Extensions of simple cohomological Mackey functors

Serge Bouc

Abstract: This is a report on some recent joint work with Radu Stancu, to appear in [4]. It is an expanded version of a talk given at the RIMS workshop *Cohomology of finite groups and related topics*, February 18-20, 2015.

1. Cohomological Mackey functors

1.1. Let G be a finite group, and k be a commutative ring. There are many equivalent definitions of *Mackey functors* for G over k. For the "naive" one, this is an assignment $H \mapsto M(H)$ of a k-module M(H) to any subgroup H of G, together with k-linear maps

$$M(H) \xrightarrow{t_H^K} M(K) \xrightarrow{r_H^K} M(H), \quad M(H) \xrightarrow{c_{x,H}} M(^xH)$$

whenever $H \leq K \leq G$ and $x \in G$, subject to a list of compatibility conditions, e.g. *transitivity* of transfers and restrictions, or the *Mackey formula* (see [6] for details).

A Mackey functor M is called *cohomological* if

 $\forall H \leq K \leq G, \quad t_H^K \circ r_H^K = |K:H| Id_{M(K)} \quad .$

The cohomological Mackey functors for G over k form a category $\mathbf{M}_{k}^{c}(G)$.

1.2. Examples :

• Let V be a kG-module. The fixed points functor FP_V is defined by $M(H) = V^H$, for any $H \leq G$, and by

$$\forall H \leq K \leq G, \quad r_{H}^{K}: V^{K} \hookrightarrow V^{H}, \quad t_{H}^{K} = \mathrm{Tr}_{H}^{K}: V^{H} \to V^{K} \quad ,$$

and by $c_{x,H}(v) = x \cdot v$, for $x \in G$.

More generally, for $n \in \mathbb{N}$, the cohomology functor $H^n(-, V)$ is a cohomological Mackey functor.

• Let k be a field of characteristic p, let G be a finite p-group. The simple cohomological Mackey functors for G over k are the functors $S_X = S_X^G$, where $X \leq G$ (up to G-conjugation), defined by

$$\forall H \le G, \ S_X(H) = \begin{cases} k & \text{if } H =_G X, \\ \{0\} & \text{otherwise.} \end{cases}$$

1.3. Yoshida's Theorem

- Let $\mathbf{perm}_k(G)$ denote the full subcategory of kG-Mod consisting of finitely generated *permutation* kG-modules.
- Let $\mathbf{Fun}_k(G)$ denote the category of (contravariant) k-linear functors from $\mathbf{perm}_k(G)$ to k-Mod.
- If $M \in \mathbf{M}_{k}^{c}(G)$, the functor $\tilde{M} : V \mapsto \operatorname{Hom}_{\mathbf{M}_{k}^{c}(G)}(FP_{V}, M)$ is an object of $\operatorname{Fun}_{k}(G)$.

1.4. Theorem [Yoshida [7]] : The functor $M \mapsto \tilde{M}$ is an equivalence of categories from $\mathbf{M}_k^c(G)$ to $\mathbf{Fun}_k(G)$.

1.5. The (cohomological) Mackey algebra

- [Thévenaz-Webb [6]] The (cohomological) Mackey functors for G over k are exactly the modules over the (cohomological) Mackey algebra.
- Consider the Hecke algebra $Y_k(G) = \operatorname{End}_{kG}(\bigoplus_{H \leq G} kG/H)$. This kalgebra is called the Yoshida algebra of G over k. It is isomorphic to the cohomological Mackey algebra. In other words, the category $\mathbf{M}_k^c(G)$ is equivalent to $Y_k(G)$ -Mod.
- The algebra $Y_k(G)$ is a free k-module of rank $\sum_{H,K\leq G} |H\backslash G/K|$. In particular, when k is a field, the algebra $Y_k(G)$ is a finite dimensional k-algebra.

2. Complexity

Let k be a field, and A be a finite dimensional k-algebra. Then every finitely generated A-module M admits a resolution

$$\cdots \to P_n \to P_{n-1} \to \cdots \to P_1 \to P_0 \to M \to 0$$

by finitely generated projective A-modules.

2.1. Definition : The module M has polynomial growth if there exists such a resolution and numbers c, d, e such that $\forall n \in \mathbb{N}$, $\dim_k P_n \leq cn^d + e$. The lower bound of such d's is called the complexity of M.

The module M has exponential growth if for any such resolution, there exist numbers c > 0, d > 1, and e such that $\forall n \in \mathbb{N}$, $\dim_k P_n \ge cd^n + e$.

The module M has intermediate growth in all other cases.

2.2. Lemma [Link with extensions] : Let A be a finite dimensional algebra over a field k, and M be a finitely generated A-module.

1. If

$$\cdots \to P_n \to P_{n-1} \cdots \to P_0 \to M \to 0$$

is a minimal projective resolution of M, then

$$P_n \cong \bigoplus_{S \in \operatorname{Irr}(A)} P_S^{\dim_k \operatorname{Ext}^n_A(M,S)/\dim_k \operatorname{End}_A(S)}$$

where Irr(A) is a set of representatives of isomorphism classes of simple A-modules, and P_S denotes a projective cover of S.

- 2. In particular M has polynomial growth $\iff \forall S \in \operatorname{Irr}(A), \exists (c, d, e)$ such that $\forall n \in \mathbb{N}, \dim_k \operatorname{Ext}^n_A(M, S) \leq c n^d + e$.
- 3. Let $0 \to L \to M \to N \to 0$ be a short exact sequence of finitely generated A-modules. If any two of L, M, N have polynomial growth, so does the third.

2.3. Definition [Poco groups] : Let k be a field of positive characteristic p. A finite group G is called a poco group over k if any finitely generated cohomological Mackey functor for G over k has polynomial growth.

2.4. Theorem [B. [3]] : Let G be a finite group, and k be be a field of characteristic p > 0. The following conditions are equivalent:

- 1. The group G is a poco group over k.
- 2. Let S be a Sylow p-subgroup of G. Then :
 - If p > 2, the group S is cyclic.
 - If p = 2, the group S has sectional rank at most 2.

2.5. Remark : A 2-group has sectional rank at most 2 if and only if it is cyclic or metacyclic (Blackburn [2], Andersen-Oliver-Ventura [1]).

3. Construction of functors

3.1. Let k be a field of characteristic p > 0, and G be a finite group. By

Yoshida's equivalence $\mathbf{M}_k^c(G) \cong \mathbf{Fun}_k(G)$, cohomological Mackey functors for G over k can be viewed as functors

$$\operatorname{perm}_k(G) \longrightarrow k\operatorname{-Mod}$$
.

When H is another finite group, any k-linear functor

$$F:\mathbf{perm}_k(H)\longrightarrow\mathbf{perm}_k(G)$$

induces a functor

$$\mathbf{M}_k^c(G) \cong \mathbf{Fun}_k(G) \longrightarrow \mathbf{Fun}_k(H) \cong \mathbf{M}_k^c(H)$$

3.2. In particular, when U is a (finite) (G, H)-biset, the functor

$$t_U: W \in \mathbf{perm}_k(H) \mapsto kU \otimes_{kH} W \in \mathbf{perm}_k(G)$$

induces a functor $L_U: \mathbf{M}_k^c(G) \to \mathbf{M}_k^c(H)$. Similarly, the functor

$$h_U: W' \in \mathbf{perm}_k(G) \mapsto \operatorname{Hom}_{kG}(kU, W') \in \mathbf{perm}_k(H)$$

induces a functor $R_U : \mathbf{M}_k^c(H) \to \mathbf{M}_k^c(G)$.

3.3. Properties

- The functors L_U and R_U are *exact*.
- As t_U is left adjoint to h_U , the functor L_U is left adjoint to R_U .
- Let U' be another finite (G, H)-biset. Then

$$L_{U\sqcup U'}\cong L_U\oplus L_{U'}, \quad R_{U\sqcup U'}\cong R_U\oplus R_{U'}$$
.

- Let Id_G denote the identity (G, G)-biset. Then L_{Id_G} and R_{Id_G} are isomorphic to the identity functor.
- If K is another finite group, and V is an (H, K)-biset, then

$$L_V \circ L_U \cong L_{U \times_H V}, \quad R_U \circ R_V \cong R_{U \times_H V}$$

3.4. Examples

- Let H be a subgroup of G, and U denote the set G, as a (G, H)-biset. Then $L_U \cong \operatorname{Res}_H^G$, and $R_U \cong \operatorname{Ind}_H^G$.
- Let H be a subgroup of G, and U denote the set G, as an (H, G)-biset. Then $L_U \cong \operatorname{Ind}_H^G$, and $R_U \cong \operatorname{Res}_H^G$.
- Let $N \leq G$, let H = G/N, and let U denote the set H, as a (G, H)biset. Then $L_U = \rho_{G/N}^G$, and $R_U = j_{G/N}^G$.
- Let $N \leq G$, let H = G/N, and let U denote the set H, as an (H, G)-biset. Then $L_U = i_{G/N}^G$, and $R_U = \rho_{G/N}^G$.
- Let $f: G \to H$ be a group isomorphism, and U denote the set H, as a (G, H)-biset. Then $L_U \cong \text{Iso}(f)$ and $R_U \cong \text{Iso}(f^{-1})$.

3.5. Sketch of proof of Theorem 2.4

Recall that k is a field of characteristic p > 0, that G is a finite group, and S is a Sylow p-subgroup of G.

- Use the functors Ind_S^G and Res_S^G to reduce to the case where G = S is a *p*-group.
- Let (B, A) be a section of G (i.e. $A \leq B \leq G$). The set G/A is a (G, B/A)-biset, and the set $A \setminus G$ is a (B/A, G)-biset. The corresponding functors $L_{G/A}$, $R_{G/A}$, $L_{A \setminus G}$ and $R_{A \setminus G}$ allow for a reduction to the case where G is elementary abelian.
- The case of cyclic groups and Klein four group was settled by M. Samy Modeliar ([5]). In particular, these groups are poco groups.
- Describe the subfunctor structure of $\operatorname{Ind}_{H}^{G}S_{1}^{H}$, leading to long exact sequences of Ext groups. These sequences show that the functor S_{1}^{G} has exponential growth if $G \cong (C_{p})^{m}$, when p > 2 and $m \ge 2$, or p = 2 and $m \ge 3$.
- Use induction on the order of a 2-group G, to complete the case p = 2.

4. Presentation of some Ext algebras

Let p be a prime number, and $G \cong (C_p)^n$, $n \ge 1$.

• Let $X \leq G$ with |X| = p. Then there exists a unique non split extension $\alpha_X^G: 0 \to S_1^G \to {S_X^G \choose S_1^G} \to S_X^G \to 0$ in $\mathbf{M}^c_{\mathbb{F}_p}(G)$.

Let $\gamma_X^G \in \operatorname{Ext}^2_{\mathbf{M}^c_{\mathbb{F}_p}(G)}(S_1^G, S_1^G)$ denote the class of the splice

$$\alpha_X^G (\alpha_X^G)^* : 0 \to S_1^G \to \begin{pmatrix} S_X^G \\ S_1^G \end{pmatrix} \to \begin{pmatrix} S_1^G \\ S_X^G \end{pmatrix} \to S_1^G \to 0$$

• When p > 2 and $\varphi : G \to \mathbb{F}_p$ is a group homomorphism, let U_{φ}^G be the vector space $\mathbb{F}_p \oplus \mathbb{F}_p$, on which $g \in G$ acts by $g(x, y) = (x + \varphi(g)y, y)$. There is a unique (cohomological) Mackey functor T_{φ}^G for G over \mathbb{F}_p such that $T_{\varphi}(H) = \{0\}$ if $1 < H \leq G$, and $T_{\varphi}^G(1) \cong U_{\varphi}^G$. It fits in an extension

$$0 \to S_1^G \to U_{\varphi}^G \to S_1^G \to 0$$

in $\mathbf{M}_{\mathbb{F}_p}^c(G)$. Let $\tau_{\varphi}^G \in \operatorname{Ext}^{1}_{\mathbf{M}_{\mathbb{F}_p}^c(G)}(S_1^G, S_1^G)$ denote the class of this extension.

4.1. The algebra $\mathcal{E}_k = \operatorname{Ext}_{\mathbf{M}_k^c(G)}^*(S_1^G, S_1^G)$

4.2. Theorem [B. Stancu [4]] : Let k be a field of characteristic p > 0, and $G \cong (C_p)^n$. Let \mathcal{E}_k denote the algebra $\operatorname{Ext}^*_{\mathbf{M}_{r}^c(G)}(S_1^G, S_1^G)$. Then:

- 1. The extension of scalars from \mathbb{F}_p to k induces an isomorphism of kalgebras $\mathcal{E}_k \cong k \otimes_{\mathbb{F}_p} \mathcal{E}_{\mathbb{F}_p}$.
- 2. The algebra $\mathcal{E}_{\mathbb{F}_p}$ is generated by the elements γ_X^G , where $X \leq G$ with |X| = p, together, when p > 2, with the elements τ_{φ}^G , where $\varphi: G \to \mathbb{F}_p^+$.

4.3. Presentation of \mathcal{E}_k for p = 2

4.4. Theorem [B. [3]]: Let k be a field of characteristic 2, and $G \cong (C_2)^m$. Then the graded algebra $\mathcal{E}_k = \operatorname{Ext}^*_{\mathbf{M}^G_k(G)}(S_1^G, S_1^G)$ admits the following presentation:

- The generators γ_x are indexed by the elements x of $G \{0\}$. They have degree 2.
- The relations are the following:
 - 1. If H < G with |G:H| = 2, then $\sum_{x \notin H} \gamma_x = 0$.
 - 2. If x and y are distinct elements of $G \{0\}$, then

$$[\gamma_x + \gamma_y, \gamma_{x+y}] = 0$$

4.5. Presentation of \mathcal{E}_k , for p > 2

4.6. Theorem [B. Stancu [4]] : Let k be a field of characteristic p > 2, and $G \cong (C_p)^m$. Then the graded algebra $\mathcal{E}_k = \operatorname{Ext}^*_{\mathbf{M}_k^c(G)}(S_1^G, S_1^G)$ admits the following presentation:

- 1. The generators are the elements γ_X in degree 2, for $X \leq G$ such that |X| = p, and the elements τ_{φ} in degree 1, for $\varphi \in \text{Hom}(G, \mathbb{F}_p^+)$.
- 2. The relations are the following:

4.7. Corollary : The Poincaré series of \mathcal{E}_k is equal to

$$P(t) = \frac{1}{\left(1 - t^2\right)\left(1 - 3t^2\right)\left(1 - 7t^2\right)\cdots\left(1 - (2^{m-1} - 1)t^2\right)}$$

when p = 2, and to

$$\frac{1}{(1-t)(1-t-(p-1)t^2)(1-t-(p^2-1)t^2)\cdots(1-t-(p^{m-1}-1)t^2)}$$

when p is odd.

4.8. Corollary : Let k be a field of characteristic p > 0. When G is an elementary abelian p-group, one can compute explicitly all the extension groups between any two simple cohomological Mackey functors for G over k.

Acknowledgements: I wish to thank Professor Fumihito Oda for his invitation, and Kinki University, Osaka for support. I also thank Professor Akihiko Hida for the opportunity of giving a talk at the RIMS workshop *Cohomology of finite groups and related topics*, February 18-20, 2015.

References

- K. Andersen, B. Oliver, and J. Ventura. Reduced fusion systems over 2-groups. Preprint, 2008.
- [2] N. Blackburn. Generalizations of certain elementary theorems on *p*-groups. *Proc. London Math. Soc.*, 11:1–22, 1961.
- [3] S. Bouc. Complexity and cohomology of cohomological Mackey functors. *Adv. Maths*, 221:983–1045, 2009.
- [4] S. Bouc and R. Stancu. The extension algebra of some cohomological Mackey functors. Preprint, 2015, Adv. in Maths., to appear, 2015.
- [5] M. Samy Modeliar. Certaines constructions liées aux foncteurs de Mackey cohomologiques. PhD thesis, Université Paris 7-Denis Diderot, 2005.
- [6] J. Thévenaz and P. Webb. The structure of Mackey functors. Trans. Amer. Math. Soc., 347(6):1865–1961, June 1995.
- [7] T. Yoshida. On G-functors (II): Hecke operators and G-functors. J. Math. Soc. Japan, 35:179–190, 1983.

Serge Bouc, CNRS-LAMFA, 33 rue St Leu, 80039 Amiens Cedex 01, France. email: serge.bouc@u-picardie.fr