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Abstract : This paper extends the notion of B-group to a relative context. For a
finite group K and a field F of characteristic 0, the lattice of ideals of the Green biset
functor FBg obtained by shifting the Burnside functor FB by K is described in terms of
By -groups. Tt is shown that any finite group (L, @) over K admits a largest quotient Bk -
group B (L, p). The simple subquotients of FBy are parametrized by Bg-groups, and
their evaluations can be precisely determined. Finally, when p is a prime, the restriction
IE‘B%D) of FBk to finite p-groups is considered, and the structure of the lattice of ideals

of the Green functor F B&?) is described in full detail. In particular, it is shown that this
lattice is always finite.
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1. Introduction

In the study of the lattice of biset-subfunctors of the Burnside functor FB
over a field F of characteristic 0 (cf. Section 7.2 of [1], or Chapter 5 of [2]),
a special class of finite groups, called B-groups, plays an important role: in-
deed, the simple subquotients of the biset functor FB are exactly the functors
S, where H is such a B-group. It was shown moreover that each finite
group G has a largest quotient B-group [(G).

Let K be a fixed finite group. This paper proposes a generalization of
the above methods and notions, in order to study the lattice of ideals of the
shifted Burnside functor FBy. We start by introducing a category grp of
groups over K, similar to the comma category of finite groups over K, in
which morphisms are obtained by allowing diagrams to commute up to inner
automorphisms of K.

To each such group (L, ), where ¢ : L — K, is attached a specific ideal
ez, of FBg, and it is shown that every ideal of F Bk is equal to the sum of the
ideals ey, it contains. A special class of groups over K is introduced, called
Bg-groups, and it is shown that for each group (L, ¢) over K, there exists a
largest Bg-group B (L, ) quotient of (L, ). Moreover er , = €, (1,,)- It
follows that the lattice of ideals of FBx can be described in terms of closed
families of Bg-groups.

Moreover, each ideal ey, associated to a Bg-group (L, ) has a unique
maximal proper subideal e%#j. The quotient Sp, = eLM/eOL#, is a simple



FBg-module. The evaluations of this simple module can be precisely de-
scribed, as well as its minimal groups, and this yields a new example of a
simple module over a Green biset functor with several isomorphism classes
of minimal groups.

Finally, when p is a prime number, we consider the restriction FB® P ) of
F By to finite p-groups, and we describe completely the lattice of ideals of this
Green biset functor. We show in particular that this lattice is always finite.
As a byproduct, we get some examples of Green p-biset functors without non
zero proper ideals.

2. Review of shifted Green biset functors

We quickly recall some definitions and basic notions on biset functors for
finite groups, and refer to [2] for details. Let IF be a field of characteristic 0.
The biset category FC of finite groups has all finite groups as objects. If G and
H are finite groups, then Hompe (G, H) = F ®7 B(H,G), where B(H,G) is
the Grothendieck group of finite (H, G)-bisets. Composition in FC is induced
by the product (V,U) +— V xg U = (V x U)/H, where V is a (K, H)-biset
and U a (H,G)-biset, and H acts on (V x U) by (v,u) - h = (vh,h"tu). A
biset functor over F is an F-linear functor from FC to the category of F-vector
spaces.

Any biset is a disjoint union of transitive ones, and any transitive (H, G)-
biset is of the form (H x G)/L, where L is a subgroup of (H x G). Denoting
by p1 : Hx G — H and ps : H x G — G the first and second projections, we
set k1 (L) = p1(LNKerpy) and ko(L) = po(LNKer py). The biset (H x G)/L
factors as the composition

o Iso(a) o Depr(L

(H x G)/L=1Ind}} ;) o Inf’“ e ks © RESHh (1)

)/k()

of elementary bisets called induction, inflation, isomorphism, deflation, and
restriction, where « : pa(L)/ka(L) — p1(L)/k1(L) is the canonical isomor-
phism sending bko(L) to aky(L) for (a,b) € L. These elementary morphisms
generate all morphisms in the category FC.

A Green biset functor A over F (cf. Section 8.5 of [2]) is a biset functor
with additional bilinear products A(G) x A(H) — A(G x H), denoted by
(a, B) = « x B, which are associative and bifunctorial. There is also an
identity element e4 € A(1).

A left A-module M is then defined similarly as a biset functor with prod-
ucts A(G) x M(H) — M(G x H) which are associative, bifunctorial, and
unital. Left A-modules form an abelian category denoted by A-Mod. A left
ideal of A is an A-submodule of the left A-module A.



When A is a Green functor, each evaluation A(G) is an F-algebra for the
product

a,f € A(G) — a- B = A(lso(d) o RengG) (ax B)

where A is the diagonal subgroup of G x G, and § : A — G the canonical
isomorphism. The identity element of this algebra is A(Inf{)(e4). If M is an
A-module, each evaluation M (G) is endowed with an A(G)-module structure
defined similarly. By Proposition 2.16 of [7], a biset subfunctor I of A is an
ideal if and only if /(G) is an ideal of the algebra A(G), for any finite group G.

A Green biset functor A is called commutative (cf. [3] for details) if the
algebra A(G) is commutative, for any G.

A fundamental example of Green biset functor is the Burnside functor
sending a finite group G to FB(G) = FB(G, 1), where B(G) is the Burnside
group of G. The products maps FB(G) x FB(H) — FB(G x H) are induced
by the cartesian product sending a G-set X and an H-set Y to the (G x H)-set
X xY. An FB-module is precisely a biset functor over F.

Let K be a finite group. A Green biset functor A over F can be shifted
by K. This gives a new Green biset functor Ax defined for a finite group G
by

Ag(G)=A(G x K) .

For finite groups G and H and a finite (H, G)-biset U, the map

is the map A(U x K), where U x K is viewed as a (H x K,G x K)-biset in
the obvious way, letting K act on both sides on U x K by multiplication on
the second component. For an arbitrary element o« € FB(H, G), that is an
F-linear combination of (H, G)-bisets, the map Ax(a) : Ax(G) — Ax(H) is
defined by F-linearity.

This endows Ax with a biset functor structure. Moreover, for finite
groups G' and H, the product

XAg AK(G) X AK(H) — AK(G X H)

is defined as follows: if &« € Ax(G) = A(GxK)and f € Ax(H) = A(HxK),
then a x f € A(G x K x H x K). We set

a X4, 3= A(Iso(8) o Res{H MK (a x )

where A = {(g,k,h,k) | g € G,h € H,k € K}, and ¢ is the isomorphism
A — G x H x K sending (g,k, h, k) to (g, h, k). The identity element € 4, is
A(Inff) (ek).



For a finite group G, the algebra structure on A (G) is simply the algebra
structure on A(G x K) defined for the Green functor A.

All these notion can be extended to functors from an admissible subcate-
gory D of the biset category (cf. Chapter 4 of [2]), which is moreover closed
under taking direct products of finite groups. We have then the notions of
D-biset functors and D-Green biset functors, as well as modules over them.

In this paper, we will consider the shifted Burnside functor FBg, and
its restriction IFBg) to finite p-groups, for a prime p. A fundamental clas-
sical result is that for any finite group G, the algebra FBg(G) is a split

semisimple commutative algebra, with primitive idempotents efXK indexed

by subgroups L of G x K, up to conjugation. The explicit formula for efXK ,

due to Gluck ([4]) and Yoshida ([8]) is

P = e O XL D) (6 x K)/X] |

where X runs through all subgroups of L, where p is the Mobius function of
the poset of subgroups of G x K, and [(G x K)/X] is the isomorphism class
of the transitive (G x K)-set (G x K)/X.

2.1. Notation: When N is a normal subgroup of a finite group L, let
1
mpN = m Z [ X[pu(X, L) .

X<L
XN=L

2.2. Lemma: Let G be a finite group, and L be a subgroup of G x K. If
N is a normal subgroup of G, then

FBi (DefS ) (e575) = Ay pvny e/

where L is the image of L by the projection G x K — (G/N) x K, and
\ = ING/nyx i (D):L]
= TNexx (L)L
Proof: Indeed
FBic (Defn) (e7) = FB(Def(G ) vwn)) (€15) -

The result now follows from Assertion 4 of Theorem 5.2.4 of [2]. O



3. Ideals generated by idempotents

We now introduce a category grp -, similar to the comma category over K:
its objects are the same, but morphisms are slightly different.

3.1. Definition:

e For a finite group K, let grpy;c denote the following category:

— The objects are finite groups over K, i.e. pairs (L, ), where L is
a finite group and ¢ : L — K is a group homomorphism.

— A morphism f : (L,o) — (L', ¢') of groups over K in the category
grpyx 1s a group homomorphism f : L — L' such that there exists
some inner automorphism i of K withiop=¢ o f.

— The composition of morphisms in grpyx s the composition of
group homomorphisms, and the identity morphism of (L, ¢) is the
identity automorphism of L.

o If(L,p) and (L', ¢') are groups over K, we say that (L', ¢) is a quo-

3.2.
1.

tient of (L, ), and we note (L, p) — (L', '), if there exists a morphism
J € Homg,, ((L, ), (L', ") with f: L — L' surjective. In this case,
we will say that f is a surjective morphism from (L, ) to (L', ¢').

Remarks:

Using the well known fact that the epimorphisms in the category of
(finite) groups are the surjective group homomorphisms (cf. [5] .5 Ex-
ercise 5), one can show that a morphism f € Homgp, (L, ), (L', ¢")
is an epimorphism in grpy if and only if f : L — L’ is surjective, that
is, if f is a surjective morphism. We will not use this fact here, except
as a motivation to the use of the word “quotient” in Definition 3.1.

. A morphism f : (L,p) — (L',¢') in grpyx is an isomorphism if and

only if f: L — L’ is an isomorphism of groups.

I (L) ¢) is a quotient of (L, ), and if (L, ¢) is a quotient of (L', ),

then (L, ) and (L', ') are isomorphic in grp; . Indeed any surjective
morphism from (L, ¢) to (L', ¢’) is an isomorphism, for L and L' have
the same order.

. Clearly, the relation “being quotient of” on the class of groups over K

is transitive. In particular, any group over K isomorphic in grpy to
a quotient of (L, @) is itself a quotient of (L, ¢), and also a quotient of
any group over K isomorphic to (L, ) in grpyx-

bt



3.3. Notation: When (L, ) is a group over K, we denote by L, the
subgroup of L x K defined by

L, ={(Le) |1 €L} .

3.4. Theorem: Let I be an ideal of the Green biset functor FBg. If G
1s a finite group and L is a subgroup of G x K, the following conditions are
equivalent:

1. The idempotent e5** belongs to 1(G).

2. The idempotent eLXK belongs to I(L), where py : L — K s the restric-
tion to L of the second projection homomorphism G x K — K.

Proof: Let L = L, C L xG, where p; : L — G is the restriction to
L of the first projection homomorphism G x K — G. Thus

pl(E> =L, kl(z) =1 x kao(L), p2@) = pi(L), kz@) =1.
It follows that the (L, G)-biset U = (L x G)/L factors as
U= Inf’z/N olso(f™1) o Res (L)

where N =1 X ky(L)< L and 0 : L/N — p;(L) is the canonical isomorphism
induced by the first projection p; : L — G.

Now if e belongs to I(G), its restriction FBK(RGS]?;(L))( &xEKY) belongs
to I(G). But

IE‘BK(Resgl(L))(efXK) FB (ResGXKxK) (efXK)

o Z pl(L ><K

where L’ runs through a set of representatives of (pl(L) x K )-conjugacy
classes of subgroups of p; (L) x K which are conjugate to L in G x K (cf. [2],
Theorem 5.2.4, Assertion 1). In particular, the group L is one of them, and

e‘zl(L)XK . ]FBK(Resg(L))(efXK) = eﬁl(L)XK € [(pl(L)) )

It follows that FBy (Iso(6~ ))(eL( Ky ¢ I(L/N).



But FBg(Iso(6')) = FB(Iso(fx")), where 6 = 6 x Idy is the iso-
morphism from (L/N) x K to p;(L) x K deduced from 6. It follows that
e(EL/N)XK € I(L/N), where L = 0" (L) = {(IN,p2(1)) | I € L}. Now

LN K L/N)xK
FBi (Inf} ) (/M *5) = IFB(InfLL§§)XK)(e(L/ )3y

E:LXK
- 9

where X runs through a set of representatives of (L x K')-conjugacy classes
of subgroups of L x K which map to a conjugate of L through the surjection
Lx K— (L/N)x K (cf. [2], Theorem 5.2.4, Assertion 3).

The group L,, is one of these subgroups, hence

DB (Inff ) (M) = e e 1(L)

as was to be shown.

We now consider the opposite (G, L)-biset U = (G x L)/L, where
L ={(p:(l),1) | L € L}, which factors as

U = Indf ;) o Iso(0) o Deffy .
If eprQK € I(L), then u = FBg(U)(e LXK) belongs to I(G). By Lemma 2.2
FBy (Def LxEy — ) (L/N)xK
K( € L/N)( ) M LpyLpyN(Nx1) €1 - ,

where L, is the image of L,, by the projection L x K — (L/N) x K, and
A is some non zero rational number. Now the intersection

Ly, N (N x 1) = {(a,b),b) | (a,b) € L} N ((1 x ky(L)) x 1)
is trivial. It follows that ML, L,n(Nx1) = 1, and

u=AFBg (IndG (L) © Iso(6)) (e (L(ZN)XK))

= AFB(Ind% X oIso(HK))(e%N)XK)) .

p1(L)xX K

Now for (a,b) € L, the image by 6 = 6 x Idgk of ((a,b),b)(N x 1) € L,
is the element (pi(a,b),b) = (a,b) of pi1(L) x K. Hence 0x(L,,) identifies
with L, viewed as a subgroup of p;(L) x K, and

= NEB(ndSS, () = K

7



for some non zero rational number X (cf. [2], Theorem 5.2.4, Assertion 2).
Since u € I(G) and AN # 0, it follows that e¢¥** € I(G), as was to be
shown. 0

3.5. Corollary: Let G be a finite group, and L be a subgroup of G x K.

Then the ideal of FBy generated by efXK 15 equal to the ideal of FBy gen-

erated by ef:gK

Proof: Indeed, denoting by I the ideal generated by efXK , and by J the

ideal generated by efZK , we have

erCel(@) = e el(l)=JC
e e J(L)= e e J(G) =1

so I =J. O

3.6. Notation: Let (L, ) be a group over K. We denote by ey, , the ideal
of FBy generated by efZK € FBk(L).

3.7. Lemma: Let (L,p) and (M,1)) be groups over K.

1. If (M,’l?b) - (La ()0); then €M, - €Lp-
2. In particular, if (M,) is isomorphic to (L, p), then exy = er ..

Proof: 1. Let s : M — L be a surjective group homomorphism, and ¢ be
an inner automorphism of K such that i 01 = ¢ os. Let U denote the
set L, viewed as an (M, L)-biset for the action given by m - w -1 = s(m)ul,
for m € M and u,l € L. There is an isomorphism of (M, L)-bisets

U = Inf%/KerS olso(a™!) |

where o : M = M/Ker s — L is the group isomorphism induced by s.
Let u = FBg (U)(e; ") € ey o(M). Then
u=FB(Inf3"% o Iso(az!)) (e ™)

K

where o = a x Idg : M x K — L x K. Then

a (Ly) = {(a7(1), (1)) | L € L} = {(mKers,pos(m)) | me M} .



It follows that FB(Iso(ag" ))(efXK) = G%XK, where 6 : M — K is defined

by (mKer s) = ¢ o s(m). In particular e%XK € er,(M). Now

u_]FB(InfMXK MXK ZeMXK

where X runs through a set of representatives of conjugacy classes of sub-
groups of M x K such that the projection of X in M x K is conjugate

to My. The subgroup M, wos 15 one of these subgroups, so e%XK u is a non

zero scalar multiple of eMXK lying in ey, (M ). Hence 61‘]\2[:0[: € er,(M). Now
pos =101, where ¢ is an inner automorphism of K. This implies readily
that the subgroups M,., and M, of M x K are conjugate. It follows that

MxK MxK MxK
Ery = ey = Chie. € eLp(M)

that is epry C er,,, proving Assertion 1.

Now if f : (L, ) — (M, ) is an isomorphism in grp -, the group homomor-
phism f: M — L is an isomorphism. Then (M, ) and (L, ) are quotient
of one another, so ey, = ey, proving Assertion 2. O

3.8. Notation: We fix a set Sk of representatives of isomorphism classes
of objects in the category grpy k-

3.9. Proposition: Let I be an ideal of FBi. Then I is equal to the sum
of the ideals ey, , it contains. More precisely, if

Ar={(L,p) € Sk |er, C I}

we have I = . e ,. It follows that the ideals of FB form a set.
(va)EAI

Proof: Let J = )  ep,. Then obviously J C I. Moreover, if (M, )

eLW(;I

is a group over K such that ey, C I, then ey C J: indeed, there is
some (L, p) € Sk isomorphic to (M,v), and ey = er, by Lemma 3.7.
Conversely, let G' be a finite group, and v € I(G). Then u is a linear

combination
u= E ApedK

with coefficients Ay in [F, of idempotents eGXK where L runs through a set S

of representatives of conjugacy classes of subgroups of G x K. Then for any



L € S, we have eZ 5 .u = ¥ € (@), hence e$*F € I(G) if A\, # 0. So
in this case, the ideal of F By generated by efXK is contained in I. This ideal
is equal to ey, ,,, by Corollary 3.5, thus e, ,, € J by the above observation.
Hence % c ey ,,(G) C J(G). Tt follows that

u = g ALeEXK

byt
also belongs to J(G). Hence I(G) C J(G), so I(G) = J(G) since J C I.
As G was arbitrary, it follows that [ = J.
Now an ideal I of FBy is determined by the subset A; of Sk, so the class
of ideals of FBg is in one to one correspondence with a set of subsets of Sk.
Hence this class is a set. O

3.10. Lemma: Let A be a set of ideals of FBy, and (M,1) be a group
over K. The following are equivalent:
1. €M,y Q Z 1.
IcA
2. There exists I € A such that epry, C 1.

Proof: Clearly 2 implies 1. Now 1 is equivalent to saying that

ex e 1My .
IcA

If this holds, there exists I € A and u € I(M) such that e%IK cu # 0.

Now e%wXK -u € I(M), and moreover there is a scalar A € F such that

B%IK U= Ae%ZK # 0. Hence A # 0, and 6%5K € I(M). In other words
ery C I, so 1 implies 2. 0

4. Bg-groups

In view of Proposition 3.9, every ideal of FBg is a sum of ideals ey, ,,, where
(L, ) runs in some subset of Sk. In view of Lemma 3.10, to describe the
inclusions between such sum of ideals ey, it suffices to describe elemen-
tary inclusions of the form ey C ey, where (L, ) and (M, 1)) are groups
over K. Lemma 3.7 shows that it is the case if (M, ) — (L, ). Moreover:

4.1. Theorem: Lets: (M,v) — (L, p) be a surjective morphism in grp .
If Mpf Kers 7é 0, then My = eL#,.

10



Proof: We already know from Lemma 3.7 that ey, C er ,, so it suffices to
prove the reverse inclusion. We first observe that since there exists an inner
automorphism i of K such that i 01 = p o s, we have Ker s < Ker (i o ¢) =
Ker . So there is a group homomorphism Y : M = M/Kers — K such that
Y =1 o, where 7 : M — M is the projection map.

Now let V' be the set L, viewed as an (L, M)-biset for the action defined
by l-v-m = lvs(m), for [,v € V and m € M (in other words V' = U, where
U is the (M, L)-biset introduced in the proof of Lemma 3.7). Then there is
an isomorphism of (L, M)-bisets

V = Iso(a) o Def%/KerS :

where o : M — L is the group isomorphism induced by s, i.e. such that
S=QOT.

Let v =FBg(V)(e MXK) € ey y(L). By Lemma 2.2

FBK (Def%/Ker S) (G%IK) = A me,Mwﬂ(Kersxl) Q%K s

where My is the image of My by the projection M x K — M x K, and X is
some non zero rational number. Then

v = AF By (Iso(a)) (¢2) = AFB (Tso(ax)) (¢225)

My My

where ag = o x Idg : M x K — L x K. The image of M under ag is the
subgroup

O‘KUW@) = {(a(m),zz(n_@)) | m € ]\7} = {(l,@oofl(l)) |l e L} .
Moreover, we have a diagram

M —

N

M——1L
K— K

where the two triangles and the outer “square” commute. It follows that

S\

poaom=pos=ioh =i0¢oT ,

11



hence ¢ o @ = i 01 since 7 is surjective. Hence 1) o ™! = i1 o ¢, and

ar(Mg) = Li 10
It follows that v = Aey*”™ | and moreover ef*% = eng since Lj-1,
i i to

Loy »
and L, are conjugate in L x K. Finally v = X efZK, S0 ef;(K € enp(L), since

v € eyy(L) and X # 0. In other words ey, , C epry, and finally ey, , = epry,
as was to be shown. O

4.2. Notation: When (M,v) is a group over K, and Q) is a normal
subgroup of M with Q < Ker, let ¢/Q : M/Q — K be the group homo-
morphism defined by ¢ = (/Q) o w, where 7 is the projection M — M/Q).

Thus for any group (M,®) over K, if @) is a normal subgroup of M
contained in Ker ), we get a surjective morphism 7 : (M, ) — (M/Q,1/Q)
in grpy g, with Kerm = Q. If moreover mys,q # 0, we have ey = en/qu/q-
This motivates the following:

4.3. Definition: Let (L,p) be a group over K. We say that (L, ) is
a Bg-group, or a B-group relative to K, iof mpy = 0 for every non-trivial
normal subgroup N of L contained in Ker p.

4.4. Examples:
1. If ¢ : L — K is injective, then (L, p) is a Bg-group.
2. On the other hand, if K = 1, then a group over K is a pair (L, ¢),
where L is a finite group and ¢ : L — 1 is the unique morphism.
Moreover the category grpy; clearly identifies with the usual category

of finite groups. With this identification, a By-group is just a B-group
(cf. Section 7.2 of [1], or Chapter 5 of [2]).

4.5. Lemma: Let (L,p) be a Bi-group. If (M,1) is a group over K, and
(M, ) is isomorphic to (L, ) in grpyx, then (M,v) is a By-group.

Proof: Since (M,1)) is isomorphic to (L, ) in grpyx, there exists a group
isomorphism f : L — M and an inner automorphism ¢ of K such that
Yo f =10¢. If Pisa normal subgroup of M contained in Ker, then
f71(P) is a normal subgroup of L contained in Ker ¢, because

iop(fT(P) =vo f(fTH(P) =y(P)=1
and 4 is an automorphism. Moreover my, s-1(py = mysp. If P is non trivial,
then f~!(P) is non trivial, so my, s—1(py = mar,p = 0, as was to be shown. 0O

12



4.6. Theorem: Let (L,p) be a group over K.

1. If Q is a normal subgroup of L, contained in Ker ¢, and mazimal such
that mp g # 0, then (L/Q,p/Q) is a Bi-group, quotient of (L, ).

2. If (P, %) is a Bg-group which is quotient of (L, p), and if N is a normal
subgroup of L contained in Ker ¢ and such that mp xy # 0, then (P, 1)
is a quotient of (L/N,p/N).

3. In particular, if P and @ are normal subgroups of L, contained in
Ker ¢, and mazimal such that mp p # 0 # my g, then (L/P,¢/P) and
(L/Q,¢/Q) are isomorphic in grp .

Proof: 1. Let P/Q be a normal subgroup of L/Q contained in Ker (¢/Q) =
Ker¢/Q. Then P is a normal subgroup of L, and Q < P < Kerp. If
P/Q # 1, i.e. if Q < P, then by maximality of @) and Proposition 5.3.1 of [2]

mpp=0=mpomr/Q.r/q -

Since mp. o # 0, it follows that my g p/g =0, so (L/Q,¢/Q) is a Bg-group,
quotient of (L, ¢).

2. Since (P,1) is a quotient of (L, ), there exists a surjective group ho-
momorphism s : L — P and an inner automorphism ¢ of K such that
Yos =10p. It follows that M = Kers is a normal subgroup of L con-
tained in Ker (i o ¢) = Ker ¢.

We have a diagram

L S
\Wf
LM ——=P
@
/M ¥
K— ' K

where the two triangles and the outer “square” commute, and § is an iso-
morphism, the map my, : L — L/M being the projection. As in the proof of
Theorem 4.1, we have

oSomy =tos=iop=io(p/M)omy ,

so o5 =io(p/M) since my is surjective. It follows that § is an isomor-
phism from (L/M,@/M) to (P,%) in grpyx, so (L/M,¢/M) is a Bg-group
by Lemma 4.5.

13



Now by Proposition 5.3.3 of [2]

1
mp N = m Z Y| (Y, L)mL/M,(YﬂN)M/M .
YN=YM=L

In particular, if my ny # 0, there exists Y < L such that YN =Y M = L
and mp v, vonym/m # 0. But since N C Ker g, the group (Y N N)M/M
is a normal subgroup of L/M contained in Ker (p/M) = Ker¢/M. Then
since mp v yanym/m # 0 and since (L/M, /M) is a Bg-group, we have
(YNN)M/M =1,ie. YNNCYNM.

Consider now the following diagram:

where
e j:Y — L is the inclusion map,

e pn Y = Y/(YNN)and py : Y — Y/(Y N M) are the projection
maps,

eu:Y/YNM)— L/Mand v :Y/(YNN) — L/N are the canon-
ical isomorphisms Y/(Y "N M) = YM/M = L/M and Y/(Y N N) =
Y N/N = L/N, respectively,

e 0:Y/(YNN)—Y/(YNM) is the projection map (as YNN C Y NM),

e 0 : L/N — L/M is defined as § = wo o owv~!. In particular 6 is
surjective.

We have my 0 j = v o py, since for any y € Y
v o j(y) =mn(y) =yN =v(y(Y N N)) =vopn(y) -
Similarly 7y, 0 j = wo py,. We also have 0 o py = pas. Then

fomyoj=0ovopy =uocgopy=uopy =7TpO0J .
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Hence
(¢/M)obomyoj=(p/M)omsoj=poj=(¢/N)omyoj .

Since Ty 0 j =vopy:Y — L/N is surjective, it follows that

(/M) ob=(p/N) .

Hence 0 is a surjective morphism from (L/N,¢/N) to (L/M,@/M) in grpy .
As the latter is isomorphic to (P,1) in grpyy, it follows that (P,¢) is a
quotient of (L/N,¢/N), as was to be shown.

3. If P and @ are normal subgroups of L, contained in Ker ¢, and maximal
such that my p # 0 # my g, then (L/P,¢/P) and (L/Q, ¢/Q) are both By-
groups by Assertion 1, and they are quotient of one another by Assertion 2.
Hence they are isomorphic in grp g O

4.7. Notation: Let (L,p) be a group over K. If Q) is a normal subgroup
of L, contained in Ker p, and maximal such that mp g # 0, we denote by

Pk (L, @) the quotient (L/Q,p/Q) of (L, ).

4.8. Remark: As observed in Example 4.4, when K is trivial, a Bg-group
is simply a B-group. Moreover, for any finite group L, if v : L — 1 is the
unique group homomorphism, then 54 (L,u) = 5(L).

The following corollary shows that Sk (L, ¢) is the largest Bg-group quo-
tient of (L, ¢):

4.9. Corollary: Let (L,p) be a group over K.
1. Br(L,p) is well defined up to isomorphism in grp .
2. Br(L,) is a Bg-group, quotient of (L, ).

3. If (P,) is a Bg-group, quotient of (L, ), then (P,1) is a quotient of
BK(L7 (P)

4- €Ly = €8x (Lyp)-

Proof: 1. This follows from Assertion 3 of Theorem 4.6.

2. This follows from Assertion 1 of Theorem 4.6.

3. This follows from Assertion 2 of Theorem 4.6.

4. This follows from Theorem 4.1, by definition of Sk (L, ) 0
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4.10. Corollary: Let s : (M) — (L,¢) be a surjective morphism in
groyx- Then B (M, ) = B (L, @) if and only if markers # 0.

Proof: Indeed Sk (L, ¢) is a quotient of (M, 1)), as it is a quotient of (L, )
and s is surjective. Hence Bk (L, ¢) is a quotient of Sk (M, 1)). Set N = Ker s,
so that (L,¢) = (M/N,/N).

If mpn # 0, then since S (M, 1)) is a Bi-group quotient of (M, 1), As-
sertion 2 of Theorem 4.6 implies that S (M, 1)) is a quotient of (M /N,¢/N) =
(L, @), hence of Bi(L,p). It follows that Sx (M, ) = Bk(L, @), as they are
quotient of one another.

Conversely, suppose that Sk (M, 1) = Bk (L, ), and let P/N be a nor-
mal subgroup of M /N contained in Ker (¢/N) = Ker /N and maximal such
that magn,p/v # 0. Then the quotient ((M/N)/(P/N),(¢/N)/(P/N)) =
(M/ P,/ P) is isomorphic to i (M/N, P/N) = Bk (L, ), hence to Bx (M, ).
Now if @) is a normal subgroup of M contained in Ker and maximal such
that mp g # 0, then the quotient (M/Q,1/Q) is isomorphic to Sk (M, 1) =
(M/P,+/P). In particular M/Q = M /P, and then my; p = mysg by Propo-
sition 5.3.4 of [2], SO My p 7£ 0. But myp = mM7NmM/N7p/N, SO M N 75 0,
as was to be shown. O

5. The ideals of FBy

5.1. Notation and Definition:
1. We let Bi-gr denote the subset of Sk consisting of By -groups.
2. A subset P of Bx-gr is said to be closed if

V(L,p) € P, V(M,) € Bx-gr, (M,¢) > (L) — (M,4))€P .

5.2. Proposition: Let I be an ideal of FBg, and
Pr={(L,p) € Bx-gr|e,, CI} .

Then Py is a closed subset of Bx-gr, and I = > e,
(LND)G,PI

Proof: The subset P; of Bi-gr is closed by Lemma 3.7. The second assertion
follows from Proposition 3.9 and Assertion 4 of Corollary 4.9. O
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5.3. Theorem: Let (L,p) be a Bi-group. Then for any finite group G
ery(G) = ZFGS;(XK 5
X

where X runs through all subgroups of G x K such that (X, ps) — (L, p).

Proof: If X < G x K and (X, ps) - (L,¢), then ex, C er, by Lemma 3.7.
Equivalently e§:2K € e ,(X), which is equivalent to % € e (G), by
Theorem 3.4. This proves that for each finite group G, the sum E(G) =

ZF@%XK, where X < G x K and (X, p2) — (L, ¢), is a subset of GL#,(G)-
X

Moreover the map (l,(p(l)) € L, — | € L is clearly an isomorphism
(Ly,p2) — (L,p) in grpyg. In particular (L, p2) — (L, ), and then by
definition GE::K € E(L). If we can prove that G — E(G) defines an ideal
E of FBy, then we are done, because £ C ey, since E(G) C e ,(G) for
any G, and ey, , C E because the generator ef:K of ey, belongs to E(L).

Since F(G) is obviously an ideal of the algebra FBg(G), for any G, all we
have to do is to show that F is a biset subfunctor of F By, in other words that
it is preserved by the elementary biset operations of induction, restriction,
inflation, deflation, and transport by group isomorphism. For this, in what
follows, we refer to Theorem 5.2.4 of [2].

Let X < G x K be such that (X,ps) — (L, ¢), and suppose first that G
is a subgroup of a group H. Then

FBr (Ind) (e5") = FB(IndZ} 5 ) (e5F) = Ael /™

for some scalar \, where X’ is the group X, viewed as a subgroup of H x K.
Clearly (X', p2) = (X,p2), so (X', p2) — (L, ) and ei*" € E(H). Hence E
is preserved by induction.

Assume now that H is a subgroup of G. Then

FBx (Resf) (") = FB(Res %) () =) e,
%

where Y runs through a set of representatives of (H x K)-conjugacy classes
of subgroups of H x K which are conjugate to X in G x K. If Y is such a
subgroup, there exists (g, k) € G x K such that Y = X9*_ Then we have a
commutative diagram

Yy 2= X
pQ\L J{Pz
K

Pk
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where « is (left-)conjugation by (g, k) and 3 is (left-)conjugation by k. Since
[ is an inner automorphism of K, and since « is a group isomorphism,
it follows that o : (Y,p2) — (X,p2) is an isomorphism in grp;z. Hence
(Y,p2) — (L,¢), and ei*® € E(H). Tt follows that E is preserved by
restriction.

Assume next that G is a quotient of a group H by a normal subgroup N.
Then

FBr (Infg ) (e§%) = FB(Infl )5 ) (e5°F) = Z el K
%

where Y runs through a set of (H x K') conjugacy classes of subgroup of H x K
which map to a conjugate of X under the projection 7 xIdg : HxK — GX K,
where 7 : H — G is the projection. Replacing Y by a conjugate, which does
not change e@XK, we can assume that Y is mapped to X by 7w x Idg. This

gives a commutative diagram

Y 7T><IdK X
Px %2
K

showing that (Y,ps) — (X,py). Hence (Y,pa) — (L, ), so ei** € E(H),
and FE is preserved by inflation.

As for deflation, we assume now that H = G/N, where N JG. Let
m: G — H be the projection map. Then by Lemma 2.2

FBr (Def$;) (e5F) = Amx xnvxa) et

where X is the image of X under the projection 7 x Idx : G x K — H x K,
and A is some non zero scalar. As above, we get a commutative diagram

X —° X

N A

where s is the restriction of 7 x Idg to X. Then s : (X,py) — (X,po) is
a surjective morphism in grpy,. Setting P = Kers = X N (N x 1), we
get an isomorphism (X, py) = (X/P,ps/P) in grpyx. Moreover (L,¢) is
a Bg-group quotient of (X, py) by assumption. Then there are two cases:
either mx p = 0, and then IFBK<Defg)(e§XK) =0¢€ E(H). Or mxp # 0,
and then (L, ) is a quotient of (X/P,py/P) = (X,py), by Assertion 2 of
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Theorem 4.6. It follows that e%XK € E(H), so FBy (Deff) (e$X) € E(H)
as well. This shows that E is preserved by deflation.

Finally, it is clear that E is preserved by group isomorphisms. This
completes the proof of Theorem 5.3. 0

5.4. Remark: Theorem 5.3 implies that the set of idempotents 5, where

X runs through a set of representatives of conjugacy classes of subgroups of
G x K such that (X, p2) = (L, ¢), is an F-basis of ey, ,(G).

5.5. Corollary: Let (L,y) be a Bx-group, and (M,1)) be a group over K.
Then ey C er, if and only if (M, ) — (L, p).

f:1

Proof: Indeed ey, C e, if and only if e%wXK € e (M), ie. if and only if

(My, p2) — (L, ). But we have already noticed at the beginning of the proof
of Theorem 5.3 that the map (m, w(m)) € My — m € M is an isomorphism
from (My,p2) to (M, 1)) in grpy - O

5.6. Remark: It was shown in Section 5.2.2 of [3] that the category
FBg-Mod splits as a product

FBy-Mod & [ | = effFBx-Mod |

of categories of modules over smaﬁer Green biset functors eXF By, where
H runs through a set of representatives of conjugacy classes of subgroups
of K. The functor eBFBy is the direct summand of FBy obtained from
the idempotent X of FBg(1) = FB(K). Its value at a group G is the set
of F-linear combinations of idempotents e%XK associated to subgroups L for
which po(L) is conjugate to H in K. This condition is equivalent to the
existence of a surjective morphism (L,ps) — (H,jg), where jy : H — K
is the inclusion morphism. Since (H, jy) is a Bg-group by Example 4.4, it
follows that eNFBy = ey j,,.

5.7. Theorem: LetIpp, be the lattice of ideals of FBy, ordered by inclu-
ston of ideals, and Clp, o be the lattice of closed subsets of Bx-gr, ordered
by inclusion of subsets. Then the map

IGIIFBK HPI: {(L790> GBK'gr | €L.o g]}

is an 1somorphism of lattices from Zgp, to Clg, -er. The inverse isomorphism
s the map

PEClpmrIp= > e, .
(Lp)eP

In particular Iyp, is completely distributive.
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Proof: By Proposition 5.2, if [ is an ideal of FBg, then P; is a closed subset
of Bg-gr, so the map « : I — P from Zpp, to Clg,-g is well defined. It is
moreover clearly order preserving. The map 8 : P +— Pr from Clg, -4 is also
well defined and order preserving. By Proposition 5.2 again, the composition
B o« is the identity map of Zgp, . Conversely, if P € Clp, g, then

@Oﬁ:{(Maw>€BK‘gr|eM,wg Z eL,Lp} :

(Lyp)eP

Then clearly P C «a o B(P). Conversely, if eyryy € >, er,, then by
(L,p)EP
Lemma 3.10 there exists (L,y) € P such that ey C ep,. Then (L,¢p)
is a Bg-group, and by Corollary 5.5, this implies (M, ) — (L,¢). Hence
(M, 1) € P, since P is closed. Thus o 3(P) C P, proving that o 3 is the
identity map of Clg, o The last assertion follows from the fact that Clg, g
is clearly completely distributive, since its join and meet operation are union
and intersection of closed subsets, respectively, and since arbitrary unions
(resp. intersections) distribute over arbitrary intersections (resp. unions). 0O

6. Some simple FBx-modules

6.1. Theorem:

1. Let (L,¢) be a Bg-group. Then ey, admits a unique mazimal proper
subideal e%,w defined by

0o _ E
eL#’ = SV RTINS

(M:T/J)GBK —-gr
(M h)£(Lyp)

2. The quotient Si, = eL,ga/e%#; 18 a simple F By -module.

3. For any finite group G, let Ag be a set of representatives of conjugacy
classes of subgroups X of G x K such that B (X,ps) = (L,p). Then
the set {e | X € Ag} maps to an F-basis of Sp,(G) under the
projection map e, ,(G) — Sp,(G).

4. If I' C I are ideals of FBx such that 1/1' is a simple FBg-module,
then there exists a By-group (L, @) such that I/1' = Sy, .
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Proof: 1. Without loss of generality, we can assume that (L, p) € Bg-gr.
Using Theorem 5.7, saying that e, , admits a unique maximal proper subideal
is equivalent to saying that the closed subset Pe, , contains a unique maximal
proper closed subset. But

Pe,., = {(M, ) € Bi-gr | (M, ¢)) = (L, )}

s0 P? = Pe, ,—{(L, )} is the unique maximal proper closed subset of P, _.
It follows that Ipo = e%(p is the unique maximal proper subideal of ey .

2. This is clear, from 1.

3. We know from Remark 5.4 that e, ,(G) has a basis consisting of the idem-
potents eg;(XK , for X in a set of representatives of conjugacy classes of sub-
groups of G x K such that (X, ps) — (L, ¢), or equivalently, by Corollary 4.9,

such that Bx (X, py) — (L, ). Now saying that e§** e} ,(G) amounts to

saying that €§p><21< € e} ,(X), by Theorem 3.4, i.e. that ex,, C enry for some

(M, ) € Bg-gr such that (M,1) — (L,¢), but (M,¢) 2 (L,¢). This in
turn is equivalent to saying that Sx (X, ps) — (L, @), but B (X, ps) 2 (L, ).
Hence S ,(G) has a basis consisting of the idempotents e for X in a

set of representatives of conjugacy classes of subgroups of G x K such that
Br (X, p2) = (L, ). Assertion 2 follows.

4. Let I' C I be ideals of FBy such that S = I/I" is a simple FBg-module,
or equivalently, such that I’ is a maximal subideal of I. Then there exists
(L,p) € Bg-gr such that e, C I but e, € I'. Hence ey, +I' = I, and
S=1/I"=e,,/(e,NI"). Then e, NI"is a proper subideal of e ., so
er, NI' C e}, and then S maps surjectively onto ey ,/e} , = Si,. Since
S and Sp, both are simple FBg-modules, the surjection S — Sp, is an
isomorphism. O

6.2. Remark: By Corollary 4.10, the condition Sx(X,p2) = (L,¢) in
Assertion 3 is equivalent to the existence of a surjective morphism s from
(X,p2) to (L,p) such that mxkes # 0. By Theorem 5.4.11 of [2], or by
Corollary 4.10 applied to the case K = 1, this is equivalent to the condition

BX) = B(L).

6.3. Corollary: Let (L,p) and (M,) be Bg-groups. Then the simple
FBg-modules Sy, , and Sy are isomorphic if and only if (L, @) and (M, )
are isomorphic in grpy i .

Proof: Clearly if (L, p) = (M, ) in grpy, then Sg , = Sy 4. Conversely, if
0 : Sp, — Swmy is an isomorphism of FBg-modules, then for any finite
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group G, we get an isomorphism 6 : Sp,(G) — Suw(G) of FBk(G)-
modules. Choose G such that S;,(G) # 0 (e.g. G = L), and a sub-
group X of G x K such that Sx(X,ps) = (L,). Then the image u of
a = e® € FBy(G) in S ,(G) is non zero, and moreover a - u = u. It
follows that O¢(a - u) = a - 0g(u) = Oc(u) is also non zero in Sy4(G). So
there is a subgroup Y < G x K with S (Y, ps) = (M, 1), such that the image
v of e in Sy (G) satisfies a-v # 0. This forces X and Y to be conjugate
in G x K, so (L,¢) = Br(X,p2) = Br(Y,p2) = (M,v) in grpy, as was to
be shown. O

Recall that a minimal group for a (non zero) biset functor F is a finite
group G of minimal order such that F(G) # {0}.

6.4. Lemma: Let (L,p) be a group over K.
1. If N4 L, and N NKeryp =1, then ey, ,(L/N) # {0}.
2. If moreover (L, ) is a Bgk-group, then Sy, ,(L/N) # {0}.

Proof: Indeed the map
0:1€ L (IN,o(l)) € (L/N) x K

is injective. Let L < (L/N) x K denote the image of §. Then we have a
commutative diagram

where ¢ : L — L is the inverse of the isomorphism L — L induced by 6, and
i is the identity map of K. Hence (L,pa) = (L, ¢) in grpy, and er, , = ef ..
In particular e(ZZN)XK € er,(L/N) by Theorem 3.4, hence e, ,(L/N) # {0}.
This proves 1.

If moreover (L, ) is a By-group, then Bx(L,ps) = (L, ). It follows
from Theorem 6.1 that e%L/N)XK € e ,(L/N) maps to an element of a basis
of Sp,(L/N), so S ,(L/N) # {0}, proving 2. 0

6.5. Theorem: Let (L,) be a Bx-group, and G be a finite group. The
following are equivalent:

1. The group G is a minimal group for St,.

2. The group G is isomorphic to L/N, where N is a normal subgroup of L
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of maximal order such that N N Kerp = 1.

Moreover in this case, the images in S, ,(G) of the idempotents e where

X runs through a set of representatives of conjugacy classes of subgroups of
G x K such that (X,ps) = (L, ), form an F-basis of S ,(G).

Proof: By Theorem 6.1, saying that Sp ,(G) # {0} for a finite group G
amounts to saying that there exists a subgroup X of G x K such that
Br (X, p2) = (L, ) in grpy . Equivalently, there is a commutative diagram

X s

AN

G K—+K,

where
e s is surjective and mx Ker s£0,
e ¢ is an inner automorphism of K,
e the map (p1,p2) : X — (G x K) is injective.

Now we proceed with the proof of Theorem 6.5.
If G is minimal for S, then S;,(G) # {0}, so we have a di-
agram (6.6). Let H = pi(G). Replacing G by H in this diagram gives
a diagram for the group H with the same properties, so Sy (H) # 0.
Hence H = G by minimality of G. In other words p; is surjective, so
G = X/Kerp;. Let N = s(Kerp;). If u € NN Keryp, then u = s(x)
for some z € X, and then @ o s(z) =iops(z) =1, 80 po(z) = 1. Thus z =1
since Kerp; N Kerpy, = 1. Moreover N is normal in L, since s is surjective.
Lemma 6.4 shows that Sp, ,(L/N) # {0}, and by minimality of G, the sur-
jection 5 : G = X/Kerp; - L/N induced by s must be an isomorphism.
Lemma 6.4 also implies that /N is a normal subgroup of maximal order of L
such that N N Ker . Hence 2 holds.

Observe that it also follows that Kers < Kerp;, so Kers = 1 since
Kers < Kerpy, as pos = 10 pg, and Kerp; N Kerp, = 1. So s is an
isomorphism X — L. This proves the last assertion of the theorem.

Suppose that 2 holds. Then S ,(G) # 0, by the above claim. By
the first part of the proof, if H is a minimal group for Sy, ,, then H = L/M,
where M is a normal subgroup of maximal order such that M N Ker ¢ = 1.
Then |M| = |N|, so |G| = |H|, and S;, ,(G") = {0} for any group G’ of order
smaller than |G| = |H|. Hence G is minimal for Sy, ,, and 1 holds. 0
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6.7. Corollary: Let (L,p) be a group over K. The following conditions
are equivalent:

1. ¢ : L — K 1is injective.
2. (L,p) is a Bg-group and Sy, (1) # {0}.

Proof: If ¢ is injective, then (L, ) is a Bg-group (cf. Example 4.4).
Moreover L N Kery =1, so S;, ,(L/L) = S ,(1) # {0}.

If (L,y¢) is a Bg-group and Sp (1) # {0}, then 1 is a minimal

group for St . So there is a normal subgroup N of L of maximal order such
that N N Kery = 1, such that moreover L/N = 1. Hence N = L, and
Kerp=NNKerp = 1. O

6.8. Example: Let L = Cy x (C3 x Cy) be a direct product of a group
of order 2, generated by the element a, and a semidirect product of a group
of order 3, generated by b, and a cyclic group of order 4, generated by ¢
(so cbc™! = b71). Let P be the subgroup of L generated by a and b. Then
P is cyclic of order 6, and the factor group K = L/P is cyclic of order 4,
generated by the class cP. Let ¢ : L — K be the projection map. One can
check that (L, ¢) is a Bg-group, i.e. that my o = 0 when @) is any of the non
trivial subgroups of P (these subgroups are all normal in L, as P is cyclic).

Then the subgroups M = (ac?) and N = (c?) both are normal (central,
in fact) subgroups of L of maximal order (equal to 2) intersecting trivially
P = Ker ¢. So the groups G = L/M and H = L/N are both minimal groups!
for the simple FBg-module Sy, ,, but they are not isomorphic, as G = C3xCy
but H = Cy x S3, where S5 is the symmetric group of degree 3. This gives
yet another counterexample to a conjecture I made in 2010, saying that the
minimal groups for a Green biset functor should form a single isomorphism
class of groups. The first counterexample to this conjecture was found by
Nadia Romero in 2013 (cf. [6]). Another counterexample was found recently
by Ibrahima Tounkara (cf. [7]).

7. Restriction to p-groups

In this section, we fix a prime number p, and restrict the functor FBg to
finite p-groups. We obtain a Green p-biset functor IFBg). We do not assume
that K is itself a p-group.

'One can show moreover that Sy, ,(G) and S ,(H) are both one dimensional.
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In order to study the ideals of IFB}?), it is natural to try to determine
those groups (L, ¢) over K for which the restriction of e, to p-groups does
not vanish. This motivates the following definition:

7.1. Definition: Let K be a finite group. Then a group (L, p) over K is
called p-persistent if there is a finite p-group P such that e, ,(P) # {0}.

We denote by grpff})( the full subcategory of grpyx consisting of p-

persistent groups over K.

7.2. Remarks:

1. If X is a subgroup of P x K, where P is a p-group, then (X, ps) is
p-persistent: indeed eX*X € ex,,(P) by Corollary 3.5.

2. Any quotient of a p-persistent group over K is p-persistent: indeed is
s (M,v) — (L, p) is a surjective morphism in grpy -, then eyry C ez,
by Lemma 3.7. It follows that e, ,(P) # {0} if P is a p-group such that
emp(P) # {0}. In particular, if (L, ) is p-persistent, then Sx (L, ¢) is
a p-persistent Bi-group.

7.3. Notation: When L is a finite group, we denote by OP(L) the subgroup
of L generated by p'-elements, and by LIP! the quotient L/OP(L).

Recall that OP(L) is the smallest normal subgroup N of L such that
L/N is a p-group. Also recall that if s : M — L is a surjective group
homomorphism, then s(OP(M)) = OP(L). Indeed N = s(OP(M)) < L, and
s induces a surjection MP — L/N. So L/N is a p-group, thus N > OP(L).
But N is generated by p’-elements, as OP(M) is, so N < OP(L).

7.4. Proposition: Let (L,p) be a group over K. The following are
equivalent:
1. (L, ) is p-persistent.
2. e, (L) # {0}.

3. Mp,or(L)NKer ¢ 7‘é 0.

Proof: Indeed if 3 holds, then setting N = OP(L) N Ker ¢, we have e, =
er/N,o/N by Theorem 4.1. Moreover OP(L/N) = OP(L)/N, and Ker (p/N) =
Ker ¢/N. Thus OP(L/N) NKer(¢/N) =1, so e n e/ ((L/N)/OP(L/N)) is
non zero by Lemma 6.4. But

er/No/N ((L/N)JOP(L/N)) = ey v (L/OP(L)) = ep (LP) |
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so 2 holds. Clearly 2 implies 1, as L is a p-group. Now if 1 holds, let P
be a p-group such that e, ,(P) # {0}. Let N be a normal subgroup of L
contained in Ker ¢, and maximal such that my, y # 0. Then setting L = L/N
and § = /N, we have fx(L,¢) = (L, $), and ey, = ef ; by Theorem 4.1.
Moreover as (L, p) is a Bg-group, by Theorem 5.3, there exists a subgroup
X of P x K, and a commutative diagram

X =1L

N

P K> K,

where s is surjective and 7 is an inner automorphism of K. Then N
s(Kerp;) is a normal subgroup of L, as s is surjective. Moreover if
N NKer g, then | = s(z) for some x € Kerpy, so pi(z) = 1 and 7 o po(z)
pos(r)=1,s0 ps(x) =1. Hence x =1, and [ = 1, so N NKerg = 1. Now
s induces a surjection X/Kerp; = py(X) — L/N, so L/N is a p-group, thus
N > OP(L). Tt follows that OP(L)NKerp = 1. Nowif 7 : L — L= L/N is
the projection map, we have g o = ¢, so

Im

T(OP(L)NKerp) <OP(L)NKerg=1,

that is OP(L) N Kerp < N = Kern. Then if M = OP(L) N Ker ¢, we have
mpn = mpyumpn/m 7 0, hence my ar # 0, so 3 holds. 0

7.5. Corollary: Let (L,p) be a p-persistent By -group. Then

OP(L)NKerp=1 .

Proof: Indeed mp or(1)nkerp 7 0, and (L, @) is a Bg-group. O

7.6. Notation: When (L, p) is a p-persistent group over K, we denote by
Lgf) the subgroup of LIP! x K defined by

L ={(lo"(L),¢(l)) [l L} .

The following theorem is analogous to Theorem 3.4:
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7.7. Theorem: Let I be an ideal of the Green biset functor IFB%'). If G is
a finite p-group and L is a subgroup of G X K, the following conditions are
equivalent:

1. The idempotent > belongs to I(G).
2. The tdempotent eﬁg)XK belongs to I(LP)).

Proof: The proof is similar to the proof of Theorem 3.4, so we only sketch it.
If L < G x K, denote by L the image of L in the group LIP! x G by the
map [ — (ZO”( ),p1(l)). Recall that Kerp; > OP(L), since G is a p-

group. Furthermore py(L) = L, k(L) = Kerp1/OP(L), ps(L) = pi(L),
and k(L) = p; (OP(L)) = 1. The (L[p G)-biset U = (L) x G)/L factors as

1] /k (@) © Iso(@‘l) o Resfl(L) ,

where 6 : LIP/ki (L) — pi(G) is the isomorphism induced by the map
I0OP(L) + py(1) from LP) to G.

If % belongs to I(G), then FBg)(U)(efXK) belongs to I(LP)). As in
the proof of Theorem 3.4, one can check that the product eﬁz])XK FBY (e5%K)

2
is non zero. As it is a scalar multiple of eL(p)XK we get that eﬁZ])XK € I(LlP),
p2

thus 1 implies 2.
Conversely, assume that e (I;])XK € I(LP)). Then, as in the proof of The-
orem 3.4 again, the opposite blset U°P factors as

op ~v G Llpl
U = 1Ind,; 1 o Iso(0) o Def) o (@)

and the element FB%’)(U Op)(eﬁi])XK ) belongs to I(G). One can can check

P2
moreover that there is a non zero scalar A such that

(p) op LIPIx K _ Gx K
FB (U )( Lpz; ) )\mL(p>L(p)ﬁ(N><1)eL ’

where N = k(L) = Ker p;/OP(L) < L.,
But if (IOP(L),ps(1)) € L,(f;) N (N x 1), then [ € Kerp, N Kerp, = 1.
It follows that ML 1Py = M a = 1, and efXK € I(G), as A # 0.

Hence 2 implies 1. O

27



7.8. Corollary: Let G be a finite p-group, and L be a subgroup of G x K.

Then the ideal of FBg) generated by €§XK 15 equal to the ideal of IFB%))

Ll x K
generated by € )

P2

Proof: The proof is the same as the proof of Corollary 3.5. O

7.9. Notation: Let (L,p) be a p-persistent group over K. We denote by

egojp the ideal of FBY) generated by ei?XK e FBY (L),

7.10. Theorem: Let s : (M,y) — (L,p) be a surjective morphism in

grpyrc, and assume that (M, ) is p-persistent. Then:
1. (L, ) is p-persistent, and eg\?w C e(Lp’zo_

2. If mpykers # 0, then eg\lzw = e(ijo.

Proof: 1. We already observed in Remarks 7.2 that any quotient of a p-
persistent group over K is itself p-persistent, hence (L, ) is p-persistent.
Let ¢ be an inner automorphism of K such that ¢ 01 = ¢ os. The surjection
s: M — L induces a surjection s : MP) — LIPl hence a surjection

sl Idg : MP x K — LP x K.
Let u = (mOP(M),¢(m)) be the image of m € M in bep). Then

(s x Tdge) (u) = (s(m)OP(L), b(m)) = <s(m)O”(L),i_1 ° ¢(s(m))) ,

which shows that sl?! x Idgx maps Mé}p) to a conjugate of Lg) in LYl x K.

Then the idempotent e% Z])XK appears in the decomposition of

¥

) - o
FB (Inf )1 e st © Ts0(x 1))(6§§;>XK) :

where o : MP!/Ker slP! — LIl is the canonical isomorphism. It follows that
eMPIxK o e(Lp) (MP)), hence eg\?w C e(Lp,L.

MP P
b
. [p] [p]
2. Consider now v = IFB%’) (Iso(e) oDef%[Z]/Kersm) (e%})”{) € e‘A’;{¢(L@1). By
Lemma 2.2, there is a non zero scalar A such that
(7.11) v=2Am elIxK

MP MPN(Ker 5P x1)“ @)
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Now the projection m € M + (mOP(M),(m)) € Mip) induces an isomor-
phism Mi}p) =~ M/(OP(M)NKert). As KerslPl = KersOP(L)/OP(L), the
subgroup Mz(pp)ﬂ(Ker sPlx 1) maps to (Ker s OP(M)NKer ¢)/ (OP(M)NKer 1))
under this isomorphism.

Moreover Ker s OP(M)NKer ¢ = Ker s(OP(M)NKer 1)) as Ker s < Ker 9.
It follows that

M(P) M ﬂ(Ker slPlx1) = MM /(OP(M)NKer ), Ker s(OP (M)NKer 1) /(OP(M)NKer ) -

Multiplying by ms0r(a)nkerw, Which is non zero by Proposition 7.4, since
(M, ) is p-persistent, this gives

MAL,0r(M)NKer mMz(pp)’Ml(bp)ﬁ(Kers[p]Xl) = MM Ker s(OP(M)NKer ¢))
= MM Kers MM /Ker s,Ker s(OP (M)NKer ) /Ker s
= MM Kers " L,0OP(L)NKery

as the canonical isomorphism M /Ker s — L maps Ker s(OP(M)NKer ) /Ker s
to OP(L) NKery. Since mp, or(r)nkerp 7 0 as (L, ) is p-persistent, and since

My kers 7 0 by assumption, it follows that li(f)v M (Ker Pl x1) 2 0, hence

eLEP])XK is a non zero scalar multiple of v, by 7.11. It follows that eﬁf)XK
%}
belongs to eg\ﬁ{w(L[P}) SO e(L) C egﬁ,)w, and e(Lp’)w = eg\?w, as was to be shown. 0O

7.12. Corollary: Let (L,p) be a p-persistent group over K. Then the
restriction of er, , to finite p-groups is equal to e(LpL.

Proof: Since ey, = eg, (1) by Corollary 4.9, and since e(ij@ = egz(L ) by
Theorem 7.10, we may assume that (L, ¢) is a Bi-group. By Corollary 7.5,
we have OP(L)NKer ¢ = 1. Thus the projection L — Lc(p is an isomorphism,

and it induces an isomorphism (L, @) = (prp ), p2). Hence eLEp)XK € ep (L),

and e(LpL, is contained in the restriction of ey , to p-groups.
Conversely, if G is a p-group and e € ep ,(G), then (X,p2) = (L, )

by Theorem 5.3. Then e()?)m C e(Lpzp, hence e§*K € el » by Corollary 7.8.

(p)

Hence the restriction of ey, , is contained in e, which completes the proof. 0

7.13. Corollary: Let (L,) be a p-persistent B-group, and (M,v) be a
p-persistent group over K. Then es\?w C e(ﬁzo if and only if (M, ) — (L, p).

29



Proof: Indeed if (M,v) — (L, ¢), then eg\?w C eL by Theorem 7.10. Con-

versely, if e% C e(p ) »» showing that (M, ) — (L,¢) amounts to showing
that S (M, 1) = (L, p), because (L, ) is a Bg-group. Now ey = €, (M,0)
hence egﬁ)w = eg) ) by Corollary 7.12, and we can assume that (M, ) is
also a BK group

MPIx K

If eMw C eLW then eM e € egzo(M[p]), and egL(M[p]) = eLvsD(M[p])

by Corollary 7.12. Hence (Mq(f),m) — (L,¢) by Theorem 5.3. But the

(»)

projection M — M;” is a group isomorphism, since (M, ) is a Br-group.

It is in fact an isomorphism from (M, 1)) to (Mq(pp),pz) in grpy . It follows
that (M, ) — (L, ). O

The following is analogous to Lemma 3.10, and the proof is the same:

7.14. Lemma: Let A be a set of ideals of IFB , and (M,)) be a p-
persistent group over K. The following are equwalent

1. eMwCI%I

2. There exists I € A such that egf/)[)’w c .

Proof: Clearly 2 implies 1. Now 1 is equivalent to saying that

SHORED NI
IeA

If this holds, there exists I € A and u € I(MP)) such that e p]XK cu # 0.

Now e]\]\ﬁp])XK -u € I(MP)), and moreover there is a scalar \ € IF such that
v
[p] [p] [
eﬁ(})x}( = )e M(;XK # 0. Hence A\ # 0, and eM(;XK € I(MP). In other
words eg\?ﬂp C I, so 1 implies 2. 0

7.15. Notation: Let Bg)—gr denote the subset of By-gr consisting of
p-persistent By -groups.

As before, a subset P of Bg)—gr is called closed if

V(L,p) € P, V(M p) € BD-gr, (M,) — (L) —> (M) P .
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7.16. Theorem: Let T, be the lattice of ideals of IFBEf), ordered by
K

inclusion of ideals, and Cl be the lattice of closed subsets of Bg)—gr,

Bg) -gr
ordered by inclusion of subsets. Then the map

IGIFB%,)prz{(L, p) € gr|e CI}

is an isomorphism of lattices from I ) to CZB(p>_gr. The inverse isomor-
K K

phism is the map

PEClyp > Ip= > e .

(L,p)EP

In particular L, ;o) s completely distributive.
K

Proof: First the map I € Topw — Pr € Cl8<p)_gr is well defined: indeed
K K
Pr € ClB(p by Theorem 7.10. This map is obviously order preserving.

Similarly, the map P € ClB(p>—gr = Ip = > eslpL is also well defined and
K (Lp)eP
order preserving.

Hence all we need to show is that if I is an ideal of IFBK , then

(7.17) I= > v,

(L7‘10)€7)I
and that if P is a closed subset of Bgf)—gr and (M,v) € Bg)-gr, then
(7.18) +C Y P o (M) eP .

(L,p)EP

For 7.17,let J = > e(Lp,cp. Then J C I by definition of P;. Conversely,
(L,QO)GP[

let G be a finite p-group, and u = 3 Axe$** be an element of 1(G), where
XEE
Ax € F, and FE is a set of representatives of conjugacy classes of subgroups

of G x K. Then e¥ - u = Axe§*K € I(G), for any X € E. So if \x # 0,
then e*% € I(G). Equivalently, by Theorem 7.7, eXZ]>XK € I(XP) that
is eg?)p clI. Let (L,¢) be the element of B[I())—gr isomorphic to Br (X, p2).
Then e}g)pz — el ", by Theorem 7.10, and (L, ¢) € Pr.

Moreover eXZ]>XK € e(p) (X[p]), or equivalently % € e(LZO(G) C J(G).
As this holds for any X € E such that Ax # 0, we have also u € J(G), s

31



J(G) = I1(G), as u was arbitrary in [(G), and J = I, as G was an arbitrary
finite p-group. This completes the proof of 7.17.

As for 7.18, clearly if (M,) € P, then e% c > e(LpL,. Conversely if

(Lyp)eP
e% c e(Lp’ZD, then by Lemma 7.14, there exists (L, ) € P such that
(Lp)EP
eg\?w - e(Lp,)SD. Hence (M,v) — (L, ), by Corollary 7.13. Since (L, ) € P
and P is closed, we get that (M,v) € P, as was to be shown. 0

7.19. Theorem: Let (L,p) be a p-persistent Bi-group. Let [sk| be a
set of representatives of conjugacy classes of subgroups of K. Let H be the
unique element of [sk| conjugate to (L), and jg : H — K be the inclusion
map. Then one and one only of the following holds:

1. Kero =1, and (L, ) = (H,ju) in grpyr-

[

2. Kerp = C,, the group HP is cyclic and non trivial, and (L,¢) =
(Cp x H,jg o) in grpyg, where mg : C, X H — K is the projection
onto H.

3. Kerp = C, x C,, the group HWP) s trivial - in other words H is a p-
perfect subgroup of K - and (L, ) = (Cp x Cp, X H, jg o Ty) in grpyy,
where my : Cp X C, x H — K is the projection onto H.

Proof: Since OP(L) N Ker ¢ = 1 by Corollary 7.5, the group Ker ¢ embeds
into LI, so it is a p-group. Let F denote the Frattini subgroup of Ker ¢.
Then F' is a normal subgroup of L. Moreover if X is a subgroup of L such
that XF = L, then FF < Keryp < XF, so Kerp = (Kerp N X)F, hence
KerpoNX = Ker g, and then XF' = X = L since F' < Kerp < X. It follows
that mpp =1, thus F' =1 as (L, y) is a Bg-group. This shows that Ker ¢
is elementary abelian.

Let now N = PQM P, where M is the set of normal subgroups of L which

are contained in Kerp, and maximal for these conditions (in other words
the factor group Ker¢/P is a simple F,L-module). If X is a subgroup of L
such that XN = L, then N < Kerp < XN, so Kerp = (Kergp N X)N.
But Ker¢ N X is normalized by X and Kerp, so it is normal in L. If
Kerp N X < Ker ¢, then there is P € M such that Ker¢o N X < P. Then
N < P also, and Kerp = (Kerp N X)N < P, contradicting P < Ker¢. It
follows that Kerp < X, and XN = L implies X = L. Thus m; y = 1 and
N =1.

But then the product of the projection maps Kerp — [] Kerp/P is
PeM
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injective, and the latter is a semisimple F,L-module. Hence Ker ¢ is also a
semisimple F,L-module. Now since OP(L) and Ker ¢ are normal subgroups
of L with trivial intersection, they centralize each other. In other words Ker ¢
is a module for the factor group LIPl = L/OP(L). Then Ker ¢ is a semisimple
]FPL[p}—module. As LIP! is a p-group, the action of Ll on Ker ¢ has to be
trivial. Hence Ker ¢ is central in L.

Let Z be any subgroup of order p of Kerp. Then 0 =mp z =1 — kLTEZ),
by Proposition 5.6.4 of [2], where k;(Z) denotes the number of complements
of Z in L. Tt follows that k;(Z) = p, so in particular there is a subgroup
H of L such that L = Z x H. Then the complements of Z in L are the
groups of the form {(f(h),h) | h € H}, where f : H — Z is any group
homomorphism. It follows that there are exactly p homomorphisms from
H to Z = C,. Equivalently, there are exactly p homomorphisms from the
p-group HP! to Cp, so H ] is cyclic and non trivial. Since Ker ¢ embeds in
LI = 7 x HIP| the rank of Ker ¢ is at most 2.

We now observe that if (M,1) — (L, ) is a surjective morphism of
groups over K - in particular if it is an isomorphism -, then ¥ (M) and (L)
are conjugate in K. Then there are three disjoint cases:

1. Kerp = 1. In this case, denoting by 7y the inclusion map H — K and
by ¢° : L — H the isomorphism induced by ¢, we have i 0o = 7y 0 ©°
for some inner automorphism ¢ of K which conjugates ¢(L) to H. So
¢° is an isomorphism from (L, ¢) to (H,7p) in grpyx, and we are in

Case 1 of Theorem 7.19.

2. Kerp = Z = C,. Then we have seen that L = Z x H;, where H; is
[

a subgroup of L such that H{" lis cyclic and non trivial. In this case
¢ induces an isomorphism ¢° : H; — H = (L), and Idz x ¢° is an
isomorphism from (L, ) to (Z x H,jg omg), where 1 : Z x H - K
is the projection onto H. Hence we are in Case 2 of Theorem 7.19.

3. Kerp = C, x C,. Then let Z be a subgroup of order p of Ker ¢. Then
we have seen that L = Z x Hy, where H; is a subgroup of L such that
Hl[p Vs cyclic and non trivial. In this case Z; = Ker ¢ N H; has order p,
and my, z, = 0 since (L, ) is a Bg-group. It follows that Z; must have
also exactly p complements in L. In particular, there is a subgroup J
of L such that L = Z; x J. But then Z; < H; < Z;J implies that
H, = Z; x Hy, where Hy, = Hi N J. Hence L = Z x Z; X H,, and
moreover HY = 1 since H” = 7, x HP is cyclic. Then ¢ induces an
isomorphism ¢ : Hy — H = ¢(L), and Idzxz, X ¢° is an isomorphism
from (L, ) to (Z x Zy x H,jy omy), where myy : Z X Zy x H — K is
the projection onto H. Hence we are in Case 3 of Theorem 7.19.
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This completes the proof of Theorem 7.19. O

7.20. Corollary: Letl = {0,1} and2 = {0,1,2} be totally ordered lattices
of cardinality 2 and 3, respectively. Let cx (resp. ncg) be the number of
conjugacy classes of subgroups H of K such that HP is cyclic (resp. non
cyclic). Then the lattice I]FB%;) of ideals of IFB}?) 15 1somorphic to the direct
product of cx copies of 2 and ncyx copies of 1. In particular it is a finite
distributive lattice.

Proof: By Theorem 7.16, the lattice T,z is distributive, isomorphic to the
K

lattice CZB(p>_gr of closed subsets of Bg’)—gr. Moreover, the join-irreducible
K

elements of Z ) are the ideals e, ,, for (L,p) € v By Theorem 7.19,

B B

the set Bg)-gr is finite, and contains three types of elements:
1. the elements (H, jy) of the first type, for H € [sk].

2. the elements (C, x H, jy o my) of the second type, for H € [sk] such
that H is cyclic and non-trivial.

3. the elements (C, x C, x H,jg o my) of the third type, for H € [sk]
such that HP! is trivial.

The only possible surjective morphisms between elements of Bg)—gr are of
the following form:

o (Cyx H,jyomy) — (H,ju), where H € [sk] is such that HP is cyclic
and non trivial.

o (C,xCyxH, jgony) — (H,jy), where H € [sk] is such that HP) = 1.

It follows that the poset Bg)—gr has as many connected components as con-
jugacy classes of subgroups of K. The connected components corresponding
to subgroups H for which H"! is cyclic - trivial or not - are isomorphic to a
totally ordered <poset of size 2, and the other ones are posets with one ele-
ment. Hence B [f)—gr is a disjoint union of cx-components which are totally
ordered of size 2, and nck isolated points. The lattice of closed subsets of a
totally ordered poset of size n is a totally ordered lattice of size n + 1, and
the lattice of closed subsets of a disjoint union of posets is the direct product
of the lattices of closed subsets of the pieces. This completes the proof. 0O

7.21. Remark: As in Remark 5.6, it follows from Section 5.2.2 of [3] that

the category FBgf)—Mod splits as a product

FBY-Mod = [ [ eSFBY-Mod |
H
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of categories of modules over smaller Green biset functors eﬁFBg), where

H € [sg]. The above connected components correspond to this decomposi-
tion. In particular, when H is a subgroup of K such that H! is non cyclic,
then the (commutative) Green functor eglﬁ‘Bg) has no non zero proper ideals.
It might therefore be called a Green field.
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