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Abstract: This is a report on some recent joint work with Jacques Thévenaz, which
appears in [1] and [2]. It is an expanded version of a talk given at the RIMS workshop
Cohomology of finite groups and related topics, February 18-20, 2015.

The first part of this joint work is presented in Thévenaz’s report, in these proceed-

ings.

1. Introduction

1.1. This is an exposition of a joint work in progress with Jacques Thévenaz1,
on the representation theory of finite sets, by which we mean the following:
let C denote the category in which objects are finite sets. For any two finite
sets X and Y , the set of morphisms from X to Y in C is the set of all
correspondences from X to Y , i.e. the set of subsets of Y ×X. We denote2

this set by C(Y,X). A correspondence from X to itself is called a relation
on X. The composition of correspondences is defined as follows: for finite
sets X, Y, Z, for R ⊆ Y ×X and S ⊆ Z × Y

S ◦R(= SR) = {(z, x) ∈ Z ×X | ∃y ∈ Y, (z, y) ∈ S and (y, x) ∈ R} .

The identity morphism of the finite set X is the diagonal

∆X = {(x, x) | x ∈ X} ⊆ X ×X .

We now fix a commutative ring k (with identity element 1), and we consider
functors from C to the category k-Mod of k-modules. Equivalently, we first
introduce the k-linearization kC of C, i.e. the category with the same objects
as C, but in which the set of morphisms from X to Y is the free k-module
kC(Y,X) on the set C(Y,X), and composition is k-linearly extended from
composition in C. Then we consider correspondence functors over k, i.e.
k-linear functors from kC to k-Mod. These functors are the objects of a
category Fk, in which morphisms are natural transformations of functors.
The category Fk is an abelian k-linear category.

1cf. Jacques Thévenaz’s report in these Proceedings.
2We emphasize that our notation is opposite to the usual notation C(X,Y ) of category

theory.
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1.2. Examples : For any finite set E, the representable functor YE,k sending
a finite set X to the set HomkC(E,X) = kC(X,E) is a projective object of Fk,
by the Yoneda Lemma. In particular:

• When E = ∅, then YE,k(X) ∼= k for any finite set X, and for any
correspondence U ⊆ Y ×X from X to a finite set Y , the map YE,k(U) :
YE,k(X) → YE,k(Y ) is the identity map of k. In other words, the
functor Y∅,k is the constant functor equal to k everywhere.

• When E = • is a set of cardinality one, then for any finite set X, the
module YE,k(X) is the free k-module with basis the set 2X of subsets
of X. Hence Y•,k is the functor of subsets.

• The Yoneda Lemma implies that EndFk
(YE,k) is isomorphic to the alge-

bra kC(E,E) of all relations on E. In particular, when R is a preorder
on E, i.e. R is a reflexive and transitive relation on E, or equivalently
∆E ⊆ R = R2, then we get a direct summand YE,kR of YE,k defined
on a finite set X by YE,kR(X) = kC(X,E)R. The functor YE,kR is a
projective object of Fk.

2. Functors associated to lattices

2.1. The previous examples are special cases of a more general construction
that we now introduce. Recall that a lattice T = (T,∨,∧) is a poset in which
any pair {x, y} of elements has an least upper bound x ∨ y (called the join
of x and y) and a greatest lower bound x∧ y (called the meet of x and y). A
finite lattice T admits a smallest element 0T (the meet of all elements of T )
and a largest element 1T (the join of all elements of T ).

2.2. Definition : Let T be a finite lattice.

• When X is a finite set, let FT (X) = k(TX) denote the free k-module
with basis the set TX of all maps from X to T .

• When U ⊆ Y × X is a correspondence from X to a finite set Y , let
FT (U) : FT (X) → FT (Y ) be the k-linear map sending ϕ : X → T to
the map FT (U)(ϕ) : Y → T , also denoted by Uϕ, defined by

∀y ∈ Y, (Uϕ)(y) =
∨

(y,x)∈U

ϕ(x) .

2



Recall that a lattice T is called distributive if ∨ is distributive with respect
to ∧ or, equivalently, if ∧ is distributive with respect to ∨.

2.3. Theorem : Let T be a finite lattice. Then FT is a correspondence
functor. Moreover FT is projective in Fk if and only if T is distributive.

This result motivates the following definition:

2.4. Definition : Let kL denote the following category:

• The objects of kL are the finite lattices.

• For two finite lattices T and T ′, the set of morphisms from T to T ′ in
kL is the free k-module with basis the set of all maps f : T → T ′ which
respect the join operation, i.e. such that

∀A ⊆ T, f(
∨
t∈A

t) =
∨
t∈A

f(t) .

• The composition of morphisms in kL is the k-linear extension of the
composition of maps.

2.5. Remark : Note that a map from a finite lattice T to a finite lattice T ′

which respects the join operation need not respect the meet operation. On
the other hand, it has to send the smallest element 0T of T (which is equal
to the join

∨
t∈∅
t) to the smallest element 0T ′ of T ′.

2.6. Theorem : The assignment T 7→ FT is a fully faithful k-linear
functor from kL to Fk.

2.7. We will conclude this section by introducing a canonical subfunctor
HT of FT , for any finite lattice T , which will be fundamental in the explicit
description of simple correspondence functors.

First recall that an element e of a finite lattice T is called irreducible if
for any subset A of T , the equality e =

∨
t∈A

t implies that e ∈ A. In other

words e 6= 0T , and if e = x ∨ y for x, y ∈ T , then e = x or e = y. We denote
by Irr(T ) the set of irreducible elements of T , viewed as a full subposet of T .

2.8. Definition : Let T be a finite lattice. For a finite set X, let HT (X)
denote the k-submodule of FT (X) = k(TX) generated by all maps ϕ : X → T
such that ϕ(X) + Irr(T ).
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2.9. Lemma :

1. Let Y,X be finite sets, let U ∈ C(Y,X), and let ϕ : X → T . Then
(Uϕ)(Y ) ∩ Irr(T ) ⊆ ϕ(X) ∩ Irr(T ).

2. The assignment X 7→ HT (X) is a subfunctor of FT .

Proof : Let U ∈ C(Y,X), let ϕ : X → T , let e ∈ (Uϕ)(Y ) ∩ Irr(T ), and
y ∈ Y such that e = (Uϕ)(y). Then e =

∨
(y,x)∈U

ϕ(x), so there exists x such

that (y, x) ∈ U and e = ϕ(x). Hence e ∈ ϕ(X)∩ Irr(T ), proving Assertion 1.
Assertion 2 follows trivially.

3. Simple functors

3.1. Let S be a simple object of Fk, that is, a correspondence functor admit-
ting exactly two subfunctors. Then S is non zero, so there is a set E of min-
imal cardinality such that S(E) 6= {0}. As explained in Jacques Thévenaz’s
report in these proceedings, the evaluation S(E) is a simple module for the
algebra EE of essential relations on E, defined by

EE = kC(E,E)/
∑

|F |<|E|

kC(E,F )C(F,E) .

It follows from [1] that the simple EE modules (up to isomorphism) are param-
etrized by pairs (R,W ) of a partial order R on E and a simple kAut(E,R)-
module W (up to permutation of E), where Aut(E,R) is the automorphism
group of the pair (E,R), i.e. the group of permutations of E which pre-
serve R.

Conversely, if E is a finite set, if R is a partial order on E, and if W is
a simple kAut(E,R)-module, then there is a unique simple correspondence
functor S = SE,R,W such that E is minimal with S(E) 6= {0} and S(E) ∼= W
as EE-modules. This gives the following:

3.2. Theorem : The simple correspondence functors over k (up to iso-
morphism) are parametrized by triples (E,R,W ) consisting of a finite set E,
a partial order R on E, and a simple kAut(E,R)-module W (up to identi-
fication of triples (E,R,W ) and (E ′, R′,W ′) for which there exists an iso-
morphism of posets ϕ : (E,R) → (E ′, R′) sending W to W ′).
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3.3. Examples : Assume that k is a field.

• The representable functor Y∅,k (see 1.2) is simple, projective, and in-
jective in Fk. The corresponding triple is (∅, tot, k), where tot is the
unique (order) relation on ∅, and k is the unique simple module for
kAut(∅, tot) ∼= k.

• The representable functor Y•,k is not simple, but one can show that it
is isomorphic to the direct sum of the previous one Y∅,k and the simple
functor S•,tot,k, where tot is the unique order relation on the set •, and
k is the unique simple module for kAut(•, tot) ∼= k. This functor S•,tot,k
is also simple, projective ans injective in Fk.

3.4. The two previous examples deal with a total order on a set of cardinality
0 and 1. We now consider the general case of a total order.

For this, we chose a non negative integer n, and we denote by n the totally
ordered set {0, 1, . . . , n}. Then n is a lattice, in which x∨ y = Max(x, y) and
x ∧ y = Min(x, y). We denote by [n] the set Irr(T ). Clearly [n] = n− {0} =
{1, 2, . . . , n}.

3.5. Theorem : For n ∈ N, set S[n] = Fn/Hn. Then:

1. The surjection Fn → S[n] splits. The functor S[n] is projective.

2. If X is a finite set, then S[n](X) is a free k-module of rank
n∑

i=0

(−1)n−i
(
n
i

)
(i+ 1)|X|.

3. Fn
∼=

⊕
A⊆[n]

S[|A|]
∼=

n⊕
j=0

S
⊕(nj)
[j] .

4. EndkL(n) ∼= EndFk
(Fn) ∼=

n∏
j=0

M(nj)
(k).

5. If k is a field, then S[n] is simple (and projective, and injective), iso-
morphic to S[n],tot,k.

3.6. In order to deal with the general case of simple functors, we need to
introduce some notation. We start with a finite poset (E,R), and we first
choose a finite lattice T with the following two properties:

(1) The poset Irr(T ) is isomorphic to (E,R).

(2) The natural restriction map Aut(T ) → Aut(E,R) is an isomorphism.

Using Condition (1), we will identify (E,R) with the subposet Irr(T ) of T .
In Condition (2), we denote by Aut(T ) the group of automorphisms of the
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poset T (one can show that this is equal to the group of bijections of T which
respect the join operation - see Definition 2.4). An automorphism of T clearly
maps an irreducible element to an irreducible element, so we have a restriction
map Aut(T ) → Aut

(
Irr(T )

)
. This map is injective, because any element t

of T is equal to the join
∨

e∈Irr(t)
e≤T t

e of those irreducible elements smaller that t

in T , thus any automorphism of T is determined by its restriction to Irr(T ).
So Condition (2) above amounts to requiring that any automorphism of the
poset (E,R) can be extended to an automorphism of T .

The poset (E,R) being given, it is always possible to choose a finite lattice
T with the above two properties, e.g. the lattice I↓(E,R) consisting of lower
ideals of (E,R) (i.e. subsets A of E such that (x, y) ∈ R and y ∈ A implies
x ∈ A, for any x, y ∈ E), ordered by inclusion of subsets (the join operation
on I↓(E,R) is union of subsets, and the meet operation is intersection of
subsets).

3.7. When T is a finite poset, and t ∈ T , we set

r(t) =
∨
x∈T
x<T t

x .

Thus r(t) = t if t /∈ Irr(T ), and if t ∈ Irr(T ), then r(t) is the largest element
of T strictly smaller than t.

When A ⊆ T , we denote by γA : E → T the map defined by

∀e ∈ E, γA(e) =

{
e if e /∈ A
r(e) if e ∈ A

.

We define moreover an element γ of k(TE) by

γ =
∑
A⊆E

(−1)|A|γA ,

and we view k(TE) as the evaluation at E of the functor FT op , where T op

is the opposite lattice to T (i.e. the lattice obtained by replacing the order
relation on T by its opposite, or equivalently, by switching the join and meet
operations of T ).

Finally we denote by SE,R the subfunctor of FT op generated by the element
γ of FT op(E), i.e. the intersection of all subfunctors M of FT op such that
γ ∈M(E).
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3.8. Theorem :

1. The functor SE,R doesn’t depend on the choice of T , up to isomorphism.

2. There exists a positive integer f = fE,R (explicitly computable) such
that, for any finite set X, the k-module SE,R(X) is free of rank

n∑
i=0

(−1)n−i

(
n

i

)
(i+ f)|X| .

Moreover SE,R(X) is a free right kAut(E,R)-module.

3. Let W be a kAut(E,R)-module. For a finite set X, define

SE,R,W (X) = SE,R(X)⊗kAut(E,R) W .

Then the assignment X 7→ SE,R,W (X) is a correspondence functor.

4. If k is a field and W is simple, then SE,R,W
∼= SE,R,W .

Proof : (Sketch) • First we introduce a non-degenerate functorial bilinear
pairing FT ×FT op → k, in the following way: if X is a finite set, if ϕ : X → T
and ψ : X → T op, we set

(ϕ, ψ)X =

{
1 if φ(x) ≤T ψ(x) ∀x ∈ X,
0 otherwise.

This pairing is functorial in the sense that for any correspondence U ⊆ Y ×X
from X to a finite set Y , for any ϕ : X → Y and any ψ : Y → T op, we have
that

(Uϕ, ψ)Y = (ϕ,U op ? ψ)X ,

where U op = {(x, y) ∈ X × Y | (y, x) ∈ U} denotes the opposite correspon-
dence, and U op ? ψ = FT op(U op)(ψ) ∈ FT op(X) is the image of ψ under U op.

This pairing is non degenerate in the strong sense that it induces an
isomorphism between FT (X) and the k-dual of FT op(X), for any finite set X
(so it induecs an isomorphism between FT op and the dual functor (FT )

\).

• We show that there exists a surjective homomorphism of correspondence
functors

ΘT : FT/HT → SE,Rop ,

where Rop is the opposite partial order to R on E.

• We define a subset G of T , containing E, and invariant under Aut(E,R),
with the property that for any finite set X, the image under ΘT,X ◦ πT,X of
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the set
{ϕ : X → T | E ⊆ ϕ(X) ⊆ G}

of elements of FT (X) is a k-basis of SE,Rop(X), where πT : FT → FT/HT is
the quotient morphism. Then the integer f = fE,R appearing in Theorem 3.8
is equal to |G| − |E|.

3.9. Corollary : Let k be a field. Let (E,R) be a finite poset, and W be
a simple kAut(E,R)-module. Then for any finite set X,

dimk SE,R,W (X) =
dimkW

|Aut(E,R)|

|E|∑
i=0

(−1)|E|−i

(
|E|
i

)
(i+ fE,R)

|X| .

4. Examples

4.1. Let D denote the following lattice:

•
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��

�
LLLLLL

◦

◦

::
::

::
::

:

◦
rrrrrr

•

where the white dots are the irreducible elements. Then over a field of odd
characteristic, the functor FD is semisimple: its splits as

FD
∼= S[0] ⊕ 4S[1] ⊕ 4S[2] ⊕ S[3] ⊕ 2S• • ⊕ S

•
•

•

,

where S• • denotes the functor SE,∆ for a set E of cardinality 2, ordered by
the equality relation, and S

•
•

•

is the functor SF,R associated to a poset (F,R)

of cardinality 3 with 2 connected components.
Observe that for any i ∈ N, the multiplicity of the functor S[i] as a

summand of FD is equal to the number of increasing sequences

0D = x0 < x1 < . . . < xi

in D. This statement holds more generally for an abitrary finite lattice T .

4.2. There are 16 posets up to isomorphism on a set of cardinality 4. The
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following table displays the Hasse diagrams of these posets, together with
the corresponding value of the integer f appearing in Theorem 3.8:
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•
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•
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•
888

f = 1 f = 2 f = 2 f = 2

The only poset for which f = 1 is the total order. This is a general phe-
nomenon: if (E,R) is a finite poset, then fE,R = 1 if and only if R is a total
order.
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