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Abstract : This paper extends the notion of B-group to a relative context. For a
finite group K and a field F of characteristic 0, the lattice of ideals of the Green biset
functor FBK obtained by shifting the Burnside functor FB by K is described in terms of
BK-groups. It is shown that any finite group (L,ϕ) over K admits a largest quotient BK-

group βK(L,ϕ). The simple subquotients of FBK are parametrized by BK-groups, and
their evaluations can be precisely determined. Finally, when p is a prime, the restriction

FB(p)
K of FBK to finite p-groups is considered, and the structure of the lattice of ideals

of the Green functor FB(p)
K is described in full detail. In particular, it is shown that this

lattice is always finite.
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1. Introduction

In the study of the lattice of biset-subfunctors of the Burnside functor FB
over a field F of characteristic 0 (cf. Section 7.2 of [1], or Chapter 5 of [2]),
a special class of finite groups, called B-groups, plays an important role: in-
deed, the simple subquotients of the biset functor FB are exactly the functors
SH,F, where H is such a B-group. It was shown moreover that each finite
group G has a largest quotient B-group β(G).

Let K be a fixed finite group. This paper proposes a generalization of
the above methods and notions, in order to study the lattice of ideals of the
shifted Burnside functor FBK . We start by introducing a category grp⇓K of
groups over K, similar to the comma category of finite groups over K, in
which morphisms are obtained by allowing diagrams to commute up to inner
automorphisms of K.

To each such group (L, ϕ), where ϕ : L→ K, is attached a specific ideal
eL,ϕ of FBK , and it is shown that every ideal of FBK is equal to the sum of the
ideals eL,ϕ it contains. A special class of groups over K is introduced, called
BK-groups, and it is shown that for each group (L, ϕ) over K, there exists a
largest BK-group βK(L, ϕ) quotient of (L, ϕ). Moreover eL,ϕ = eβK(L,ϕ). It
follows that the lattice of ideals of FBK can be described in terms of closed
families of BK-groups.

Moreover, each ideal eL,ϕ associated to a BK-group (L, ϕ) has a unique
maximal proper subideal e0L,ϕ. The quotient SL,ϕ = eL,ϕ/e

0
L,ϕ is a simple
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FBK-module. The evaluations of this simple module can be precisely de-
scribed, as well as its minimal groups, and this yields a new example of a
simple module over a Green biset functor with several isomorphism classes
of minimal groups.

Finally, when p is a prime number, we consider the restriction FB(p)
K of

FBK to finite p-groups, and we describe completely the lattice of ideals of this
Green biset functor. We show in particular that this lattice is always finite.
As a byproduct, we get some examples of Green p-biset functors without non
zero proper ideals.

2. Review of shifted Green biset functors

We quickly recall some definitions and basic notions on biset functors for
finite groups, and refer to [2] for details. Let F be a field of characteristic 0.
The biset category FC of finite groups has all finite groups as objects. IfG and
H are finite groups, then HomFC(G,H) = F ⊗Z B(H,G), where B(H,G) is
the Grothendieck group of finite (H,G)-bisets. Composition in FC is induced
by the product (V, U) 7→ V ×H U = (V × U)/H, where V is a (K,H)-biset
and U a (H,G)-biset, and H acts on (V × U) by (v, u) · h = (vh, h−1u). A
biset functor over F is an F-linear functor from FC to the category of F-vector
spaces.

Any biset is a disjoint union of transitive ones, and any transitive (H,G)-
biset is of the form (H ×G)/L, where L is a subgroup of (H ×G). Denoting
by p1 : H×G→ H and p2 : H×G→ G the first and second projections, we
set k1(L) = p1(L∩Ker p2) and k2(L) = p2(L∩Ker p1). The biset (H ×G)/L
factors as the composition

(H ×G)/L ∼= IndHp1(L) ◦ Inf
p1(L)
p1(L)/k1(L)

◦ Iso(α) ◦Def
p2(L)
p2(L)/k2(L)

◦ ResGp2(L)

of elementary bisets called induction, inflation, isomorphism, deflation, and
restriction, where α : p2(L)/k2(L) → p1(L)/k1(L) is the canonical isomor-
phism sending bk2(L) to ak1(L) for (a, b) ∈ L. These elementary morphisms
generate all morphisms in the category FC.

A Green biset functor A over F (cf. Section 8.5 of [2]) is a biset functor
with additional bilinear products A(G) × A(H) → A(G × H), denoted by
(α, β) 7→ α × β, which are associative and bifunctorial. There is also an
identity element εA ∈ A(1).

A left A-module M is then defined similarly as a biset functor with prod-
ucts A(G) ×M(H) → M(G × H) which are associative, bifunctorial, and
unital. Left A-modules form an abelian category denoted by A-Mod. A left
ideal of A is an A-submodule of the left A-module A.
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When A is a Green functor, each evaluation A(G) is an F-algebra for the
product

α, β ∈ A(G) 7→ α · β = A
(
Iso(δ) ◦ ResG×G

∆

)
(α× β) ,

where ∆ is the diagonal subgroup of G × G, and δ : ∆ → G the canonical
isomorphism. The identity element of this algebra is A(InfG

1
)(εA). IfM is an

A-module, each evaluationM(G) is endowed with an A(G)-module structure
defined similarly. By Proposition 2.16 of [7], a biset subfunctor I of A is an
ideal if and only if I(G) is an ideal of the algebra A(G), for any finite group G.

A Green biset functor A is called commutative (cf. [3] for details) if the
algebra A(G) is commutative, for any G.

A fundamental example of Green biset functor is the Burnside functor
sending a finite group G to FB(G) = FB(G, 1), where B(G) is the Burnside
group of G. The products maps FB(G)×FB(H) → FB(G×H) are induced
by the cartesian product sending aG-setX and anH-set Y to the (G×H)-set
X × Y . An FB-module is precisely a biset functor over F.

Let K be a finite group. A Green biset functor A over F can be shifted
by K. This gives a new Green biset functor AK defined for a finite group G
by

AK(G) = A(G×K) .

For finite groups G and H and a finite (H,G)-biset U , the map

AK(U) : AK(G) → AK(H)

is the map A(U ×K), where U ×K is viewed as a (H ×K,G×K)-biset in
the obvious way, letting K act on both sides on U ×K by multiplication on
the second component. For an arbitrary element α ∈ FB(H,G), that is an
F-linear combination of (H,G)-bisets, the map AK(α) : AK(G) → AK(H) is
defined by F-linearity.

This endows AK with a biset functor structure. Moreover, for finite
groups G and H, the product

×AK : AK(G)× AK(H) → AK(G×H)

is defined as follows: if α ∈ AK(G) = A(G×K) and β ∈ AK(H) = A(H×K),
then α× β ∈ A(G×K ×H ×K). We set

α×AK β = A
(
Iso(δ) ◦ ResG×K×H×K

∆

)
(α× β) ,

where ∆ = {(g, k, h, k) | g ∈ G, h ∈ H, k ∈ K}, and δ is the isomorphism
∆ → G×H ×K sending (g, k, h, k) to (g, h, k). The identity element εAK is
A(InfK

1
)(εK).
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For a finite group G, the algebra structure on AK(G) is simply the algebra
structure on A(G×K) defined for the Green functor A.

All these notion can be extended to functors from an admissible subcate-
gory D of the biset category (cf. Chapter 4 of [2]), which is moreover closed
under taking direct products of finite groups. We have then the notions of
D-biset functors and D-Green biset functors, as well as modules over them.

In this paper, we will consider the shifted Burnside functor FBK , and
its restriction FB(p)

K to finite p-groups, for a prime p. A fundamental clas-
sical result is that for any finite group G, the algebra FBK(G) is a split
semisimple commutative algebra, with primitive idempotents eG×K

L indexed
by subgroups L of G×K, up to conjugation. The explicit formula for eG×K

L ,
due to Gluck ([4]) and Yoshida ([8]) is

eG×K
L =

1

|NG×K(L)|

∑

X≤L

|X|µ(X,L) [(G×K)/X] ,

where X runs through all subgroups of L, where µ is the Möbius function of
the poset of subgroups of G×K, and [(G×K)/X] is the isomorphism class
of the transitive (G×K)-set (G×K)/X.

2.1. Notation: When N is a normal subgroup of a finite group L, let

mL,N =
1

|L|

∑

X≤L
XN=L

|X|µ(X,L) .

2.2. Lemma: Let G be a finite group, and L be a subgroup of G×K. If
N is a normal subgroup of G, then

FBK

(
DefGG/N

)
(eG×K
L ) = λmL,L∩(N×1) e

(G/N)×K

L
,

where L is the image of L by the projection G × K → (G/N) × K, and

λ =
|N(G/N)×K(L):L|

|NG×K(L):L|
.

Proof: Indeed

FBK

(
DefGG/N

)
(eG×K
L ) = FB

(
DefG×K

(G×K)/(N×1)

)
(eG×K
L ) .

The result now follows from Assertion 4 of Theorem 5.2.4 of [2].
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3. Ideals generated by idempotents

We now introduce a category grp⇓K , similar to the comma category over K:
its objects are the same, but morphisms are slightly different.

3.1. Definition:

� For a finite group K, let grp⇓K denote the following category:

– The objects are finite groups over K, i.e. pairs (L, ϕ), where L is
a finite group and ϕ : L→ K is a group homomorphism.

– A morphism f : (L, ϕ) → (L′, ϕ′) of groups over K in the category
grp⇓K is a group homomorphism f : L→ L′ such that there exists
some inner automorphism i of K with i ◦ ϕ = ϕ′ ◦ f .

– The composition of morphisms in grp⇓K is the composition of
group homomorphisms, and the identity morphism of (L, ϕ) is the
identity automorphism of L.

� If (L, ϕ) and (L′, φ′) are groups over K, we say that (L′, ϕ′) is a quo-
tient of (L, ϕ), and we note (L, ϕ) ։ (L′, ϕ′), if there exists a morphism
f ∈ Homgrp⇓K

(
(L, ϕ), (L′, ϕ′)

)
with f : L→ L′ surjective. In this case,

we will say that f is a surjective morphism from (L, ϕ) to (L′, ϕ′).

3.2. Remarks:

1. Using the well known fact that the epimorphisms in the category of
(finite) groups are the surjective group homomorphisms (cf. [5] I.5 Ex-
ercise 5), one can show that a morphism f ∈ Homgrp⇓K

(
(L, ϕ), (L′, ϕ′)

)

is an epimorphism in grp⇓K if and only if f : L→ L′ is surjective, that
is, if f is a surjective morphism. We will not use this fact here, except
as a motivation to the use of the word “quotient” in Definition 3.1.

2. A morphism f : (L, ϕ) → (L′, ϕ′) in grp⇓K is an isomorphism if and
only if f : L→ L′ is an isomorphism of groups.

3. If (L′, ϕ′) is a quotient of (L, ϕ), and if (L, ϕ) is a quotient of (L′, ϕ′),
then (L, ϕ) and (L′, ϕ′) are isomorphic in grp⇓K . Indeed any surjective
morphism from (L, ϕ) to (L′, ϕ′) is an isomorphism, for L and L′ have
the same order.

4. Clearly, the relation “being quotient of” on the class of groups over K
is transitive. In particular, any group over K isomorphic in grp⇓K to
a quotient of (L, ϕ) is itself a quotient of (L, ϕ), and also a quotient of
any group over K isomorphic to (L, ϕ) in grp⇓K .
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3.3. Notation: When (L, ϕ) is a group over K, we denote by Lϕ the
subgroup of L×K defined by

Lϕ = {
(
l, ϕ(l)

)
| l ∈ L} .

3.4. Theorem: Let I be an ideal of the Green biset functor FBK. If G
is a finite group and L is a subgroup of G×K, the following conditions are
equivalent:

1. The idempotent eG×K
L belongs to I(G).

2. The idempotent eL×KLp2
belongs to I(L), where p2 : L→ K is the restric-

tion to L of the second projection homomorphism G×K → K.

Proof: 1 ⇒ 2 Let L̂ = Lp1 ⊆ L×G, where p1 : L→ G is the restriction to
L of the first projection homomorphism G×K → G. Thus

p1(L̂) = L, k1(L̂) = 1× k2(L), p2(L̂) = p1(L), k2(L̂) = 1 .

It follows that the (L,G)-biset U = (L×G)/L̂ factors as

U ∼= InfLL/N ◦ Iso(θ−1) ◦ ResGp1(L) ,

where N = 1×k2(L)EL and θ : L/N → p1(L) is the canonical isomorphism
induced by the first projection p1 : L→ G.

Now if eG×K
L belongs to I(G), its restriction FBK(Res

G
p1(L)

)(eG×K
L ) belongs

to I(G). But

FBK(Res
G
p1(L)

)(eG×K
L ) = FB

(
ResG×K

p1(L)×K

)
(eG×K
L )

=
∑

L′

e
p1(L)×K
L′ ,

where L′ runs through a set of representatives of
(
p1(L) × K

)
-conjugacy

classes of subgroups of p1(L)×K which are conjugate to L in G×K (cf. [2],
Theorem 5.2.4, Assertion 1). In particular, the group L is one of them, and

e
p1(L)×K
L · FBK(Res

G
p1(L)

)(eG×K
L ) = e

p1(L)×K
L ∈ I

(
p1(L)

)
.

It follows that FBK

(
Iso(θ−1)

)
(e
p1(L)×K
L ) ∈ I(L/N).
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But FBK

(
Iso(θ−1)

)
= FB

(
Iso(θ−1

K )
)
, where θK = θ × IdK is the iso-

morphism from (L/N) × K to p1(L) × K deduced from θ. It follows that

e
(L/N)×K

L
∈ I(L/N), where L = θ−1

K (L) = {
(
lN, p2(l)

)
| l ∈ L}. Now

FBK(Inf
L
L/N)(e

(L/N)×K

L
) = FB

(
InfL×K(L/N)×K

)
(e

(L/N)×K

L
)

=
∑

X

eL×KX ∈ I(L) ,

where X runs through a set of representatives of (L×K)-conjugacy classes
of subgroups of L×K which map to a conjugate of L through the surjection
L×K → (L/N)×K (cf. [2], Theorem 5.2.4, Assertion 3).

The group Lp2 is one of these subgroups, hence

eL×KLp2
· FBK(Inf

L
L/N)(e

(L/N)×K

L
) = eL×KLp2

∈ I(L) ,

as was to be shown.

2 ⇒ 1 We now consider the opposite (G,L)-biset U op ∼= (G× L)/L̃, where

L̃ = {
(
p1(l), l

)
| l ∈ L}, which factors as

U op ∼= IndGp1(L) ◦ Iso(θ) ◦Def
L
L/N .

If eL×KLp2
∈ I(L), then u = FBK(U

op)(eL×KLp2
) belongs to I(G). By Lemma 2.2

FBK

(
DefLL/N

)
(eL×KLp2

) = λmLp2 ,Lp2∩(N×1) e
(L/N)×K

Lp2
,

where Lp2 is the image of Lp2 by the projection L ×K → (L/N) ×K, and
λ is some non zero rational number. Now the intersection

Lp2 ∩ (N × 1) = {
(
a, b), b

)
| (a, b) ∈ L} ∩

((
1× k2(L)

)
× 1

)

is trivial. It follows that mLp2 ,Lp2∩(N×1) = 1, and

u = λFBK

(
IndGp1(L) ◦ Iso(θ)

)
(e

(G/N)×K)

Lp2
)

= λFB
(
IndG×K

p1(L)×K
◦ Iso(θK)

)
(e

(G/N)×K)

Lp2
) .

Now for (a, b) ∈ L, the image by θK = θ × IdK of
(
(a, b), b

)
(N × 1) ∈ Lp2

is the element
(
p1(a, b), b

)
= (a, b) of p1(L) × K. Hence θK(Lp2) identifies

with L, viewed as a subgroup of p1(L)×K, and

u = λFB
(
IndG×K

p1(L)×K
)(e

p1(L)×K
L ) = λλ′eG×K

L ,
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for some non zero rational number λ′ (cf. [2], Theorem 5.2.4, Assertion 2).
Since u ∈ I(G) and λλ′ 6= 0, it follows that eG×K

L ∈ I(G), as was to be
shown.

3.5. Corollary: Let G be a finite group, and L be a subgroup of G ×K.
Then the ideal of FBK generated by eG×K

L is equal to the ideal of FBK gen-
erated by eL×KLp2

Proof: Indeed, denoting by I the ideal generated by eG×K
L , and by J the

ideal generated by eL×KLp2
, we have

eK×G
L ∈ I(G) ⇒ eL×KLp2

∈ I(L) ⇒ J ⊆ I ,

eL×KLp2
∈ J(L) ⇒ eG×K

L ∈ J(G) ⇒ I ⊆ J ,

so I = J .

3.6. Notation: Let (L, ϕ) be a group over K. We denote by eL,ϕ the ideal
of FBK generated by eL×KLϕ

∈ FBK(L).

3.7. Lemma: Let (L, ϕ) and (M,ψ) be groups over K.

1. If (M,ψ) ։ (L, ϕ), then eM,ψ ⊆ eL,ϕ.

2. In particular, if (M,ψ) is isomorphic to (L, ϕ), then eM,ψ = eL,ϕ.

Proof: 1. Let s : M → L be a surjective group homomorphism, and i be
an inner automorphism of K such that i ◦ ψ = ϕ ◦ s. Let U denote the
set L, viewed as an (M,L)-biset for the action given by m · u · l = s(m)ul,
for m ∈M and u, l ∈ L. There is an isomorphism of (M,L)-bisets

U ∼= InfMM/Ker s ◦ Iso(α
−1) ,

where α :M =M/Ker s→ L is the group isomorphism induced by s.
Let u = FBK(U)(e

L×K
Lϕ

) ∈ eL,ϕ(M). Then

u = FB
(
InfM×K

M×K
◦ Iso(α−1

K )
)
(eL×KLϕ

) ,

where αK = α× IdK :M ×K → L×K. Then

α−1
K (Lϕ) = {

(
α−1(l), ϕ(l)

)
| l ∈ L} = {

(
mKer s, ϕ ◦ s(m)

)
| m ∈M} .
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It follows that FB
(
Iso(α−1

K )
)
(eL×KLϕ

) = eM×K

Mθ
, where θ : M → K is defined

by θ(mKer s) = ϕ ◦ s(m). In particular eM×K

Mθ
∈ eL,ϕ(M). Now

u = FB
(
InfM×K

M×K

)
(eM×K

Mθ
) =

∑

X

eM×K
X ,

where X runs through a set of representatives of conjugacy classes of sub-
groups of M × K such that the projection of X in M × K is conjugate
to M θ. The subgroup Mϕ◦s is one of these subgroups, so eM×K

Mϕ◦s
· u is a non

zero scalar multiple of eM×K
Mϕ◦s

lying in eL,ϕ(M). Hence eM×K
Mϕ◦s

∈ eL,ϕ(M). Now
ϕ ◦ s = i ◦ ψ, where i is an inner automorphism of K. This implies readily
that the subgroups Mi◦ψ and Mψ of M ×K are conjugate. It follows that

eM×K
Mψ

= eM×K
Mi◦ψ

= eM×K
Mϕ◦s

∈ eL,ϕ(M) ,

that is eM,ψ ⊆ eL,ϕ, proving Assertion 1.

Now if f : (L, ϕ) → (M,ψ) is an isomorphism in grp⇓K , the group homomor-
phism f : M → L is an isomorphism. Then (M,ψ) and (L, ϕ) are quotient
of one another, so eM,ψ = eL,ϕ, proving Assertion 2.

3.8. Notation: We fix a set SK of representatives of isomorphism classes
of objects in the category grp⇓K.

3.9. Proposition: Let I be an ideal of FBK. Then I is equal to the sum
of the ideals eL,ϕ it contains. More precisely, if

AI = {(L, ϕ) ∈ SK | eL,ϕ ⊆ I} ,

we have I =
∑

(L,ϕ)∈AI

eL,ϕ. It follows that the ideals of FBK form a set.

Proof: Let J =
∑

(L,ϕ)∈SK
eL,ϕ⊆I

eL,ϕ. Then obviously J ⊆ I. Moreover, if (M,ψ)

is a group over K such that eM,ψ ⊆ I, then eM,ψ ⊆ J : indeed, there is
some (L, ϕ) ∈ SK isomorphic to (M,ψ), and eM,ψ = eL,ϕ by Lemma 3.7.
Conversely, let G be a finite group, and u ∈ I(G). Then u is a linear
combination

u =
∑

L

λLe
G×K
L

with coefficients λL in F, of idempotents eG×K
L , where L runs through a set S

of representatives of conjugacy classes of subgroups of G×K. Then for any
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L ∈ S, we have eG×K
L ·u = λLe

G×K
L ∈ I(G), hence eG×K

L ∈ I(G) if λL 6= 0. So
in this case, the ideal of FBK generated by eG×K

L is contained in I. This ideal
is equal to eL,p2 , by Corollary 3.5, thus eL,p2 ⊆ J by the above observation.
Hence eG×K

L ∈ eL,p2(G) ⊆ J(G). It follows that

u =
∑

L∈S
λL 6=0

λLe
G×K
L

also belongs to J(G). Hence I(G) ⊆ J(G), so I(G) = J(G) since J ⊆ I.
As G was arbitrary, it follows that I = J .

Now an ideal I of FBK is determined by the subset AI of SK , so the class
of ideals of FBK is in one to one correspondence with a set of subsets of SK .
Hence this class is a set.

3.10. Lemma: Let A be a set of ideals of FBK, and (M,ψ) be a group
over K. The following are equivalent:

1. eM,ψ ⊆
∑
I∈A

I.

2. There exists I ∈ A such that eM,ψ ⊆ I.

Proof: Clearly 2 implies 1. Now 1 is equivalent to saying that

eM×K
Mψ

∈
∑

I∈A

I(M) .

If this holds, there exists I ∈ A and u ∈ I(M) such that eM×K
Mψ

· u 6= 0.

Now eM×K
Mψ

· u ∈ I(M), and moreover there is a scalar λ ∈ F such that

eM×K
Mψ

· u = λeM×K
Mψ

6= 0. Hence λ 6= 0, and eM×K
Mψ

∈ I(M). In other words
eM,ψ ⊆ I, so 1 implies 2.

4. BK-groups

In view of Proposition 3.9, every ideal of FBK is a sum of ideals eL,ϕ, where
(L, ϕ) runs in some subset of SK . In view of Lemma 3.10, to describe the
inclusions between such sum of ideals eL,ϕ, it suffices to describe elemen-
tary inclusions of the form eM,ψ ⊆ eL,ϕ, where (L, ϕ) and (M,ψ) are groups
over K. Lemma 3.7 shows that it is the case if (M,ψ) ։ (L, ϕ). Moreover:

4.1. Theorem: Let s : (M,ψ) → (L, ϕ) be a surjective morphism in grp⇓K.
If mM,Ker s 6= 0, then eM,ψ = eL,ϕ.
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Proof: We already know from Lemma 3.7 that eM,ψ ⊆ eL,ϕ, so it suffices to
prove the reverse inclusion. We first observe that since there exists an inner
automorphism i of K such that i ◦ ψ = ϕ ◦ s, we have Ker s ≤ Ker (i ◦ ψ) =
Kerψ. So there is a group homomorphism ψ :M =M/Ker s→ K such that
ψ = ψ ◦ π, where π :M →M is the projection map.

Now let V be the set L, viewed as an (L,M)-biset for the action defined
by l ·v ·m = lvs(m), for l, v ∈ V and m ∈M (in other words V = U op, where
U is the (M,L)-biset introduced in the proof of Lemma 3.7). Then there is
an isomorphism of (L,M)-bisets

V ∼= Iso(α) ◦DefMM/Ker s ,

where α : M → L is the group isomorphism induced by s, i.e. such that
s = α ◦ π.

Let v = FBK(V )(eM×K
Mψ

) ∈ eM,ψ(L). By Lemma 2.2

FBK

(
DefMM/Ker s

)
(eM×K
Mψ

) = λmMψ,Mψ∩(Ker s×1) e
M×K

Mψ
,

where Mψ is the image of Mψ by the projection M ×K →M ×K, and λ is
some non zero rational number. Then

v = λFBK

(
Iso(α)

)
(eM×K

Mψ
) = λFB

(
Iso(αK))(e

M×K

Mψ
) ,

where αK = α× IdK :M ×K → L×K. The image of Mψ under αK is the
subgroup

αK(Mψ) =
{(
α(m), ψ(m)

)
| m ∈M

}
=

{(
l, ψ ◦ α−1(l)

)
| l ∈ L

}
.

Moreover, we have a diagram

M

ψ

��

π

!!❇
❇❇

❇❇ s

&&
M α

//

ψ

��

L

ϕ

��
K i // K

where the two triangles and the outer “square” commute. It follows that

ϕ ◦ α ◦ π = ϕ ◦ s = i ◦ ψ = i ◦ ψ ◦ π ,
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hence ϕ ◦ α = i ◦ ψ since π is surjective. Hence ψ ◦ α−1 = i−1 ◦ ϕ, and
αK(Mψ) = Li−1◦ϕ.

It follows that v = λ eL×KLi−1◦ϕ
, and moreover eL×KLi−1◦ϕ

= eL×KLϕ
since Li−1◦ϕ

and Lϕ are conjugate in L×K. Finally v = λ eL×KLϕ
, so eL×KLϕ

∈ eM,ψ(L), since
v ∈ eM,ψ(L) and λ 6= 0. In other words eL,ϕ ⊆ eM,ψ, and finally eL,ϕ = eM,ψ,
as was to be shown.

4.2. Notation: When (M,ψ) is a group over K, and Q is a normal
subgroup of M with Q ≤ Kerψ, let ψ/Q : M/Q → K be the group homo-
morphism defined by ψ = (ψ/Q) ◦ π, where π is the projection M → M/Q.

Thus for any group (M,ψ) over K, if Q is a normal subgroup of M
contained in Kerψ, we get a surjective morphism π : (M,ψ) → (M/Q,ψ/Q)
in grp⇓K , with Ker π = Q. If moreover mM,Q 6= 0, we have eM,ψ = eM/Q,ψ/Q.
This motivates the following:

4.3. Definition: Let (L, ϕ) be a group over K. We say that (L, ϕ) is
a BK-group, or a B-group relative to K, if mL,N = 0 for every non-trivial
normal subgroup N of L contained in Kerϕ.

4.4. Examples:

1. If ϕ : L→ K is injective, then (L, ϕ) is a BK-group.

2. On the other hand, if K = 1, then a group over K is a pair (L, ϕ),
where L is a finite group and ϕ : L → 1 is the unique morphism.
Moreover the category grp⇓1 clearly identifies with the usual category
of finite groups. With this identification, a B1-group is just a B-group
(cf. Section 7.2 of [1], or Chapter 5 of [2]).

4.5. Lemma: Let (L, ϕ) be a BK-group. If (M,ψ) is a group over K, and
(M,ψ) is isomorphic to (L, ϕ) in grp⇓K, then (M,ψ) is a BK-group.

Proof: Since (M,ψ) is isomorphic to (L, ϕ) in grp⇓K , there exists a group
isomorphism f : L → M and an inner automorphism i of K such that
ψ ◦ f = i ◦ ϕ. If P is a normal subgroup of M contained in Kerψ, then
f−1(P ) is a normal subgroup of L contained in Kerϕ, because

i ◦ ϕ
(
f−1(P )

)
= ψ ◦ f

(
f−1(P )

)
= ψ(P ) = 1

and i is an automorphism. Moreover mL,f−1(P ) = mM,P . If P is non trivial,
then f−1(P ) is non trivial, so mL,f−1(P ) = mM,P = 0, as was to be shown.
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4.6. Theorem: Let (L, ϕ) be a group over K.

1. If Q is a normal subgroup of L, contained in Kerϕ, and maximal such
that mL,Q 6= 0, then (L/Q,ϕ/Q) is a BK-group, quotient of (L, ϕ).

2. If (P, ψ) is a BK-group which is quotient of (L, ϕ), and if N is a normal
subgroup of L contained in Kerϕ and such that mL,N 6= 0, then (P, ψ)
is a quotient of (L/N,ϕ/N).

3. In particular, if P and Q are normal subgroups of L, contained in
Kerϕ, and maximal such that mL,P 6= 0 6= mL,Q, then (L/P, ϕ/P ) and
(L/Q,ϕ/Q) are isomorphic in grp⇓K.

Proof: 1. Let P/Q be a normal subgroup of L/Q contained in Ker (ϕ/Q) =
Kerϕ/Q. Then P is a normal subgroup of L, and Q ≤ P ≤ Kerϕ. If
P/Q 6= 1, i.e. if Q < P , then by maximality of Q and Proposition 5.3.1 of [2]

mL,P = 0 = mL,QmL/Q,P/Q .

Since mL,Q 6= 0, it follows that mL/Q,P/Q = 0, so (L/Q,ϕ/Q) is a BK-group,
quotient of (L, ϕ).

2. Since (P, ψ) is a quotient of (L, ϕ), there exists a surjective group ho-
momorphism s : L → P and an inner automorphism i of K such that
ψ ◦ s = i ◦ ϕ. It follows that M = Ker s is a normal subgroup of L con-
tained in Ker (i ◦ ϕ) = Kerϕ.

We have a diagram

L

ϕ

��

πM

""❊
❊❊

❊❊
❊ s

&&
L/M

s
//

ϕ/M

��

P

ψ

��
K

i // K

where the two triangles and the outer “square” commute, and s is an iso-
morphism, the map πM : L→ L/M being the projection. As in the proof of
Theorem 4.1, we have

ψ ◦ s ◦ πM = ψ ◦ s = i ◦ ϕ = i ◦ (ϕ/M) ◦ πM ,

so ψ ◦ s = i ◦ (ϕ/M) since πM is surjective. It follows that s is an isomor-
phism from (L/M,ϕ/M) to (P, ψ) in grp⇓K , so (L/M,ϕ/M) is a BK-group
by Lemma 4.5.
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Now by Proposition 5.3.3 of [2]

mL,N =
1

|L|

∑

Y N=YM=L

|Y |µ(Y, L)mL/M,(Y ∩N)M/M .

In particular, if mL,N 6= 0, there exists Y ≤ L such that Y N = YM = L
and mL/M,(Y ∩N)M/M 6= 0. But since N ⊆ Kerϕ, the group (Y ∩ N)M/M
is a normal subgroup of L/M contained in Ker (ϕ/M) = Kerϕ/M . Then
since mL/M,(Y ∩N)M/M 6= 0 and since (L/M,ϕ/M) is a BK-group, we have
(Y ∩N)M/M = 1, i.e. Y ∩N ⊆ Y ∩M .

Consider now the following diagram:

K

L

ϕ
11

πN // L/N

ϕ/N

99ssssssssss
θ //❴❴❴❴❴❴❴❴❴❴ L/M

ϕ/M

ee❑❑❑❑❑❑❑❑❑❑

L
πMoo

ϕ
mm

Y/(Y ∩N)

v

OO

σ // Y/(Y ∩M)

u

OO

Y
j

VV

ρN

ee❑❑❑❑❑❑❑❑❑❑ ρM

99sssssssssss
j

HH

where

� j : Y → L is the inclusion map,

� ρN : Y → Y/(Y ∩ N) and ρM : Y → Y/(Y ∩M) are the projection
maps,

� u : Y/(Y ∩M) → L/M and v : Y/(Y ∩ N) → L/N are the canon-
ical isomorphisms Y/(Y ∩M) ∼= YM/M = L/M and Y/(Y ∩ N) ∼=
Y N/N = L/N , respectively,

� σ : Y/(Y ∩N) → Y/(Y ∩M) is the projection map (as Y ∩N ⊆ Y ∩M),

� θ : L/N → L/M is defined as θ = u ◦ σ ◦ v−1. In particular θ is
surjective.

We have πN ◦ j = v ◦ ρN , since for any y ∈ Y

πN ◦ j(y) = πN(y) = yN = v
(
y(Y ∩N)

)
= v ◦ ρN(y) .

Similarly πM ◦ j = u ◦ ρM . We also have σ ◦ ρN = ρM . Then

θ ◦ πN ◦ j = θ ◦ v ◦ ρN = u ◦ σ ◦ ρN = u ◦ ρM = πM ◦ j .
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Hence

(ϕ/M) ◦ θ ◦ πN ◦ j = (ϕ/M) ◦ πM ◦ j = ϕ ◦ j = (ϕ/N) ◦ πN ◦ j .

Since πN ◦ j = v ◦ ρN : Y → L/N is surjective, it follows that

(ϕ/M) ◦ θ = (ϕ/N) .

Hence θ is a surjective morphism from (L/N,ϕ/N) to (L/M,ϕ/M) in grp⇓K .
As the latter is isomorphic to (P, ψ) in grp⇓K , it follows that (P, ψ) is a
quotient of (L/N,ϕ/N), as was to be shown.

3. If P and Q are normal subgroups of L, contained in Kerϕ, and maximal
such that mL,P 6= 0 6= mL,Q, then (L/P, ϕ/P ) and (L/Q,ϕ/Q) are both BK-
groups by Assertion 1, and they are quotient of one another by Assertion 2.
Hence they are isomorphic in grp⇓K .

4.7. Notation: Let (L, ϕ) be a group over K. If Q is a normal subgroup
of L, contained in Kerϕ, and maximal such that mL,Q 6= 0, we denote by
βK(L, ϕ) the quotient (L/Q,ϕ/Q) of (L, ϕ).

4.8. Remark: As observed in Example 4.4, when K is trivial, a BK-group
is simply a B-group. Moreover, for any finite group L, if u : L → 1 is the
unique group homomorphism, then β1(L, u) = β(L).

The following corollary shows that βK(L, ϕ) is the largest BK-group quo-
tient of (L, ϕ):

4.9. Corollary: Let (L, ϕ) be a group over K.

1. βK(L, ϕ) is well defined up to isomorphism in grp⇓K.

2. βK(L, ϕ) is a BK-group, quotient of (L, ϕ).

3. If (P, ψ) is a BK-group, quotient of (L, ϕ), then (P, ψ) is a quotient of
βK(L, ϕ).

4. eL,ϕ = eβK(L,ϕ).

Proof: 1. This follows from Assertion 3 of Theorem 4.6.

2. This follows from Assertion 1 of Theorem 4.6.

3. This follows from Assertion 2 of Theorem 4.6.

4. This follows from Theorem 4.1, by definition of βK(L, ϕ)

15



4.10. Corollary: Let s : (M,ψ) ։ (L, ϕ) be a surjective morphism in
grp⇓K. Then βK(M,ψ) ∼= βK(L, ϕ) if and only if mM,Ker s 6= 0.

Proof: Indeed βK(L, ϕ) is a quotient of (M,ψ), as it is a quotient of (L, ϕ)
and s is surjective. Hence βK(L, ϕ) is a quotient of βK(M,ψ). Set N = Ker s,
so that (L, ϕ) ∼= (M/N,ψ/N).

If mM,N 6= 0, then since βK(M,ψ) is a BK-group quotient of (M,ψ), As-
sertion 2 of Theorem 4.6 implies that βK(M,ψ) is a quotient of (M/N,ψ/N) ∼=
(L, ϕ), hence of βK(L, ϕ). It follows that βK(M,ψ) ∼= βK(L, ϕ), as they are
quotient of one another.

Conversely, suppose that βK(M,ψ) ∼= βK(L, ϕ), and let P/N be a nor-
mal subgroup ofM/N contained in Ker (ψ/N) = Kerψ/N and maximal such
that mM/N,P/N 6= 0. Then the quotient

(
(M/N)

/
(P/N), (ψ/N)

/
(P/N)

)
∼=

(M/P, ψ/P ) is isomorphic to βK(M/N,P/N) ∼= βK(L, ϕ), hence to βK(M,ψ).
Now if Q is a normal subgroup of M contained in Kerψ and maximal such
that mM,Q 6= 0, then the quotient (M/Q,ψ/Q) is isomorphic to βK(M,ψ) ∼=
(M/P, ψ/P ). In particularM/Q ∼= M/P , and then mM,P = mM,Q by Propo-
sition 5.3.4 of [2], so mM,P 6= 0. But mM,P = mM,NmM/N,P/N , so mM,N 6= 0,
as was to be shown.

5. The ideals of FBK

5.1. Notation and Definition:

1. We let BK-gr denote the subset of SK consisting of BK-groups.

2. A subset P of BK-gr is said to be closed if

∀(L, ϕ) ∈ P , ∀(M,ψ) ∈ BK-gr, (M,ψ) ։ (L, ϕ) =⇒ (M,ψ) ∈ P .

5.2. Proposition: Let I be an ideal of FBK, and

PI = {(L, ϕ) ∈ BK-gr | eL,ϕ ⊆ I} .

Then PI is a closed subset of BK-gr, and I =
∑

(L,ϕ)∈PI

eL,ϕ

Proof: The subset PI of BK-gr is closed by Lemma 3.7. The second assertion
follows from Proposition 3.9 and Assertion 4 of Corollary 4.9.
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5.3. Theorem: Let (L, ϕ) be a BK-group. Then for any finite group G

eL,ϕ(G) =
∑

X

FeG×K
X ,

where X runs through all subgroups of G×K such that (X, p2) ։ (L, ϕ).

Proof: If X ≤ G×K and (X, p2) ։ (L, ϕ), then eX,p2 ⊆ eL,ϕ by Lemma 3.7.
Equivalently eX×K

Xp2
∈ eL,ϕ(X), which is equivalent to eG×K

X ∈ eL,ϕ(G), by

Theorem 3.4. This proves that for each finite group G, the sum E(G) =∑
X

FeG×K
X , where X ≤ G×K and (X, p2) ։ (L, ϕ), is a subset of eL,ϕ(G).

Moreover the map
(
l, ϕ(l)

)
∈ Lϕ 7→ l ∈ L is clearly an isomorphism

(Lϕ, p2) → (L, ϕ) in grp⇓K . In particular (Lϕ, p2) ։ (L, ϕ), and then by

definition eL×KLϕ
∈ E(L). If we can prove that G 7→ E(G) defines an ideal

E of FBK , then we are done, because E ⊆ eL,ϕ since E(G) ⊆ eL,ϕ(G) for
any G, and eL,ϕ ⊆ E because the generator eL×KLϕ

of eL,ϕ belongs to E(L).
Since E(G) is obviously an ideal of the algebra FBK(G), for any G, all we

have to do is to show that E is a biset subfunctor of FBK , in other words that
it is preserved by the elementary biset operations of induction, restriction,
inflation, deflation, and transport by group isomorphism. For this, in what
follows, we refer to Theorem 5.2.4 of [2].

Let X ≤ G×K be such that (X, p2) ։ (L, ϕ), and suppose first that G
is a subgroup of a group H. Then

FBK

(
IndHG

)
(eG×K
X ) = FB

(
IndH×K

G×K

)
(eG×K
X ) = λ eH×K

X′

for some scalar λ, where X ′ is the group X, viewed as a subgroup of H ×K.
Clearly (X ′, p2) = (X, p2), so (X ′, p2) ։ (L, ϕ) and eH×K

X′ ∈ E(H). Hence E
is preserved by induction.

Assume now that H is a subgroup of G. Then

FBK

(
ResGH

)
(eG×K
X ) = FB

(
ResG×K

H×K

)
(eG×K
X ) =

∑

Y

eH×K
Y ,

where Y runs through a set of representatives of (H ×K)-conjugacy classes
of subgroups of H ×K which are conjugate to X in G ×K. If Y is such a
subgroup, there exists (g, k) ∈ G×K such that Y = X(g,k). Then we have a
commutative diagram

Y

p2
��

α // X

p2
��

K
β // K
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where α is (left-)conjugation by (g, k) and β is (left-)conjugation by k. Since
β is an inner automorphism of K, and since α is a group isomorphism,
it follows that α : (Y, p2) → (X, p2) is an isomorphism in grp⇓K . Hence

(Y, p2) ։ (L, ϕ), and eH×K
Y ∈ E(H). It follows that E is preserved by

restriction.
Assume next that G is a quotient of a group H by a normal subgroup N .

Then
FBK

(
InfHG

)
(eG×K
X ) = FB

(
InfH×K

G×K

)
(eG×K
X ) =

∑

Y

eH×K
Y ,

where Y runs through a set of (H×K) conjugacy classes of subgroup ofH×K
which map to a conjugate ofX under the projection π×IdK : H×K → G×K,
where π : H → G is the projection. Replacing Y by a conjugate, which does
not change eH×K

Y , we can assume that Y is mapped to X by π × IdK . This
gives a commutative diagram

Y
π×IdK // //

p2
��✺

✺✺
✺✺

✺ X

p2
��✟✟
✟✟
✟✟

K

showing that (Y, p2) ։ (X, p2). Hence (Y, p2) ։ (L, ϕ), so eH×K
Y ∈ E(H),

and E is preserved by inflation.
As for deflation, we assume now that H = G/N , where N EG. Let

π : G→ H be the projection map. Then by Lemma 2.2

FBK

(
DefGH

)
(eG×K
X ) = λmX,X∩(N×1) e

H×K

X
,

where X is the image of X under the projection π× IdK : G×K → H ×K,
and λ is some non zero scalar. As above, we get a commutative diagram

X s // //

p2
��✺

✺✺
✺✺
✺✺

X

p2
��✠✠
✠✠
✠✠
✠

K

where s is the restriction of π × IdK to X. Then s : (X, p2) → (X, p2) is
a surjective morphism in grp⇓K . Setting P = Ker s = X ∩ (N × 1), we

get an isomorphism (X, p2) ∼= (X/P, p2/P ) in grp⇓K . Moreover (L, ϕ) is
a BK-group quotient of (X, p2) by assumption. Then there are two cases:
either mX,P = 0, and then FBK

(
DefGH

)
(eG×K
X ) = 0 ∈ E(H). Or mX,P 6= 0,

and then (L, ϕ) is a quotient of (X/P, p2/P ) ∼= (X, p2), by Assertion 2 of
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Theorem 4.6. It follows that eH×K

X
∈ E(H), so FBK

(
DefGH

)
(eG×K
X ) ∈ E(H)

as well. This shows that E is preserved by deflation.
Finally, it is clear that E is preserved by group isomorphisms. This

completes the proof of Theorem 5.3.

5.4. Remark: Theorem 5.3 implies that the set of idempotents eG×K
X , where

X runs through a set of representatives of conjugacy classes of subgroups of
G×K such that (X, p2) ։ (L, ϕ), is an F-basis of eL,ϕ(G).

5.5. Corollary: Let (L, ϕ) be a BK-group, and (M,ψ) be a group over K.
Then eM,ψ ⊆ eL,ϕ if and only if (M,ψ) ։ (L, ϕ).

Proof: Indeed eM,ψ ⊆ eL,ϕ if and only if eM×K
Mψ

∈ eL,ϕ(M), i.e. if and only if

(Mψ, p2) ։ (L, ϕ). But we have already noticed at the beginning of the proof
of Theorem 5.3 that the map

(
m,ψ(m)

)
∈Mψ 7→ m ∈M is an isomorphism

from (Mψ, p2) to (M,ψ) in grp⇓K .

5.6. Remark: It was shown in Section 5.2.2 of [3] that the category
FBK-Mod splits as a product

FBK-Mod ∼=
∏

H

= eKHFBK-Mod ,

of categories of modules over smaller Green biset functors eKHFBK , where
H runs through a set of representatives of conjugacy classes of subgroups
of K. The functor eKHFBK is the direct summand of FBK obtained from
the idempotent eKH of FBK(1) ∼= FB(K). Its value at a group G is the set
of F-linear combinations of idempotents eG×K

L associated to subgroups L for
which p2(L) is conjugate to H in K. This condition is equivalent to the
existence of a surjective morphism (L, p2) ։ (H, jH), where jH : H →֒ K
is the inclusion morphism. Since (H, jH) is a BK-group by Example 4.4, it
follows that eKHFBK = eH,jH .

5.7. Theorem: Let IFBK be the lattice of ideals of FBK, ordered by inclu-
sion of ideals, and ClBK-gr be the lattice of closed subsets of BK-gr, ordered
by inclusion of subsets. Then the map

I ∈ IFBK 7→ PI = {(L, ϕ) ∈ BK-gr | eL,ϕ ⊆ I}

is an isomorphism of lattices from IFBK to ClBK-gr. The inverse isomorphism
is the map

P ∈ ClBK-gr 7→ IP =
∑

(L,ϕ)∈P

eL,ϕ .

In particular IFBK is completely distributive.
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Proof: By Proposition 5.2, if I is an ideal of FBK , then PI is a closed subset
of BK-gr, so the map α : I 7→ PI from IFBK to ClBK-gr is well defined. It is
moreover clearly order preserving. The map β : P 7→ PI from ClBK-gr is also
well defined and order preserving. By Proposition 5.2 again, the composition
β ◦ α is the identity map of IFBK . Conversely, if P ∈ ClBK-gr, then

α ◦ β =
{
(M,ψ) ∈ BK-gr | eM,ψ ⊆

∑

(L,ϕ)∈P

eL,ϕ

}
.

Then clearly P ⊆ α ◦ β(P). Conversely, if eM,ψ ⊆
∑

(L,ϕ)∈P

eL,ϕ, then by

Lemma 3.10 there exists (L, ϕ) ∈ P such that eM,ψ ⊆ eL,ϕ. Then (L, ϕ)
is a BK-group, and by Corollary 5.5, this implies (M,ψ) ։ (L, ϕ). Hence
(M,ψ) ∈ P , since P is closed. Thus α ◦ β(P) ⊆ P , proving that α ◦ β is the
identity map of ClBK-gr. The last assertion follows from the fact that ClBK-gr
is clearly completely distributive, since its join and meet operation are union
and intersection of closed subsets, respectively, and since arbitrary unions
(resp. intersections) distribute over arbitrary intersections (resp. unions).

6. Some simple FBK-modules

6.1. Theorem:

1. Let (L, ϕ) be a BK-group. Then eL,ϕ admits a unique maximal proper
subideal e0L,ϕ, defined by

e
0
L,ϕ =

∑

(M,ψ)∈BK-gr
(M,ψ)։(L,ϕ)
(M,ψ)≇(L,ϕ)

eM,ψ .

2. The quotient SL,ϕ = eL,ϕ/e
0
L,ϕ is a simple FBK-module.

3. For any finite group G, let AG be a set of representatives of conjugacy
classes of subgroups X of G ×K such that βK(X, p2) ∼= (L, ϕ). Then
the set {eG×K

X | X ∈ AG} maps to an F-basis of SL,ϕ(G) under the
projection map eL,ϕ(G) → SL,ϕ(G).

4. If I ′ ⊂ I are ideals of FBK such that I/I ′ is a simple FBK-module,
then there exists a BK-group (L, ϕ) such that I/I ′ ∼= SL,ϕ.
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Proof: 1. Without loss of generality, we can assume that (L, ϕ) ∈ BK-gr.
Using Theorem 5.7, saying that eL,ϕ admits a unique maximal proper subideal
is equivalent to saying that the closed subset PeL,ϕ

contains a unique maximal
proper closed subset. But

PeL,ϕ
= {(M,ψ) ∈ BK-gr | (M,ψ) ։ (L, ϕ)} ,

so P0 = PeL,ϕ
−{(L, ϕ)} is the unique maximal proper closed subset of PeL,ϕ

.
It follows that IP0 = e

0
L,ϕ is the unique maximal proper subideal of eL,ϕ.

2. This is clear, from 1.

3. We know from Remark 5.4 that eL,ϕ(G) has a basis consisting of the idem-
potents eG×K

X , for X in a set of representatives of conjugacy classes of sub-
groups of G×K such that (X, p2) ։ (L, ϕ), or equivalently, by Corollary 4.9,
such that βK(X, p2) ։ (L, ϕ). Now saying that eG×K

X ∈ e
0
L,ϕ(G) amounts to

saying that eX×K
Xp2

∈ e
0
L,ϕ(X), by Theorem 3.4, i.e. that eX,p2 ⊆ eM,ψ for some

(M,ψ) ∈ BK-gr such that (M,ψ) ։ (L, ϕ), but (M,ψ) ≇ (L, ϕ). This in
turn is equivalent to saying that βK(X, p2) ։ (L, ϕ), but βK(X, p2) ≇ (L, ϕ).
Hence SL,ϕ(G) has a basis consisting of the idempotents eG×K

X , for X in a
set of representatives of conjugacy classes of subgroups of G ×K such that
βK(X, p2) ∼= (L, ϕ). Assertion 2 follows.

4. Let I ′ ⊂ I be ideals of FBK such that S = I/I ′ is a simple FBK-module,
or equivalently, such that I ′ is a maximal subideal of I. Then there exists
(L, ϕ) ∈ BK-gr such that eL,ϕ ⊆ I but eL,ϕ * I ′. Hence eL,ϕ + I ′ = I, and
S = I/I ′ ∼= eL,ϕ/(eL,ϕ ∩ I ′). Then eL,ϕ ∩ I ′ is a proper subideal of eL,ϕ, so
eL,ϕ ∩ I ′ ⊆ e

0
L,ϕ, and then S maps surjectively onto eL,ϕ/e

0
L,ϕ = SL,ϕ. Since

S and SL,ϕ both are simple FBK-modules, the surjection S → SL,ϕ is an
isomorphism.

6.2. Remark: By Corollary 4.10, the condition βK(X, p2) ∼= (L, ϕ) in
Assertion 3 is equivalent to the existence of a surjective morphism s from
(X, p2) to (L, ϕ) such that mX,Ker s 6= 0. By Theorem 5.4.11 of [2], or by
Corollary 4.10 applied to the case K = 1, this is equivalent to the condition
β(X) ∼= β(L).

6.3. Corollary: Let (L, ϕ) and (M,ψ) be BK-groups. Then the simple
FBK-modules SL,ϕ and SM,ψ are isomorphic if and only if (L, ϕ) and (M,ψ)
are isomorphic in grp⇓K.

Proof: Clearly if (L, ϕ) ∼= (M,ψ) in grp⇓K , then SL,ϕ
∼= SM,ψ. Conversely, if

θ : SL,ϕ → SM,ψ is an isomorphism of FBK-modules, then for any finite
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group G, we get an isomorphism θG : SL,ϕ(G) → SM,ψ(G) of FBK(G)-
modules. Choose G such that SL,ϕ(G) 6= 0 (e.g. G = L), and a sub-
group X of G × K such that βK(X, p2) ∼= (L, ϕ). Then the image u of
a = eG×K

X ∈ FBK(G) in SL,ϕ(G) is non zero, and moreover a · u = u. It
follows that θG(a · u) = a · θG(u) = θG(u) is also non zero in SM,ψ(G). So
there is a subgroup Y ≤ G×K with βK(Y, p2) ∼= (M,ψ), such that the image
v of eG×K

Y in SM,ψ(G) satisfies a ·v 6= 0. This forces X and Y to be conjugate
in G ×K, so (L, ϕ) ∼= βK(X, p2) ∼= βK(Y, p2) ∼= (M,ψ) in grp⇓K , as was to
be shown.

Recall that a minimal group for a (non zero) biset functor F is a finite
group G of minimal order such that F (G) 6= {0}.

6.4. Lemma: Let (L, ϕ) be a group over K.

1. If N EL, and N ∩Kerϕ = 1, then eL,ϕ(L/N) 6= {0}.

2. If moreover (L, ϕ) is a BK-group, then SL,ϕ(L/N) 6= {0}.

Proof: Indeed the map

θ : l ∈ L 7→
(
lN, ϕ(l)

)
∈ (L/N)×K

is injective. Let L ≤ (L/N) × K denote the image of θ. Then we have a
commutative diagram

L
p1

}}④④
④④
④④
④④
④

p2

��

t // // L

ϕ

��
L/N K i // K ,

where t : L→ L is the inverse of the isomorphism L→ L induced by θ, and
i is the identity map of K. Hence (L, p2) ∼= (L, ϕ) in grp⇓K , and eL,ϕ = eL,p2 .

In particular e
(L/N)×K

Lp2
∈ eL,ϕ(L/N) by Theorem 3.4, hence eL,ϕ(L/N) 6= {0}.

This proves 1.
If moreover (L, ϕ) is a BK-group, then βK(L, p2) ∼= (L, ϕ). It follows

from Theorem 6.1 that e
(L/N)×K

L
∈ eL,ϕ(L/N) maps to an element of a basis

of SL,ϕ(L/N), so SL,ϕ(L/N) 6= {0}, proving 2.

6.5. Theorem: Let (L, ϕ) be a BK-group, and G be a finite group. The
following are equivalent:

1. The group G is a minimal group for SL,ϕ.

2. The group G is isomorphic to L/N , where N is a normal subgroup of L
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of maximal order such that N ∩Kerϕ = 1.

Moreover in this case, the images in SL,ϕ(G) of the idempotents eG×K
X , where

X runs through a set of representatives of conjugacy classes of subgroups of
G×K such that (X, p2) ∼= (L, ϕ), form an F-basis of SL,ϕ(G).

Proof: By Theorem 6.1, saying that SL,ϕ(G) 6= {0} for a finite group G
amounts to saying that there exists a subgroup X of G × K such that
βK(X, p2) ∼= (L, ϕ) in grp⇓K . Equivalently, there is a commutative diagram

(6.6)

X
p1

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

p2

��

s // // L

ϕ

��
G K i // K ,

where

� s is surjective and mX,Ker s 6=0,

� i is an inner automorphism of K,

� the map (p1, p2) : X → (G×K) is injective.

Now we proceed with the proof of Theorem 6.5.
1 ⇒ 2 If G is minimal for SL,ϕ, then SL,ϕ(G) 6= {0}, so we have a di-
agram (6.6). Let H = p1(G). Replacing G by H in this diagram gives
a diagram for the group H with the same properties, so SL,ϕ(H) 6= 0.
Hence H = G by minimality of G. In other words p1 is surjective, so
G ∼= X/Ker p1. Let N = s(Ker p1). If u ∈ N ∩ Kerϕ, then u = s(x)
for some x ∈ X, and then ϕ ◦ s(x) = i ◦ p2(x) = 1, so p2(x) = 1. Thus x = 1
since Ker p1 ∩ Ker p2 = 1. Moreover N is normal in L, since s is surjective.
Lemma 6.4 shows that SL,ϕ(L/N) 6= {0}, and by minimality of G, the sur-
jection s : G ∼= X/Ker p1 ։ L/N induced by s must be an isomorphism.
Lemma 6.4 also implies that N is a normal subgroup of maximal order of L
such that N ∩Kerϕ. Hence 2 holds.

Observe that it also follows that Ker s ≤ Ker p1, so Ker s = 1 since
Ker s ≤ Ker p2 as ϕ ◦ s = i ◦ p2, and Ker p1 ∩ Ker p2 = 1. So s is an
isomorphism X → L. This proves the last assertion of the theorem.

2 ⇒ 1 Suppose that 2 holds. Then SL,ϕ(G) 6= 0, by the above claim. By
the first part of the proof, if H is a minimal group for SL,ϕ, then H ∼= L/M ,
where M is a normal subgroup of maximal order such that M ∩ Kerϕ = 1.
Then |M | = |N |, so |G| = |H|, and SL,ϕ(G

′) = {0} for any group G′ of order
smaller than |G| = |H|. Hence G is minimal for SL,ϕ, and 1 holds.
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6.7. Corollary: Let (L, ϕ) be a group over K. The following conditions
are equivalent:

1. ϕ : L→ K is injective.

2. (L, ϕ) is a BK-group and SL,ϕ(1) 6= {0}.

Proof: 1 ⇒ 2 If ϕ is injective, then (L, ϕ) is a BK-group (cf. Example 4.4).
Moreover L ∩Kerϕ = 1, so SL,ϕ(L/L) = SL,ϕ(1) 6= {0}.

2 ⇒ 1 If (L, ϕ) is a BK-group and SL,ϕ(1) 6= {0}, then 1 is a minimal
group for SL,ϕ. So there is a normal subgroup N of L of maximal order such
that N ∩ Kerϕ = 1, such that moreover L/N ∼= 1. Hence N = L, and
Kerϕ = N ∩Kerϕ = 1.

6.8. Example: Let L = C2 × (C3 ⋊ C4) be a direct product of a group
of order 2, generated by the element a, and a semidirect product of a group
of order 3, generated by b, and a cyclic group of order 4, generated by c
(so cbc−1 = b−1). Let P be the subgroup of L generated by a and b. Then
P is cyclic of order 6, and the factor group K = L/P is cyclic of order 4,
generated by the class cP . Let ϕ : L → K be the projection map. One can
check that (L, ϕ) is a BK-group, i.e. that mL,Q = 0 when Q is any of the non
trivial subgroups of P (these subgroups are all normal in L, as P is cyclic).

Then the subgroups M = 〈ac2〉 and N = 〈c2〉 both are normal (central,
in fact) subgroups of L of maximal order (equal to 2) intersecting trivially
P = Kerϕ. So the groups G = L/M andH = L/N are both minimal groups1

for the simple FBK-module SL,ϕ, but they are not isomorphic, as G ∼= C3⋊C4

but H ∼= C2 × S3, where S3 is the symmetric group of degree 3. This gives
yet another counterexample to a conjecture I made in 2010, saying that the
minimal groups for a Green biset functor should form a single isomorphism
class of groups. The first counterexample to this conjecture was found by
Nadia Romero in 2013 (cf. [6]). Another counterexample was found recently
by Ibrahima Tounkara (cf. [7]).

7. Restriction to p-groups

In this section, we fix a prime number p, and restrict the functor FBK to
finite p-groups. We obtain a Green p-biset functor FB(p)

K . We do not assume
that K is itself a p-group.

1One can show moreover that SL,ϕ(G) and SL,ϕ(H) are both one dimensional.
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In order to study the ideals of FB(p)
K , it is natural to try to determine

those groups (L, ϕ) over K for which the restriction of eL,ϕ to p-groups does
not vanish. This motivates the following definition:

7.1. Definition: Let K be a finite group. Then a group (L, ϕ) over K is
called p-persistent if there is a finite p-group P such that eL,ϕ(P ) 6= {0}.

We denote by grp
(p)
⇓K the full subcategory of grp⇓K consisting of p-

persistent groups over K.

7.2. Remarks:

1. If X is a subgroup of P × K, where P is a p-group, then (X, p2) is
p-persistent: indeed eP×K

X ∈ eX,p2(P ) by Corollary 3.5.

2. Any quotient of a p-persistent group over K is p-persistent: indeed is
s : (M,ψ) ։ (L, ϕ) is a surjective morphism in grp⇓K , then eM,ψ ⊆ eL,ϕ

by Lemma 3.7. It follows that eL,ϕ(P ) 6= {0} if P is a p-group such that
eM,ψ(P ) 6= {0}. In particular, if (L, ϕ) is p-persistent, then βK(L, ϕ) is
a p-persistent BK-group.

7.3. Notation: When L is a finite group, we denote by Op(L) the subgroup
of L generated by p′-elements, and by L[p] the quotient L/Op(L).

Recall that Op(L) is the smallest normal subgroup N of L such that
L/N is a p-group. Also recall that if s : M → L is a surjective group
homomorphism, then s

(
Op(M)

)
= Op(L). Indeed N = s

(
Op(M)

)
EL, and

s induces a surjection M [p] → L/N . So L/N is a p-group, thus N ≥ Op(L).
But N is generated by p′-elements, as Op(M) is, so N ≤ Op(L).

7.4. Proposition: Let (L, ϕ) be a group over K. The following are
equivalent:

1. (L, ϕ) is p-persistent.

2. eL,ϕ

(
L[p]

)
6= {0}.

3. mL,Op(L)∩Kerϕ 6= 0.

Proof: Indeed if 3 holds, then setting N = Op(L) ∩ Kerϕ, we have eL,ϕ =
eL/N,ϕ/N by Theorem 4.1. Moreover Op(L/N) = Op(L)/N , and Ker (ϕ/N) =
Kerϕ/N . Thus Op(L/N) ∩Ker(ϕ/N) = 1, so eL/N,ϕ/N

(
(L/N)/Op(L/N)

)
is

non zero by Lemma 6.4. But

eL/N,ϕ/N

(
(L/N)/Op(L/N)

)
∼= eL/N,ϕ/N

(
L/Op(L)

)
= eL,ϕ(L

[p]) ,
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so 2 holds. Clearly 2 implies 1, as L[p] is a p-group. Now if 1 holds, let P
be a p-group such that eL,ϕ(P ) 6= {0}. Let N be a normal subgroup of L
contained in Kerϕ, and maximal such thatmL,N 6= 0. Then setting L = L/N
and ϕ = ϕ/N , we have βK(L, ϕ) ∼= (L, ϕ), and eL,ϕ = eL,ϕ by Theorem 4.1.

Moreover as (L, ϕ) is a BK-group, by Theorem 5.3, there exists a subgroup
X of P ×K, and a commutative diagram

X
p1

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

p2

��

s // // L

ϕ

��
P K i // K ,

where s is surjective and i is an inner automorphism of K. Then N =
s(Ker p1) is a normal subgroup of L, as s is surjective. Moreover if l ∈
N ∩ Kerϕ, then l = s(x) for some x ∈ Ker p1, so p1(x) = 1 and i ◦ p2(x) =
ϕ ◦ s(x) = 1, so p2(x) = 1. Hence x = 1, and l = 1, so N ∩ Kerϕ = 1. Now
s induces a surjection X/Ker p1 ∼= p1(X) ։ L/N , so L/N is a p-group, thus
N ≥ Op(L). It follows that Op(L) ∩Kerϕ = 1. Now if π : L → L = L/N is
the projection map, we have ϕ ◦ π = ϕ, so

π
(
Op(L) ∩Kerϕ

)
≤ Op(L) ∩Kerϕ = 1 ,

that is Op(L) ∩ Kerϕ ≤ N = Ker π. Then if M = Op(L) ∩ Kerϕ, we have
mL,N = mL,MmL/M,N/M 6= 0, hence mL,M 6= 0, so 3 holds.

7.5. Corollary: Let (L, ϕ) be a p-persistent BK-group. Then

Op(L) ∩Kerϕ = 1 .

Proof: Indeed mL,Op(L)∩Kerϕ 6= 0, and (L, ϕ) is a BK-group.

7.6. Notation: When (L, ϕ) is a p-persistent group over K, we denote by

L
(p)
ϕ the subgroup of L[p] ×K defined by

L(p)
ϕ =

{(
lOp(L), ϕ(l)

)
| l ∈ L

}
.

The following theorem is analogous to Theorem 3.4:
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7.7. Theorem: Let I be an ideal of the Green biset functor FB(p)
K . If G is

a finite p-group and L is a subgroup of G ×K, the following conditions are
equivalent:

1. The idempotent eG×K
L belongs to I(G).

2. The idempotent eL
[p]×K

L
(p)
p2

belongs to I(L[p]).

Proof: The proof is similar to the proof of Theorem 3.4, so we only sketch it.
If L ≤ G × K, denote by L̂ the image of L in the group L[p] × G by the
map l 7→

(
lOp(L), p1(l)

)
. Recall that Ker p1 ≥ Op(L), since G is a p-

group. Furthermore p1(L̂) = L[p], k1(L̂) = Ker p1/O
p(L), p2(L̂) = p1(L),

and k2(L̂) = p1
(
Op(L)

)
= 1. The (L[p], G)-biset U = (L[p] ×G)/L̂ factors as

U ∼= InfL
[p]

L[p]/k1(L̂)
◦ Iso(θ−1) ◦ ResGp1(L) ,

where θ : L[p]/k1(L̂) → p1(G) is the isomorphism induced by the map
lOp(L) 7→ p1(l) from L[p] to G.

If eG×K
L belongs to I(G), then FB(p)

K (U)(eG×K
L ) belongs to I(L[p]). As in

the proof of Theorem 3.4, one can check that the product eL
[p]×K

L
(p)
p2

·FB(p)
K (eG×K

L )

is non zero. As it is a scalar multiple of eL
[p]×K

L
(p)
p2

, we get that eL
[p]×K

L
(p)
p2

∈ I(L[p]),

thus 1 implies 2.

Conversely, assume that eL
[p]×K

L
(p)
p2

∈ I(L[p]). Then, as in the proof of The-

orem 3.4 again, the opposite biset U op factors as

U op ∼= IndGp1(L) ◦ Iso(θ) ◦Def
L[p]

L[p]/k1(L̂)
,

and the element FB(p)
K (U op)

(
eL

[p]×K

L
(p)
p2

)
belongs to I(G). One can can check

moreover that there is a non zero scalar λ such that

FB(p)
K (U op)

(
eL

[p]×K

L
(p)
p2

)
= λm

L
(p)
p2
,L

(p)
p2

∩(N×1)
eG×K
L ,

where N = k1(L̂) = Ker p1/O
p(L) ≤ L[p].

But if
(
lOp(L), p2(l)

)
∈ L

(p)
p2 ∩ (N × 1), then l ∈ Ker p2 ∩ Ker p1 = 1.

It follows that m
L
(p)
p2
,L

(p)
p2

∩(N×1)
= m

L
(p)
p2
,1

= 1, and eG×K
L ∈ I(G), as λ 6= 0.

Hence 2 implies 1.
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7.8. Corollary: Let G be a finite p-group, and L be a subgroup of G×K.
Then the ideal of FB(p)

K generated by eG×K
L is equal to the ideal of FB(p)

K

generated by eL
[p]×K

L
(p)
p2

Proof: The proof is the same as the proof of Corollary 3.5.

7.9. Notation: Let (L, ϕ) be a p-persistent group over K. We denote by

e
(p)
L,ϕ the ideal of FB(p)

K generated by eL
[p]×K

L
(p)
ϕ

∈ FB(p)
K (L[p]).

7.10. Theorem: Let s : (M,ψ) ։ (L, ϕ) be a surjective morphism in
grp⇓K, and assume that (M,ψ) is p-persistent. Then:

1. (L, ϕ) is p-persistent, and e
(p)
M,ψ ⊆ e

(p)
L,ϕ.

2. If mM,Ker s 6= 0, then e
(p)
M,ψ = e

(p)
L,ϕ.

Proof: 1. We already observed in Remarks 7.2 that any quotient of a p-
persistent group over K is itself p-persistent, hence (L, ϕ) is p-persistent.
Let i be an inner automorphism of K such that i ◦ψ = ϕ ◦ s. The surjection
s :M → L induces a surjection s[p] :M [p] → L[p], hence a surjection

s[p] × IdK :M [p] ×K → L[p] ×K .

Let u =
(
mOp(M), ψ(m)

)
be the image of m ∈M in M

(p)
ψ . Then

(s[p] × IdK)(u) =
(
s(m)Op(L), ψ(m)

)
=

(
s(m)Op(L), i−1 ◦ ϕ

(
s(m)

))
,

which shows that s[p] × IdK maps M
(p)
ψ to a conjugate of L

(p)
ϕ in L[p] × K.

Then the idempotent eM
[p]×K

M
(p)
ψ

appears in the decomposition of

FB(p)
K

(
InfM

[p]

M [p]/Ker s[p] ◦ Iso(α
−1)

)
(eL

[p]×K

L
(p)
ϕ

) ,

where α : M [p]/Ker s[p] → L[p] is the canonical isomorphism. It follows that

eM
[p]×K

M
(p)
ψ

∈ e
(p)
L,ϕ(M

[p]), hence e
(p)
M,ψ ⊆ e

(p)
L,ϕ.

2. Consider now v = FB(p)
K

(
Iso(α)◦DefM

[p]

M [p]/Ker s[p]

)
(eM

[p]×K

M
(p)
ψ

) ∈ e
(p)
M,ψ(L

[p]). By

Lemma 2.2, there is a non zero scalar λ such that

(7.11) v = λm
M

(p)
ψ ,M

(p)
ψ ∩(Ker s[p]×1)

eL
[p]×K

L
(p)
ϕ

.
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Now the projection m ∈M 7→
(
mOp(M), ψ(m)

)
∈M

(p)
ψ induces an isomor-

phism M
(p)
ψ

∼= M/
(
Op(M) ∩ Kerψ

)
. As Ker s[p] = Ker sOp(L)/Op(L), the

subgroupM
(p)
ψ ∩(Ker s[p]×1) maps to (Ker sOp(M)∩Kerψ)/

(
Op(M)∩Kerψ

)

under this isomorphism.
Moreover Ker sOp(M)∩Kerψ = Ker s

(
Op(M)∩Kerψ

)
as Ker s ≤ Kerψ.

It follows that

m
M

(p)
ψ ,M

(p)
ψ ∩(Ker s[p]×1)

= mM/(Op(M)∩Kerψ),Ker s(Op(M)∩Kerψ)/(Op(M)∩Kerψ) .

Multiplying by mM,Op(M)∩Kerψ, which is non zero by Proposition 7.4, since
(M,ψ) is p-persistent, this gives

mM,Op(M)∩KerψmM
(p)
ψ ,M

(p)
ψ ∩(Ker s[p]×1)

= mM,Ker s(Op(M)∩Kerψ)

= mM,Ker smM/Ker s,Ker s(Op(M)∩Kerψ)/Ker s

= mM,Ker smL,Op(L)∩Kerϕ ,

as the canonical isomorphismM/Ker s→ Lmaps Ker s(Op(M)∩Kerψ)/Ker s
to Op(L)∩Kerϕ. Since mL,Op(L)∩Kerϕ 6= 0 as (L, ϕ) is p-persistent, and since
mM,Ker s 6= 0 by assumption, it follows that m

M
(p)
ψ ,M

(p)
ψ ∩(Ker s[p]×1)

6= 0, hence

eL
[p]×K

L
(p)
ϕ

is a non zero scalar multiple of v, by 7.11. It follows that eL
[p]×K

L
(p)
ϕ

belongs to e
(p)
M,ψ(L

[p]), so e
(p)
L,ϕ ⊆ e

(p)
M,ψ, and e

(p)
L,ϕ = e

(p)
M,ψ, as was to be shown.

7.12. Corollary: Let (L, ϕ) be a p-persistent group over K. Then the

restriction of eL,ϕ to finite p-groups is equal to e
(p)
L,ϕ.

Proof: Since eL,ϕ = eβK(L,ϕ) by Corollary 4.9, and since e
(p)
L,ϕ = e

(p)
βK(L,ϕ) by

Theorem 7.10, we may assume that (L, ϕ) is a BK-group. By Corollary 7.5,

we have Op(L)∩Kerϕ = 1. Thus the projection L→ L
(p)
ϕ is an isomorphism,

and it induces an isomorphism (L, ϕ) ∼= (L
(p)
ϕ , p2). Hence e

L(p]×K

L
(p)
ϕ

∈ eL,ϕ(L
[p]),

and e
(p)
L,ϕ is contained in the restriction of eL,ϕ to p-groups.

Conversely, if G is a p-group and eG×K
X ∈ eL,ϕ(G), then (X, p2) ։ (L, ϕ)

by Theorem 5.3. Then e
(p)
X,p2

⊆ e
(p)
L,ϕ, hence e

G×K
X ∈ e

(p)
L,ϕ by Corollary 7.8.

Hence the restriction of eL,ϕ is contained in e
(p)
L,ϕ, which completes the proof.

7.13. Corollary: Let (L, ϕ) be a p-persistent BK-group, and (M,ψ) be a

p-persistent group over K. Then e
(p)
M,ψ ⊆ e

(p)
L,ϕ if and only if (M,ψ) ։ (L, ϕ).
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Proof: Indeed if (M,ψ) ։ (L, ϕ), then e
(p)
M,ψ ⊆ e

(p)
L,ϕ by Theorem 7.10. Con-

versely, if e
(p)
M,ψ ⊆ e

(p)
L,ϕ, showing that (M,ψ) ։ (L, ϕ) amounts to showing

that βK(M,ψ) ։ (L, ϕ), because (L, ϕ) is a BK-group. Now eM,ψ = eβK(M,ψ),

hence e
(p)
M,ψ = e

(p)
βK(M,ψ) by Corollary 7.12, and we can assume that (M,ψ) is

also a BK-group.

If e
(p)
M,ψ ⊆ e

(p)
L,ϕ, then eM

[p]×K

M
(p)
ψ

∈ e
(p)
L,ϕ(M

[p]), and e
(p)
L,ϕ(M

[p]) = eL,ϕ(M
[p])

by Corollary 7.12. Hence (M
(p)
ψ , p2) ։ (L, ϕ) by Theorem 5.3. But the

projection M → M
(p)
ψ is a group isomorphism, since (M,ψ) is a BK-group.

It is in fact an isomorphism from (M,ψ) to (M
(p)
ψ , p2) in grp⇓K . It follows

that (M,ψ) ։ (L, ϕ).

The following is analogous to Lemma 3.10, and the proof is the same:

7.14. Lemma: Let A be a set of ideals of FB(p)
K , and (M,ψ) be a p-

persistent group over K. The following are equivalent:

1. e
(p)
M,ψ ⊆

∑
I∈A

I.

2. There exists I ∈ A such that e
(p)
M,ψ ⊆ I.

Proof: Clearly 2 implies 1. Now 1 is equivalent to saying that

eM
[p]×K

M
(p)
ψ

∈
∑

I∈A

I(M [p]) .

If this holds, there exists I ∈ A and u ∈ I(M [p]) such that eM
[p]×K

M
(p)
ψ

· u 6= 0.

Now eM
[p]×K

M
(p)
ψ

· u ∈ I(M [p]), and moreover there is a scalar λ ∈ F such that

eM
[p]×K

M
(p)
ψ

· u = λeM
[p]×K

M
(p)
ψ

6= 0. Hence λ 6= 0, and eM
[p]×K

M
(p)
ψ

∈ I(M [p]). In other

words e
(p)
M,ψ ⊆ I, so 1 implies 2.

7.15. Notation: Let B
(p)
K -gr denote the subset of BK-gr consisting of

p-persistent BK-groups.

As before, a subset P of B
(p)
K -gr is called closed if

∀(L, ϕ) ∈ P , ∀(M,ψ) ∈ B
(p)
K -gr, (M,ψ) ։ (L, ϕ) =⇒ (M,ψ) ∈ P .
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7.16. Theorem: Let I
FB(p)

K
be the lattice of ideals of FB(p)

K , ordered by

inclusion of ideals, and Cl
B
(p)
K -gr be the lattice of closed subsets of B

(p)
K -gr,

ordered by inclusion of subsets. Then the map

I ∈ I
FB(p)

K
7→ PI = {(L, ϕ) ∈ B

(p)
K -gr | e

(p)
L,ϕ ⊆ I}

is an isomorphism of lattices from I
FB(p)

K
to Cl

B
(p)
K -gr. The inverse isomor-

phism is the map

P ∈ Cl
B
(p)
K -gr 7→ IP =

∑

(L,ϕ)∈P

e
(p)
L,ϕ .

In particular I
FB(p)

K
is completely distributive.

Proof: First the map I ∈ I
FB(p)

K
7→ PI ∈ Cl

B
(p)
K -gr is well defined: indeed

PI ∈ Cl
B
(p)
K -gr by Theorem 7.10. This map is obviously order preserving.

Similarly, the map P ∈ Cl
B
(p)
K -gr 7→ IP =

∑
(L,ϕ)∈P

e
(p)
L,ϕ is also well defined and

order preserving.
Hence all we need to show is that if I is an ideal of FB(p)

K , then

(7.17) I =
∑

(L,ϕ)∈PI

e
(p)
L,ϕ ,

and that if P is a closed subset of B
(p)
K -gr, and (M,ψ) ∈ B

(p)
K -gr, then

(7.18) e
(p)
M,ψ ⊆

∑

(L,ϕ)∈P

e
(p)
L,ϕ ⇔ (M,ψ) ∈ P .

For 7.17, let J =
∑

(L,ϕ)∈PI

e
(p)
L,ϕ. Then J ⊆ I by definition of PI . Conversely,

let G be a finite p-group, and u =
∑
X∈E

λXe
G×K
X be an element of I(G), where

λX ∈ F, and E is a set of representatives of conjugacy classes of subgroups
of G ×K. Then eG×K

X · u = λXe
G×K
X ∈ I(G), for any X ∈ E. So if λX 6= 0,

then eG×K
X ∈ I(G). Equivalently, by Theorem 7.7, eX

[p]×K

X
(p)
p2

∈ I(X [p]), that

is e
(p)
X,p2

⊆ I. Let (L, ϕ) be the element of B
(p)
K -gr isomorphic to βK(X, p2).

Then e
(p)
X,p2

= e
(p)
L,ϕ by Theorem 7.10, and (L, ϕ) ∈ PI .

Moreover eX
[p]×K

X
(p)
p2

∈ e
(p)
L,ϕ(X

[p]), or equivalently eG×K
X ∈ e

(p)
L,ϕ(G) ⊆ J(G).

As this holds for any X ∈ E such that λX 6= 0, we have also u ∈ J(G), so
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J(G) = I(G), as u was arbitrary in I(G), and J = I, as G was an arbitrary
finite p-group. This completes the proof of 7.17.

As for 7.18, clearly if (M,ψ) ∈ P , then e
(p)
M,ψ ⊆

∑
(L,ϕ)∈P

e
(p)
L,ϕ. Conversely if

e
(p)
M,ψ ⊆

∑
(L,ϕ)∈P

e
(p)
L,ϕ, then by Lemma 7.14, there exists (L, ϕ) ∈ P such that

e
(p)
M,ψ ⊆ e

(p)
L,ϕ. Hence (M,ψ) ։ (L, ϕ), by Corollary 7.13. Since (L, ϕ) ∈ P

and P is closed, we get that (M,ψ) ∈ P , as was to be shown.

7.19. Theorem: Let (L, ϕ) be a p-persistent BK-group. Let [sK ] be a
set of representatives of conjugacy classes of subgroups of K. Let H be the
unique element of [sK ] conjugate to ϕ(L), and jH : H →֒ K be the inclusion
map. Then one and one only of the following holds:

1. Kerϕ = 1, and (L, ϕ) ∼= (H, jH) in grp⇓K.

2. Kerϕ ∼= Cp, the group H [p] is cyclic and non trivial, and (L, ϕ) ∼=
(Cp ×H, jH ◦ πH) in grp⇓K, where πH : Cp ×H → K is the projection
onto H.

3. Kerϕ ∼= Cp × Cp, the group H [p] is trivial - in other words H is a p-
perfect subgroup of K - and (L, ϕ) ∼= (Cp ×Cp ×H, jH ◦ πH) in grp⇓K,
where πH : Cp × Cp ×H → K is the projection onto H.

Proof: Since Op(L) ∩ Kerϕ = 1 by Corollary 7.5, the group Kerϕ embeds
into L[p], so it is a p-group. Let F denote the Frattini subgroup of Kerϕ.
Then F is a normal subgroup of L. Moreover if X is a subgroup of L such
that XF = L, then F ≤ Kerϕ ≤ XF , so Kerϕ = (Kerϕ ∩ X)F , hence
Kerϕ∩X = Kerϕ, and then XF = X = L since F ≤ Kerϕ ≤ X. It follows
that mL,F = 1, thus F = 1 as (L, ϕ) is a BK-group. This shows that Kerϕ
is elementary abelian.

Let now N = ∩
P∈M

P , where M is the set of normal subgroups of L which

are contained in Kerϕ, and maximal for these conditions (in other words
the factor group Kerϕ/P is a simple FpL-module). If X is a subgroup of L
such that XN = L, then N ≤ Kerϕ ≤ XN , so Kerϕ = (Kerϕ ∩ X)N .
But Kerϕ ∩ X is normalized by X and Kerϕ, so it is normal in L. If
Kerϕ ∩ X < Kerϕ, then there is P ∈ M such that Kerϕ ∩ X ≤ P . Then
N ≤ P also, and Kerϕ = (Kerϕ ∩ X)N ≤ P , contradicting P < Kerϕ. It
follows that Kerϕ ≤ X, and XN = L implies X = L. Thus mL,N = 1 and
N = 1.

But then the product of the projection maps Kerϕ →
∏
P∈M

Kerϕ/P is
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injective, and the latter is a semisimple FpL-module. Hence Kerϕ is also a
semisimple FpL-module. Now since Op(L) and Kerϕ are normal subgroups
of L with trivial intersection, they centralize each other. In other words Kerϕ
is a module for the factor group L[p] = L/Op(L). Then Kerϕ is a semisimple
FpL[p]-module. As L[p] is a p-group, the action of L[p] on Kerϕ has to be
trivial. Hence Kerϕ is central in L.

Let Z be any subgroup of order p of Kerϕ. Then 0 = mL,Z = 1− kL(Z)
p

,

by Proposition 5.6.4 of [2], where kL(Z) denotes the number of complements
of Z in L. It follows that kL(Z) = p, so in particular there is a subgroup
H of L such that L = Z × H. Then the complements of Z in L are the
groups of the form {

(
f(h), h

)
| h ∈ H}, where f : H → Z is any group

homomorphism. It follows that there are exactly p homomorphisms from
H to Z ∼= Cp. Equivalently, there are exactly p homomorphisms from the
p-group H [p] to Cp, so H

[p] is cyclic and non trivial. Since Kerϕ embeds in
L[p] ∼= Z ×H [p], the rank of Kerϕ is at most 2.

We now observe that if (M,ψ) ։ (L, ϕ) is a surjective morphism of
groups over K - in particular if it is an isomorphism -, then ψ(M) and ϕ(L)
are conjugate in K. Then there are three disjoint cases:

1. Kerϕ = 1. In this case, denoting by πH the inclusion map H →֒ K and
by ϕ0 : L→ H the isomorphism induced by ϕ, we have i ◦ϕ = πH ◦ϕ0

for some inner automorphism i of K which conjugates ϕ(L) to H. So
ϕ0 is an isomorphism from (L, ϕ) to (H, πH) in grp⇓K , and we are in
Case 1 of Theorem 7.19.

2. Kerϕ = Z ∼= Cp. Then we have seen that L = Z × H1, where H1 is

a subgroup of L such that H
[p]
1 is cyclic and non trivial. In this case

ϕ induces an isomorphism ϕ0 : H1 → H = ϕ(L), and IdZ × ϕ0 is an
isomorphism from (L, ϕ) to (Z ×H, jH ◦ πH), where πH : Z ×H → K
is the projection onto H. Hence we are in Case 2 of Theorem 7.19.

3. Kerϕ ∼= Cp ×Cp. Then let Z be a subgroup of order p of Kerϕ. Then
we have seen that L = Z ×H1, where H1 is a subgroup of L such that
H

[p]
1 is cyclic and non trivial. In this case Z1 = Kerϕ∩H1 has order p,

and mL,Z1 = 0 since (L, ϕ) is a BK-group. It follows that Z1 must have
also exactly p complements in L. In particular, there is a subgroup J
of L such that L = Z1 × J . But then Z1 ≤ H1 ≤ Z1J implies that
H1 = Z1 × H2, where H2 = H1 ∩ J . Hence L = Z × Z1 × H2, and
moreover H

[p]
2 = 1 since H

[p]
1

∼= Z1 ×H
[p]
2 is cyclic. Then ϕ induces an

isomorphism ϕ0 : H2 → H = ϕ(L), and IdZ×Z1 ×ϕ0 is an isomorphism
from (L, ϕ) to (Z × Z1 ×H, jH ◦ πH), where πH : Z × Z1 ×H → K is
the projection onto H. Hence we are in Case 3 of Theorem 7.19.
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This completes the proof of Theorem 7.19.

7.20. Corollary: Let 1 = {0, 1} and 2 = {0, 1, 2} be totally ordered lattices
of cardinality 2 and 3, respectively. Let cK (resp. ncK) be the number of
conjugacy classes of subgroups H of K such that H [p] is cyclic (resp. non

cyclic). Then the lattice I
FB(p)

K
of ideals of FB(p)

K is isomorphic to the direct

product of cK copies of 2 and ncK copies of 1. In particular it is a finite
distributive lattice.

Proof: By Theorem 7.16, the lattice I
FB(p)

K
is distributive, isomorphic to the

lattice Cl
B
(p)
K -gr of closed subsets of B

(p)
K -gr. Moreover, the join-irreducible

elements of I
FB(p)

K
are the ideals eL,ϕ, for (L, ϕ) ∈ I

FB(p)
K
. By Theorem 7.19,

the set B
(p)
K -gr is finite, and contains three types of elements:

1. the elements (H, jH) of the first type, for H ∈ [sK ].

2. the elements (Cp × H, jH ◦ πH) of the second type, for H ∈ [sK ] such
that H [p] is cyclic and non-trivial.

3. the elements (Cp × Cp × H, jH ◦ πH) of the third type, for H ∈ [sK ]
such that H [p] is trivial.

The only possible surjective morphisms between elements of B
(p)
K -gr are of

the following form:

� (Cp×H, jH ◦πH) ։ (H, jH), where H ∈ [sK ] is such that H [p] is cyclic
and non trivial.

� (Cp×Cp×H, jH ◦πH) ։ (H, jH), where H ∈ [sK ] is such that H [p] = 1.

It follows that the poset B
(p)
K -gr has as many connected components as con-

jugacy classes of subgroups of K. The connected components corresponding
to subgroups H for which H [p] is cyclic - trivial or not - are isomorphic to a
totally ordered poset of size 2, and the other ones are posets with one ele-
ment. Hence B

(p)
K -gr is a disjoint union of cK-components which are totally

ordered of size 2, and ncK isolated points. The lattice of closed subsets of a
totally ordered poset of size n is a totally ordered lattice of size n + 1, and
the lattice of closed subsets of a disjoint union of posets is the direct product
of the lattices of closed subsets of the pieces. This completes the proof.

7.21. Remark: As in Remark 5.6, it follows from Section 5.2.2 of [3] that

the category FB(p)
K -Mod splits as a product

FB(p)
K -Mod ∼=

∏

H

eKHFB
(p)
K -Mod ,
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of categories of modules over smaller Green biset functors eKHFB
(p)
K , where

H ∈ [sK ]. The above connected components correspond to this decomposi-
tion. In particular, when H is a subgroup of K such that H [p] is non cyclic,
then the (commutative) Green functor eKHFB

(p)
K has no non zero proper ideals.

It might therefore be called a Green field.
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