex M*[P] is acyclic.

If K* and L* are complexes of modules over an arbitrary ring, to any morphism
f from K* to L* is associated a third complex, the cone of f, denoted by C*(K, L, f)
with the following properties :
e The complex C*(K, L, f) is acyclic if and only if H™(f) is a isomorphism
for all n (i.e. if f is a quasi isomorphism)
e The complex C*(K, L, f) is acyclic and split if and only if f is a homotopy
equivalence.
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e The module C"(K, L, f) is the direct sum of K™ and L™ 1.

The third property shows that if K* and L* are complexes of Mackey functors in
Mackgr(G,1), then so is C*(K, L, f). Similarly, if K* and L* are complexes of p-
permutations modules, then so is C*(K, L, f). The above propositions and remarks
yield then the following two propositions :

PROPOSITION 7.5. Let K* and L* be complexes of projective Mackey functors
in Mackgr(G,1), such that there exists n with K™ = L™ =0 and K"~ = L"~! = (.
Let f be a morphism from K* to L*. The following conditions are equivalent :

(1) The morphism f is a homotopy equivalence.
(2) For any p-subgroup P of G, the morphism f(P) is a quasi isomorphism.

PROPOSITION 7.6. Let M* and N* be complexes of p-permutation kG-modules,
such that there exists m with M™ = N" =0 and M"~' = N"~! = 0. Let f be a
morphism from M* to N*. The following conditions are equivalent :

(1) The morphism f is a homotopy equivalence.
(2) For any p-subgroup P of G, the morphism f[P] is a quasi isomorphism.

7.3. Complexes of p-permutations modules. I will try to see how to ex-
tend the previous results when the hypothesis “for all P” is replaced by “for all non
trivial P” : the consequence of this change will be the replacement of zero modules
by projective modules, of zero Mackey functors by projective Mackey functors with
trivial vertex, of split acyclic complexes by complexes homotopic to complexes of
projective modules.

I suppose that R is a field k. I call p-permutations complex a complex of p-
permutations kG-modules.

I will try to find here under which conditions such a complex is homotopic to
a complex of projective kG-modules. First, I can suppose that G is a p-group

LEMMA 7.7. Let L* be a complex of finitely generated kG-modules, and S be a
Sylow p-subgroup of G. The following conditions are equivalent :

(1) The complex L* is homotopic to a complex of projective kG-modules.
(2) The restriction of L* to S is homotopic to a complex of projective kS-
modules.

It is clear that Assertion 1) implies Assertion 2). Conversely, let E* be a
complex of projective kS-modules, and a be a homotopy equivalence from E* to
ResgL*7 with inverse b. Then the complex IndgE* is a complex of projective
kG-modules, and by adjunction, the morphism a and b yield morphisms A and B
between IndgE* and L*. Tt is easy to see that the morphism AB is homotopic to
[G : S]Id. The lemma follows then from the following lemma :

LEMMA 7.8. Let M* and L* be complexes of finitely generated kG-modules. Let
A be a morphism from M* to L* and B be a morphism from L* to M* such that
AB is homotopic to the identity of L*. Then L* is homotopic to a direct summand
of M*.

Indeed, let L} = N,(AB)"(L*), and L3 = > Ker(AB)"™. Then L} and Lj
are subcomplexes of L*, invariant by AB, and L* identifies with the direct sum of
the complexes Lj and L3. The restriction of AB to L} and L is homotopic to the
identity. Since in each degree n, the restriction of AB to L% is nilpotent, it follows
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that for any n, there exists a complex K* homotopic to L3, such that K™ = 0.
Then the complex L3 is homotopic to the zero complex, and the complex L* is
homotopic to the complex Lj.

On the other hand, the complex Lj is isomorphic to the complex B(L7), which
is homotopic to N, (BA)™(M™*), which is direct summand of M*. This proves the
lemma.

The previous lemmas allow to show the

PROPOSITION 7.9. Let L* be a complex of p-permutation kG-modules, such that
there exists an integer n for which L™ is projective. The following conditions are
equivalent :

(1) The complex L* is homotopic to a complex of projective kG-modules.
(2) For any non trivial p-subgroup P of G, the complex L*[P] is acyclic.

It is clear that Assertion 1) implies Assertion 2). To prove the converse, I need
a notation :

If X and Y are kG-modules, I will denote by Jrg(X,Y) the set of kG-homomor-
phisms f from X to Y such that for any kG-homomorphism g from Y to X, the
morphism g f is nilpotent.

For example, Jic(X, X) is the Jacobson radical of Endgg(X). It is easy to see
on the other hand that this definition is additive with respect to X and Y : the
canonical isomorphism between Homy; (X, Y®Z) and Homyg (X, Y)@Homgg (X, Z)
induces indeed an isomorphism between Jiq(X,Y @Z) and Jiq(X,Y)® Jia(X, 2).
Similarly, if X* and Y* are the respective duals of X and Y, then ¢ € Jiq(X,Y)
if and only if ¢* € Jpe(Y*, X*) : indeed, the morphism *¢* is nilpotent if and
only if the morphism ¢*¢* = (¢Yo)* is.

By the previous lemma, I can suppose that G is a p-group. Let then n be an
arbitrary integer, and ¢ be a morphism from L™*! to L", such that ¢d™ is not
nilpotent. The diagram

7 T N 7 A s
[}

0] ¢d"™ | / 1 d*¢ 10

I 7 S U 5 S A S

defines then a endomorphism 7 of L*, homotopic to 0. I can then replace L* by
its direct summand N, (Id + )™ (L*), which is homotopic to it. The only modules
modified by this operation are L™ and L"t!, which are replaced by some direct
summands L'™ and L'" !, The differentials d" !, d® and d"*! become respectively
d™=1 d™ and d'"TL If A1 € Jpg(L"TY LM, then d'™TY € Jpg(L'TL, L.
Similarly, if d"*1 € Jpg(L™TL, L"2), then d'" ! € Jyo (L™, L'"F2).

Hence I can suppose that d,, € Jyg(L™, L") for all n.

Let then [ be an integer such that L' is a projective kG-module. If one of the
modules L™, for n > [, is not projective, let n be the smallest integer greater than
[ such that L™ is not projective.

Let moreover Q be a maximal subgroup of G which is a vortex of some in-
decomposable direct summand of L™. The only indecomposable p-permutation
kG-module with vertex (@) is Indgk, because G is a p-group. The module M is then

the sum of its part A with vertex @, isomorphic to a sum of copies of Indgk, and
a module X such that X[Q] = 0. On the other hand, the module L"*! is the sum
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of its part B of vortex @, of a module Z such that Z[Q] = 0, and of a module Y
having only indecomposable summands with vertex strictly bigger than Q.
Then d™ can be represented by a matrix

¢B,A ¢BX
dv,a  Pyx
bz,A Gzx

The morphism d"[Q] can then be represented by the matrix

( ¢5,41Q] )

ov,A[Q]

Then if Q # (1), as the complex L*[Q] is acyclic, and as L"~}[Q] = 0, the map
d"[Q] must be injective.

The morphism ¢p 4 is a matrix with coefficients in Endy¢ (Indgk)7 whose every
coefficient is actually in J (Endkg(lndgk)), hence maps the socle of Indgk (isomor-
phic to k) to zero, since ¢ € Jra(M, N). Thus ¢p 4 maps the socle of A to zero.

But this socle maps onto the socle of A[Q]. Thus ¢y, 4[Q)] restricted to this socle
must be injective, hence ¢y, 4[Q)] must be injective. Then A[Q)], which is projective
as an N¢(Q)/Q module, maps injectively into Y[Q)], hence A[Q)] is a direct summand
of Y[Q]. But since Y only has direct summands with vertex strictly bigger than Q,
this is impossible, and this contradiction proves that @ = (1), hence that L™ is
projective.

Thus L™ is projective for all n > [. I can then apply the same argument to the
dual complex Homy(L*, k) to show that L,, is projective for all n < [, hence that
L* is a complex of projective modules. The proposition follows.

It yields the following corollary, which is a slightly more precise version of a
precise a result of Webb (cf.[8]) :

COROLLARY 7.10. Let A be a simplicial complex on which acts the group G.
The following conditions are equivalent :

(1) The chain complex C(A) of A over k is homotopic to a complex of pro-
jective kG-modules.
(2) For any subgroup P of order p of G, the set AT is acyclic modulo p.

Indeed, a classical argument shows that if Assertion 2) holds, then A” is acyclic
modulo p for all non trivial p-subgroup P of G. On the other hand, the complex
C(A)[P] is the chain complex of AF.

7.4. Complexes of projective Mackey functors. I suppose here again
that R is a field k of characteristic p. Propositions 7.4 and 7.6 have the following
consequence :

PROPOSITION 7.11. Let X* be a complex of projective functors in Macky(G, 1),
such that there exists an integer n for which X™ = X"l = 0. The following
conditions are equivalent :

(1) There exists a complex L* of projective kG-modules such that X* is ho-
motopic to the complex FQp~.

(2) For any non trivial p-subgroup P of G, the complez X (P) is acyclic.

(3) The complex X*(1) is homotopic to a complex of projective modules.

(4) The complex X* is homotopic to the complex FQx-(1).
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Indeed, if M is a kG-module and Y is a Mackey functor of the form FQ,y, it
is easy to see that Y (P) is zero when P is non trivial, because the traces ¢}, are
surjective for R # P. It is then clear that Assertion 1) implies the Assertion 2).
Similarly, Assertion 4) implies Assertion 2).

Similarly, Assertion 2) implies that the complex X*(1) fulfills the hypothesis
of Assertion 2) of Proposition 7.9. Then there exists a complex L* of projective
kG-modules such that X*(1) is homotopic to L*. Thus Assertion 2) implies Asser-
tion 3).

It is clear that Assertion 3) implies Assertion 2), since X (P) identifies with
X*(1)[P].

Let then L* be a complex of projective modules homotopic to the complex
X*(1). Up to replacing L* by a direct summand, I can suppose that L™ = L1 = (.
Let then a be a homotopy equivalence from L* to X*(1). By adjunction, the
morphism a yields a morphism A from the complex FQp+ to the complex X* : the
morphism A™(H) from (L™)gy to X™(H) is given by

A™(v) = tHa" (v)

The complex X*(1)[P] is homotopic to the complex X (P), and to the complex
L*[P], which is zero if P # (1). The complex X (P) is hence acyclic and split in
this case. The complex FQ7 (P) is zero if P # (1). Then the morphism A(P) is
trivially a quasi isomorphism if P # (1). Since the morphism A(1) is equal to A(1),
hence to a, it is a homotopy equivalence, hence a quasi isomorphism.

Then the complexes FQr- and X* fulfill the hypotheses of Assertion 2 of
Proposition 7.5, and A is a homotopy equivalence, which proves that Assertion 3)
implies Assertion 1). Hence Assertions 1), 2) and 3) are equivalent.

Then if Assertion 1) is true, i.e. if X* is homotopic to the complex FQp-,
the complex X*(1) is homotopic to the complex FQp«(1), i.e. to the complex L*,
hence the complex FQx- (1) is homotopic to the complex FQp-, hence also to the
complex X*. Thus Assertion 1) implies Assertion 4), and this completes the proof
of the proposition.

I will use this result to give a slightly more precise version of a theorem of Webb
(cf.[8] Theorem 1) in a particular case. For this, I need a notation : if the group G
acts on the set X, then X can be decomposed in a disjoint union of G-orbits, which
are G-sets of the form G/H. Then if M is a Mackey functor, Webb denotes by Mx
the Mackey functor defined by

Mx 1y = Mx + My Meg/g = Ind§jRes§; M

On the other hand, if A is a simplicial complex, then A; denotes the set of simplices
of A of dimension i (or of cardinal 7 + 1). Webb’s Theorem is then the following :
Theorem (Webb) : Let A be a simplicial complex on which acts the
group G. Let Y C X be sets of subgroups of GG, closed under inclusion
and G-conjugation. Suppose that :

(1) For any simplex s of A, the vertices of s are in distinct G-orbits.
(2) The functor M is projective relative to X.

(3) For any H € X — Y, the complex A is contractible.

(4) For any H €Y, the module M(H) is zero.

Then there exists a split exact sequence of Mackey functors

0—=M—Mpa,—... > Mp, —...—0
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I will consider here the case where X is the set of p-subgroups of G, and
Y consists only of the trivial subgroup of G. Then a Mackey functor projective
relative to X is a functor in Macky (G, 1). Denoting by C;(A) the kG-module with
k-basis A;,

PROPOSITION 7.12. Let M be a Mackey functor in Macky(G,1), and A be a
simplicial complex on which G acts. If :

(1) For any simplex s of A, the vertices of s are in distinct G-orbits,
(2) For any p-subgroup P of order p of G, the complex A is acyclic modulo p,

then the complex
0—=M—Mpa,—... > Mp, —...—0
is homotopic to the complex
0= FQua) — FQmuecya) — - = FQumec;a) = - — 0
To prove this proposition, I will apply Proposition 7.11 to the complex b*
0— (bp) = (bp)a, — ... = (bp)a, — ... =0

where I denote by b, the functor z(f)bg. It is a projective functor in Macky, (G, 1),
and since the above complex is finite, it vanishes in two consecutive degrees. The
value at (1) of this complex is the chain complex of A, which is homotopic to a
complex of projective modules by Corollary 7.10. Proposition 7.11 now shows that
the complex b* is homotopic to the complex FQpu- (1) = FQc+(a)-

But for any Mackey functor M in Macky (G, 1), the functor H (b, M) is isomor-
phic to the functor M. Then the functor H((bp)a,, M), isomorphic to H(b,, Ma,),

i)

is isomorphic to Ma,. Then if N denotes the dual functor of M, the complex

0 — H((by), N) — H((bp)ags N) = ... = H((bp)a,, N) — ... — 0
is isomorphic to the complex
0—N—Np, ...« Np, —...<0

and this complex is homotopic to the complex H(FQ¢,(a), N). It is clear on
the other hand that for any kG-module V, the functor H(FQy,N) is isomor-
phic to the functor F Phom, (v,n(1))- Since the dual of this functor is the functor
FQtom, (n(1),v), and since Hom(N (1), C;(A)) is isomorphic to C;(A) ® M (1), the
dual of the above complex, which is the complex

0—-M—>Mpr,— ... > Mp, —...—0
is indeed homotopic to the complex
0— FQun) — FQuuyecya) = - — FQuuyec,a) = -+ — 0

which proves the proposition.

REMARK 7.13. Hypothesis 1) plays no role in the proof, but it is necessary to
build the complex of the proposition (cf.[8]).
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