Correspondence functors

Serge Bouc

Abstract: This is a report on some recent joint work with Jacques Thévenaz, which
appears in [1] and [2]. It is an expanded version of a talk given at the RIMS workshop
Cohomology of finite groups and related topics, February 18-20, 2015.

The first part of this joint work is presented in Thévenaz’s report, in these proceed-

ings.

1. Introduction

1.1. This is an exposition of a joint work in progress with Jacques Thévenaz®,
on the representation theory of finite sets, by which we mean the following:
let C denote the category in which objects are finite sets. For any two finite
sets X and Y, the set of morphisms from X to Y in C is the set of all
correspondences from X to Y, i.e. the set of subsets of Y x X. We denote?
this set by C(Y, X). A correspondence from X to itself is called a relation
on X. The composition of correspondences is defined as follows: for finite
sets X, Y, Z, for RCY xXand SCZ xY

SoR(=SR)={(z,x) e Zx X |TyeY, (z,y) € Sand (y,z) € R} .
The identity morphism of the finite set X is the diagonal
Ax={(z,z) |[re X} C X x X .

We now fix a commutative ring k (with identity element 1), and we consider
functors from C to the category k-Mod of k-modules. Equivalently, we first
introduce the k-linearization kC of C, i.e. the category with the same objects
as C, but in which the set of morphisms from X to Y is the free k-module
EC(Y,X) on the set C(Y, X), and composition is k-linearly extended from
composition in C. Then we consider correspondence functors over k, i.e.
k-linear functors from kC to k-Mod. These functors are the objects of a
category JFi, in which morphisms are natural transformations of functors.
The category F is an abelian k-linear category.

lef. Jacques Thévenaz’s report in these Proceedings.
2We emphasize that our notation is opposite to the usual notation C(X,Y’) of category
theory.



1.2. Examples : For any finite set £, the representable functor Y ; sending
a finite set X to the set Homye(E, X) = kC(X, E) is a projective object of Fy,
by the Yoneda Lemma. In particular:

e When E = (), then Ygi(X) = k for any finite set X, and for any
correspondence U C Y x X from X to a finite set Y, the map Ygx(U) :
Yer(X) = Ygi(Y) is the identity map of k. In other words, the
functor Yy, is the constant functor equal to k everywhere.

e When FE = e is a set of cardinality one, then for any finite set X, the
module Yg ;(X) is the free k-module with basis the set 2% of subsets
of X. Hence Y, is the functor of subsets.

e The Yoneda Lemma implies that Endz, (Yg ) is isomorphic to the alge-
bra kC(E, E) of all relations on E. In particular, when R is a preorder
on F,ie. R is areflexive and transitive relation on E, or equivalently
Ap C R = R?, then we get a direct summand Yg iR of Yg defined
on a finite set X by Y R(X) = kC(X, E)R. The functor Yg R is a
projective object of F.

2. Functors associated to lattices

2.1. The previous examples are special cases of a more general construction
that we now introduce. Recall that a lattice T'= (T, V, A) is a poset in which
any pair {z,y} of elements has an least upper bound z V y (called the join
of x and y) and a greatest lower bound x Ay (called the meet of z and y). A
finite lattice 7" admits a smallest element Or (the meet of all elements of T')
and a largest element 17 (the join of all elements of T').

2.2. Definition : Let T be a finite lattice.

o When X is a finite set, let Fr(X) = k(TX) denote the free k-module
with basis the set TX of all maps from X to T.

o When U CY x X is a correspondence from X to a finite set Y, let
Fr(U) : Fr(X) — Fr(Y) be the k-linear map sending ¢ : X — T to
the map Fr(U)(¢) : Y — T, also denoted by Uy, defined by

ey, Up)w) =\ o) .

(y,x)eU




Recall that a lattice T is called distributive if V is distributive with respect
to A or, equivalently, if A is distributive with respect to V.

2.3. Theorem : Let T be a finite lattice. Then Fr is a correspondence
functor. Moreover Fr is projective in Fy if and only iof T' is distributive.

This result motivates the following definition:

2.4. Definition : Let kL denote the following category:
o The objects of kL are the finite lattices.

e For two finite lattices T and T', the set of morphisms from T to T in
kL is the free k-module with basis the set of all maps f : T — T which
respect the join operation, i.e. such that

vAacT, f(\/t)=\ ft) .

teA teA

e The composition of morphisms in kL is the k-linear extension of the
composition of maps.

2.5. Remark : Note that a map from a finite lattice T" to a finite lattice T’
which respects the join operation need not respect the meet operation. On
the other hand, it has to send the smallest element Or of 7" (which is equal

to the join \/ t) to the smallest element 07 of T”.
tel

2.6. Theorem : The assignment T' — Fp is a fully faithful k-linear
functor from kL to Fy.

2.7. We will conclude this section by introducing a canonical subfunctor
Hr of Fr, for any finite lattice T', which will be fundamental in the explicit
description of simple correspondence functors.

First recall that an element e of a finite lattice T is called irreducible if

for any subset A of T, the equality e = \/ t implies that e € A. In other
teA
words e # Op, and if e =2 Vy for x,y € T, then e = x or e = y. We denote

by Irr(7T) the set of irreducible elements of T', viewed as a full subposet of T'.

2.8. Definition : Let T be a finite lattice. For a finite set X, let Hr(X)
denote the k-submodule of Fr(X) = k(TX) generated by all maps p : X — T
such that o(X) 2 Irr(T).



2.9. Lemma :

1. Let Y, X be finite sets, let U € C(Y,X), and let ¢ : X — T. Then
(Up)(Y)NIrr(T) C p(X) NIrr (7).

2. The assignment X — Hr(X) is a subfunctor of Fr.

Proof : Let U € C(Y, X), let o : X — T, let e € (Uyp)(Y) N Irr(T), and

y € Y such that e = (Uyp)(y). Then e = \/ ¢(x), so there exists x such
(y,x)eU

that (y,z) € U and e = p(z). Hence e € p(X)NIrr(7"), proving Assertion 1.

Assertion 2 follows trivially. O

3. Simple functors

3.1. Let S be a simple object of F}, that is, a correspondence functor admit-
ting exactly two subfunctors. Then S is non zero, so there is a set F of min-
imal cardinality such that S(E) # {0}. As explained in Jacques Thévenaz’s
report in these proceedings, the evaluation S(F£) is a simple module for the
algebra &g of essential relations on E, defined by

€z =kC(E,E)/ ) kC(E,F)C(F,E) .

|FI<|E]

It follows from [1] that the simple £ modules (up to isomorphism) are param-
etrized by pairs (R, W) of a partial order R on E and a simple kAut(E, R)-
module W (up to permutation of E), where Aut(E, R) is the automorphism
group of the pair (£, R), i.e. the group of permutations of E which pre-
serve RR.

Conversely, if E is a finite set, if R is a partial order on E, and if W is
a simple kAut(E, R)-module, then there is a unique simple correspondence
functor S = Sg gw such that E is minimal with S(F) # {0} and S(E) = W
as Eg-modules. This gives the following:

3.2. Theorem : The simple correspondence functors over k (up to iso-
morphism) are parametrized by triples (E, R, W) consisting of a finite set E,
a partial order R on E, and a simple kAut(E, R)-module W (up to identi-
fication of triples (E, R,W) and (E', R',W') for which there exists an iso-
morphism of posets ¢ : (E, R) — (E', R") sending W to W’).




3.3.

Examples : Assume that £ is a field.

e The representable functor Yy, (see 1.2) is simple, projective, and in-

jective in Fy. The corresponding triple is ((), tot, k), where tot is the
unique (order) relation on ), and & is the unique simple module for
kAut((, tot) = k.

The representable functor Y, j is not simple, but one can show that it
is isomorphic to the direct sum of the previous one Yy ; and the simple
functor S, ot 1, Where tot is the unique order relation on the set o, and
k is the unique simple module for kAut(e, tot) = k. This functor Se tot &
is also simple, projective ans injective in Fj.

3.4. The two previous examples deal with a total order on a set of cardinality
0 and 1. We now consider the general case of a total order.

For this, we chose a non negative integer n, and we denote by n the totally
ordered set {0,1,...,n}. Then n is a lattice, in which zVy = Max(z,y) and
x Ay = Min(z,y). We denote by [n] the set Irr(7T"). Clearly [n] =n — {0} =

{1,2,..

3.5.

3.6.

1.
2.

., n}.

Theorem : Forn €N, set Sy, = F,,/Hy,. Then:
The surjection Fy,, — Sy, splits. The functor Sy, is projective.
If X is a finite set, then Sy(X) is a free k-module of rank

> (=1 (2) i+ 1),

=0

~ Nn@;l
ﬂz@fmzﬁ%p'
=

AC[n

n
J

. Endye(n) = Ends, (F,) = i{o My (k).

If k is a field, then Sy, is simple (and projective, and injective), iso-
morphic to Spn tot k-

In order to deal with the general case of simple functors, we need to

introduce some notation. We start with a finite poset (F, R), and we first
choose a finite lattice T with the following two properties:

(1) The poset Irr(7') is isomorphic to (E, R).
(2) The natural restriction map Aut(7) — Aut(E, R) is an isomorphism.

Using Condition (1), we will identify (£, R) with the subposet Irr(7") of T
In Condition (2), we denote by Aut(7") the group of automorphisms of the

b}



poset T' (one can show that this is equal to the group of bijections of T' which
respect the join operation - see Definition 2.4). An automorphism of 7" clearly
maps an irreducible element to an irreducible element, so we have a restriction
map Aut(7) — Aut(Irr(7)). This map is injective, because any element ¢

of T'is equal to the join \/ e of those irreducible elements smaller that ¢

e€lIrr(t)
6§Tt

in T, thus any automorphism of 7" is determined by its restriction to Irr(7).
So Condition (2) above amounts to requiring that any automorphism of the
poset (F, R) can be extended to an automorphism of 7.

The poset (E, R) being given, it is always possible to choose a finite lattice
T with the above two properties, e.g. the lattice I (E, R) consisting of lower
ideals of (F, R) (i.e. subsets A of E such that (z,y) € R and y € A implies
x € A, for any z,y € F), ordered by inclusion of subsets (the join operation
on I (E, R) is union of subsets, and the meet operation is intersection of
subsets).

3.7. When T is a finite poset, and t € T, we set

r(t) = \/:v

zeT
<t
Thus r(t) =t if t ¢ Irr(T'), and if ¢ € Irr(7'), then r(t) is the largest element
of T strictly smaller than ¢.
When A C T, we denote by v4 : E — T the map defined by

e if e A
Ve € E, va(e) :{ r(e) ifeiA

We define moreover an element « of k(TF) by

Y= Z(_l)‘AwA )

ACE

and we view k(T%) as the evaluation at E of the functor Fro», where T
is the opposite lattice to T' (i.e. the lattice obtained by replacing the order
relation on 71" by its opposite, or equivalently, by switching the join and meet
operations of T').

Finally we denote by Sg r the subfunctor of Frre» generated by the element
v of Fre»(FE), i.e. the intersection of all subfunctors M of Fre such that
v € M(E).



3.8. Theorem :
1. The functor Sg r doesn’t depend on the choice of T', up to isomorphism.

2. There exists a positive integer f = fgr (explicitly computable) such
that, for any finite set X, the k-module Sg r(X) is free of rank

> (D)

i=0 ¢
Moreover Sg r(X) is a free right kAut(E, R)-module.

3. Let W be a kAut(E, R)-module. For a finite set X, define

Se.rw (X) = Sgr(X) @rawmr W .

Then the assignment X — Sg rw(X) is a correspondence functor.

4. If k is a field and W is simple, then Sg rw = Sgrw-

Proof : (Sketch) e First we introduce a non-degenerate functorial bilinear
pairing Fr X Frop — k, in the following way: if X is a finite set, if ¢ : X — T
and ¢ : X — TP we set

1 if ¢(x) <7 9(x) Vo € X,
0 otherwise.

(p,¥)x = {

This pairing is functorial in the sense that for any correspondence U C Y x X
from X to a finite set YV, for any ¢ : X — Y and any ¢ : Y — T, we have
that
(Up, )y = (@, UP*Y)x

where U = {(z,y) € X xY | (y,z) € U} denotes the opposite correspon-
dence, and U x 1) = Frop(U) (1)) € Frop(X) is the image of 1) under U°P.

This pairing is non degenerate in the strong sense that it induces an
isomorphism between Fr(X) and the k-dual of Froy(X), for any finite set X
(so it induecs an isomorphism between Fro and the dual functor (Fr)f).

e We show that there exists a surjective homomorphism of correspondence
functors
@T : FT/HT — SE,ROP s

where R is the opposite partial order to R on E.

e We define a subset G of T', containing F, and invariant under Aut(E, R),
with the property that for any finite set X, the image under O x o mp x of

7



the set
{p: X =T |ECp(X)CG}

of elements of Fr(X) is a k-basis of Sg ger(X), where mp : Fr — Fr/Hy is
the quotient morphism. Then the integer f = fg r appearing in Theorem 3.8
is equal to |G| — |E|. 0

3.9. Corollary : Let k be a field. Let (E,R) be a finite poset, and W be
a simple kAut(E, R)-module. Then for any finite set X,

\EI

) d W

4. Examples

4.1. Let D denote the following lattice:

a
\./°

where the white dots are the irreducible elements. Then over a field of odd
characteristic, the functor Fp is semisimple: its splits as

Fp = S[o] S5 4S[1] s> 48[2] S¥) S[g] Pd2S,,PES .
where S, , denotes the functor Sg A for a set E of cardinality 2, ordered by
the equality relation, and S . is the functor Sy g associated to a poset (F, R)

of cardinality 3 with 2 connected components.
Observe that for any ¢ € N, the multiplicity of the functor Sy as a
summand of Fp is equal to the number of increasing sequences

Op=z0 <21 <... <04
in D. This statement holds more generally for an abitrary finite lattice T'.

4.2. There are 16 posets up to isomorphism on a set of cardinality 4. The

8



following table displays the Hasse diagrams of these posets, together with
the corresponding value of the integer f appearing in Theorem 3.8:

[ ] [ ] [ ] [ ] [ ] [ ] : [ ] .\0/. .\:/.
f=2 f=2 f=2 f=2
./.\./. : : [ ] ./.\0 ./:\0
f=2 f=2 f=2 f=2
[ ] [ ] .\. [ ] : .\0/.
L A
f=3 f=2 f=2 f=2
: [ ] [ ] [ ]
0‘ ./ \0 0/ \. ‘.
.‘ ./ \./ ./ \0
f=1 f=2 f=2 f=2

The only poset for which f = 1 is the total order. This is a general phe-
nomenon: if (£, R) is a finite poset, then fg g =1 if and only if R is a total
order.
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