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1. Introduction

This report is an expanded version of the mini-course I gave during the workshop
of the ICRA2018 conference in Prague in August 2018. It it a survey of the main
results obtained so far in this long term joint work with Jacques Thévenaz on
Correspondence functors, in which we develop the representation theory of finite
sets and correspondences.

The representation theory of finite sets has been considered from various points
of view. Pirashvili [Pir00] treats the case of pointed sets and maps, while Church,
Ellenberg and Farb [CEF15] consider the case where the morphisms are all injective
maps. Putman and Sam [PS17] use all k-linear splittable injections between finite-
rank free k-modules (where k is a commutative ring). We have chosen instead not
to use any kind of maps, but rather all correspondences as morphisms, in order
to get a self dual category of finite sets. At first we had no specific application
in mind, our main motivation being provided by the fact that finite sets are basic
objects in mathematics, and correspondences a natural generalization of maps.
Still, it turns out that this functorial approach of sets and correspondences sheds
a new light on the representation theory of the algebra of relations on a finite set
(Theorem 11.7). The theory has many other surprising results, e.g. the fact that
the finitely generated correspondence functors over a field have finite length, and
that they are characterized by the exponential behaviour of the dimension of their
evaluations (Theorem 7.5).

This survey is organized as follows: in Section 2, we recall some basics on
representations of categories. The category of finite sets and correspondences is
introduced in Section 3, as well as the algebra of essential relations on a finite
set. Sections 4 and 5 describe the simple modules for this algebra, leading to a
parametrization of the simple correspondence functors, introduced in Section 6.
Sections 7 and 8 are concerned with finiteness properties and stability properties of
correspondence functors. In Section 9, correspondence functors associated to finite
lattices are introduced, and some of their properties are stated. This leads in Sec-
tion 10 to the notion of fundamental functor associated to a finite poset. Finally,
Section 11 gives a complete description of the simple correspondence functors.
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2. The representation theory of categories

We first recall some standard facts from the representation theory of categories.
Let D be a category and let X and Y be two objects of D. We reverse the usual
notation and write D(Y,X) for the set of all morphisms from X to Y . We as-
sume that D is skeletally small. This allows us to talk about the set of natural
transformations between two functors starting from D.

Throughout this paper, k denotes a commutative ring.

2.1. Definition. The k-linearization of a category D, where k is any commutative
ring, is defined as follows :

• The objects of kD are the objects of D.
• For any two objects X and Y , the set of morphisms from X to Y is the free
k-module kD(Y,X) with basis D(Y,X).

• The composition of morphisms in kD is the k-bilinear extension

kD(Z, Y )× kD(Y,X) −→ kD(Z,X)

of the composition in D.

2.2. Definition. Let D be a category and k a commutative ring. A k-representation
of the category D is a k-linear functor from kD to the category k-Mod of k-modules.

We could have defined a k-representation of D as a functor from D to k-Mod, but
it is convenient to linearize first the category D (just as for group representations,
where one can first introduce the group algebra).

If F : kD → k-Mod is a k-representation of D and if X is an object of D, then
F (X) will be called the evaluation of F at X. Morphisms in kD act on the left
on the evaluations of F by setting, for every m ∈ F (X) and for every morphism
α ∈ kD(Y,X),

α ·m := F (α)(m) ∈ F (Y ) .

We often use a dot for this action of morphisms on evaluation of functors.
The category Fk(kD, k-Mod) of all k-representations of D is an abelian category.

A sequence of functors

0 −→ F1 −→ F2 −→ F3 −→ 0

is exact if and only if, for every object X, the evaluation sequence

0 −→ F1(X) −→ F2(X) −→ F3(X) −→ 0

is exact. Also, a k-representation of D is called simple if it is nonzero and has no
proper nonzero subfunctor.

For any object X of D, consider the representable functor kD(−, X) (which
is a projective functor by Yoneda’s lemma). Its evaluation at an object Y is
the k-module kD(Y,X), which has a natural structure of a (kD(Y, Y ), kD(X,X))-
bimodule by composition.

2.3. Notation. Let X be an object of D and let V be a kD(X,X)-module. We
define

LX,V := kD(−, X)⊗kD(X,X) V .

This is a k-representation of D.
This satisfies the following adjunction property.
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2.4. Lemma. Let F = Fk(kD, k-Mod) be the category of all k-representations
of D and let X be an object of D.

(a) The functor

kD(X,X)-Mod −→ F , V 7→ LX,V

is left adjoint of the evaluation functor

F −→ kD(X,X)-Mod , F 7→ F (X) .

In other words, for any k-representation F : kD → k-Mod and any kD(X,X)-
module V , there is a natural isomorphism

HomF (LX,V , F ) ∼= HomkD(X,X)

(
V, F (X)

)
.

Moreover LX,V (X) ∼= V as kD(X,X)-modules. In particular, there is a
k-algebra isomorphism EndF (LX,V ) ∼= EndkD(X,X)(V ).

(b) The functor kD(X,X)-Mod −→ F is right exact. It maps projective mod-
ules to projective functors, and indecomposable modules to indecomposable
functors.

Proof. Part (a) is straightforward and is proved in Section 2 of [Bou96]. Part (b)
follows because this functor is left adjoint of an exact functor and satisfies the
property LX,V (X) ∼= V . �

Our next result is a slight extension of the first lemma of [Bou96].

2.5. Lemma. Let X be an object of D and let V be a kD(X,X)-module. For any
object Y of D, let

JX,V (Y ) :=
{∑

i

φi ⊗ wi ∈ LX,V (Y ) | ∀ψ ∈ kD(X,Y ),
∑

i

(ψφi) · wi = 0
}
.

(a) JX,V is the largest subfunctor of LX,V which vanishes at X.
(b) If V is a simple module, then JX,V is the unique maximal subfunctor of

LX,V and LX,V /JX,V is a simple functor.

Proof. The proof is sketched in Lemma 2.3 of [BST13] in the special case of biset
functors for finite groups, but it extends without change to representations of an
arbitrary category D. �

Lemma 2.5 is our main tool for dealing with simple functors. We first fix the
notation.

2.6. Notation. Let X be an object of D and let V be a kD(X,X)-module. We
define

SX,V := LX,V /JX,V .

If V is a simple kD(X,X)-module, then SX,V is a simple functor.
We emphasize that LX,V and SX,V are defined for any kD(X,X)-module V and

any commutative ring k. Note that we always have JX,V (X) = {0} because if
a =

∑
i

φi ⊗ wi ∈ JX,V (X), then a = idX ⊗(
∑
i

φi · wi) = 0.

Therefore, we have isomorphisms of kD(X,X)-modules

LX,V (X) ∼= SX,V (X) ∼= V .
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2.7. Proposition. Let S be a simple k-representation of D and let Y be an object
of D such that S(Y ) 6= 0.

(a) S(Y ) is a simple kD(Y, Y )-module.
(b) S ∼= SY,S(Y ).
(c) S is generated by S(Y ), that is, S(X) = kD(X,Y )S(Y ) for all objects X.

More precisely, if 0 6= u ∈ S(Y ), then S(X) = kD(X,Y ) · u.

Proof. (c) Given 0 6= u ∈ S(Y ), let S′(X) = kD(X,Y ) · u for all objects X. This
clearly defines a nonzero subfunctor S′ of S, so S′ = S by simplicity of S.

(a) This follows from (c).

(b) By the adjunction of Lemma 2.4, the identity id : S(Y ) → S(Y ) corresponds
to a non-zero morphism θ : LY,S(Y ) → S, which must be surjective since S is
simple. But SY,S(Y ) is the unique simple quotient of LY,S(Y ), by Lemma 2.5 and
Notation 2.6, so S ∼= SY,S(Y ). �

2.8. It should be noted that a simple k-representation S has many possible real-
izations S ∼= SY,V as above, where V = S(Y ) 6= 0. However, if there is a notion
of unique minimal object, then one can parametrize simple functors S by setting
S ∼= SY,V , where Y is the unique minimal object such that S(Y ) 6= 0. In this case,
the evaluation V = S(Y ) is actually a module for the quotient algebra

kD̂(Y ) = kD(Y, Y )/
∑

Z

kD(Y,Z)kD(Z, Y )

where Z runs through objects which are stricly smaller than Y . In the case of
the category of finite sets and correspondences, this will be the motivation for
considering the algebra of essential relations on a finite set (see Definition 3.3).

The following result establishes a link between the simple subquotients of a
functor and the simple subquotients of its evaluations:

2.9. Proposition. [[BST13] Proposition 3.5, [BT18b] Proposition 2.8] Let S be a
simple k-representation of D and let Y be an object of D such that S(Y ) 6= 0. Let
F be any k-representation of D. Then the following are equivalent:

(a) S is isomorphic to a subquotient of F .
(b) The simple kD(Y, Y )-module S(Y ) is isomorphic to a subquotient of the

kD(Y, Y )-module F (Y ).

Proof. It is clear that (a) implies (b). Suppose that (b) holds and let W1, W2 be
submodules of F (Y ) such that W2 ⊂ W1 and W1/W2

∼= S(Y ). For i ∈ {1, 2},
and for any object X of D, set Fi(X) = kD(X,Y ) ·Wi ⊆ F (X). Then F2 ⊆ F1

are subfunctors of F . Moreover Fi(Y ) = Wi for i ∈ {1, 2}, and (F1/F2)(Y ) =
W1/W2

∼= S(Y ). The isomorphism S(Y ) → (F1/F2)(Y ) induces, by the adjunction
of Lemma 2.4, a nonzero morphism θ : LY,S(Y ) → F1/F2. Since S(Y ) is simple,
the functor LY,S(Y ) has a unique maximal subfunctor JY,S(Y ), by Lemma 2.5, and
LY,S(Y )/JY,S(Y )

∼= SY,S(Y )
∼= S, by Proposition 2.7. Let F ′

1 = θ(LY,S(Y )) and
F ′
2 = θ(JY,S(Y )). Since θ 6= 0, we obtain

F ′
1/F

′
2
∼= LY,S(Y )/JY,S(Y )

∼= SY,S(Y )
∼= S ,

showing that S is isomorphic to a subquotient of F . �

(Actually, as observed by Hida and Yagita in Lemma 3.1 of [HY14], we have
an equality F ′

1 = F1, because both subfunctors are generated by their common
evaluation at Y .)
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3. Correspondences and relations

3.1. Let X and Y be finite sets. A correspondence from X to Y is a subset R of
Y ×X. In case X = Y , we say that R is a relation on X.

Correspondences can be composed as follows. If R ⊆ Y × X and S ⊆ Z × Y ,
then SR is the correspondence from X to Z defined by

SR = {(z, x) ∈ Z ×X | ∃ y ∈ Y such that (z, y) ∈ S and (y, x) ∈ R} .

One can check easily that the composition of correspondences is associative. For a
finite set X, the equality relation

∆X = {(x, x) | x ∈ X} ⊆ X ×X

acts as an identity element for the composition of correspondences. In particular
the set of all relations on X is a monoid.

3.2. Definition. The category C of finite sets and correspondences is defined as
follows:

• The objects of C are finite sets.
• if X and Y are finite sets, the set of morphisms from X to Y in C is the
set C(Y,X) of correspondences from X to Y .

• The composition of morphisms in C is the composition of correspondences.
• The identity morphism of the finite set X is ∆X ∈ C(X,X).

Given a commutative ring k, we will also consider the k-linearization kC of C,
introduced in Section 2, called the k-category of finite sets and correspondences.

When X is a finite set, the endomorphism algebra RX = kC(X,X) of X in the
category kC is called the algebra of relations on X. It is the algebra over k of the
monoid of relations on X.

3.3. Definition. A relation R on a finite set X is called inessential if there exists
a finite set Y with |Y | < |X| and correspondences U ∈ C(X,Y ) and V ∈ C(Y,X)
such that R = UV . A relation is called essential if it is not inessential.

The subset IX of the algebra RX consisting of k-linear combinations of inessen-
tial relations is a two sided ideal. The quotient algebra EX = RX/IX is called the
algebra of essential relations on X (or the essential algebra, for short).

In other words, an essential relation is a relation of maximal Schein rank, in the
sense of Section 1.4 of [Kim82].

The algebra EX has a k-basis consisting of essential relations. The product in
EX of two essential relations R and S on X is equal to RS if RS is essential, and
to 0 otherwise.

3.4. Example.

• Let X be a finite set with |X| ≥ 2, and A,B be subsets of X. Then the
relation R = A×B on X is inessential: if Y is a set of cardinality 1, then
R = UV , where U = A× Y and V = Y ×B.

• Let X = {1, 2}, and R = {(1, 1), (1, 2), (2, 1)} ∈ C(X,X). Then one checks
easily that R is essential, but R2 = X ×X is not.

3.5. Lemma. [[BT16] Lemma 2.1] Let X be a finite set of cardinality n, and
R ∈ C(X,X). Then R is inessential if and only if there are subsets Ui and Vi of X,

for 1 ≤ i ≤ n− 1, such that R =
n−1⋃
i=1

(Ui × Vi).
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3.6. Classical definitions When X and Y are finite sets and R ∈ C(Y,X), we
denote by Rop ∈ C(X,Y ) the opposite correspondence, defined by

Rop = {(x, y) ∈ X × Y | (y, x) ∈ R}.

With this notation, the following classical properties of a relation R on a finite set
X can be translated as follows:

R is reflexive ⇐⇒ ∆X ⊆ R

R is transitive ⇐⇒ R2 ⊆ R

R is a preorder ⇐⇒ ∆X ⊆ R = R2

R is symmetric ⇐⇒ R = Rop

R is an equivalence relation ⇐⇒ ∆X ⊆ R = Rop = R2

R is antisymmetric ⇐⇒ R ∩Rop ⊆ ∆X

R is an order ⇐⇒ R = R2 and R ∩Rop = ∆X .

3.7. Remark.

• Note that unless otherwise specified, by order we always mean partial order.
• It follows from Lemma 3.5 that if R is a preorder on X which is not an
order, then R is inessential.

• On the other hand, if R is an order on X and ∆X ⊆ Q ⊆ R, then Q is
essential.

3.8. Let X be a finite set. For an element σ of the group ΣX of permutations
of X, we set

∆σ = {
(
σ(x), x

)
| x ∈ X}.

We call ∆σ the permuted diagonal associated to σ. One checks easily that the map
σ ∈ ΣX 7→ ∆σ ∈ C(X,X) is a monoid homomorphism, and it follows in particular
that ∆σ is an essential relation on X, for any σ ∈ ΣX .

3.9. Theorem. [[BT16] Theorem 3.2] Let X be a finite set and R be an essential
relation on X. Then there exists a permutation σ of X such that ∆σ ⊆ R, i.e.
R = S∆σ, where S is a reflexive relation on X.

Proof. Let R be an essential relation on X. For any a ∈ A, set

Ra = {x ∈ X | (x, a) ∈ R} and aR = {x ∈ X | (a, x) ∈ R}.

For any subset A of X, define

RA = {x ∈ X | ∃ a ∈ A such that (x, a) ∈ R} =
⋃

a∈A

Ra.

Then R decomposes as a union

R =
( ⋃

y/∈A

(Ry × {y})
)⋃( ⋃

x∈RA

({x} × xR)
)
.

Since R is essential, Card(X − A) + Card(RA) cannot be strictly smaller than
Card(X), by Lemma 3.5. Therefore Card(RA) ≥ Card(A), for all subsets A of X,
that is

Card
( ⋃

a∈A

Ra

)
≥ Card(A) .
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This is precisely the assumption in a theorem of Philip Hall (see Theorem 5.1.1
in [Hal86], or [Hal35] for the original version which is slightly different). The con-
clusion is that there exist elements xy ∈ Ry, where y runs over X, which are all
distinct. In other words σ : y 7→ xy is a permutation and

(σ(y), y) = (xy, y) ∈ R for all y ∈ X .

This means that R contains ∆σ, as required. �

4. The algebra of permuted orders

4.1. Let X be a finite set, and S be a reflexive relation on X. Then ∆X ⊆ S, and
for any integer m ≥ 1

∆X ⊆ S ⊆ S2 ⊆ . . . ⊆ Sm.

Since X is finite, there exists m such that Sm = Sm+1. Let S = Sm denote this
limit value. The relation S is called the transitive closure of S. It is a preorder.
There are now two cases, by Remark 3.7:

• either S is not an order, and then S = 0 in EX .
• or S is an order, and then S is essential, since ∆X ⊆ S ⊆ S.

4.2. Theorem. [[BT16] Theorem 5.3] Let NX be the subset of EX consisting of
k-linear combinations of elements of the form (S − S)∆σ, where S is a reflexive
relation on X, and σ ∈ ΣX .

(a) NX is a two sided nilpotent ideal of EX .
(b) The quotient algebra PX = EX/NX has a k-basis consisting of elements of

the form S∆σ, where S is an order on X, and σ ∈ ΣX .

Proof. (sketch) (a) Let S ⊇ ∆X , and m ∈ N− {0} such that Sm = S.

• Let Q ⊇ ∆X . Then Q(S−S) = QS−QS = (QS−QS)− (QS−QS) since

QS = QS. Hence QNX ⊆ NX , and similarly NXQ ⊆ NX .
• Since S and S commute, we have

(S − S)m =
m∑

i=0

(−1)i
(
m

i

)
Sm−iS

i

= S +

m∑

i=1

(−1)i
(
m

i

)
Sm−iS︸ ︷︷ ︸

S

=
( m∑

i=0

(−1)i
(
m

i

))
S = 0.

Then NX is a two sided ideal of the k-algebra EX , linearly generated by a finite
number of nilpotent elements, so it is a nilpotent ideal of EX (see Lemma 5.1
of [BT16] for details).

(b) By Theorem 3.9, every essential relation R on X can be written R = S∆σ,
where S is reflexive and σ ∈ ΣX . By definition of NX , we have S∆σ = S∆σ in PX ,
and S = 0 in EX if S is not an order, by Remark 3.7. Hence PX is linearly generated
by the elements S∆σ, where S is an order on X, and one checks easily that these
elements are linearly independent. �
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Theorem 4.2 is particularly useful to describe the simple EX -modules: asNX acts by
zero on every such module, the simple EX -modules are actually simple PX -modules.

4.3. A relation R on a finite set X which can be written R = S∆σ, where S is
an order and σ ∈ ΣX , is called a permuted order on X. One can show that this
decomposition of R is unique (in other words, if R is a permuted order, there is a
unique σ ∈ ΣX such that ∆σ ⊆ R).

In view of Assertion (b) of Theorem 4.2, the algebra PX is called the algebra of
permuted orders on X. If S and T are orders on X, and if σ, τ ∈ ΣX , the product
S∆σT∆τ in PX is equal to S.σT∆στ if S.σT is an order, and to 0 otherwise, where
σT = ∆σT∆σ−1 .

In particular PX is ΣX -graded: for σ ∈ ΣX , the degree σ part of PX is the k-
submodule generated by elements S∆σ, where S is an order on X. The subalgebra
P1 has a k-basis consisting of the set OX of orders on X. For S, T ∈ OX , the
product of ST in P1 is equal to ST = S ∪ T if this is an order, and to 0 otherwise.
In particular P1 is commutative. Moreover, the group ΣX acts by conjugation on
OX , and the algebra PX identifies with the semidirect product P1 ⋊ ΣX .

If R ∈ OX , then R2 = R in P1. Moreover if R,S ∈ P1, then either RS = 0
in P1, or RS = R ∪ S if this is an order. We observe that if we order OX by
inclusion of subsets, then RS is either 0 or the least upper bound of R and S in the
poset OX . So we have a k-basis OX of idempotents of the commutative algebra
P1, which is ordered and contains 1 = ∆X , such that the product of any two of
them is either 0 or their supremum in the poset OX . In such a situation, there
is a standard procedure to produce a decomposition of the identity as a sum of
orthogonal idempotents.

4.4. Notation. For R ∈ OX , let fR be the element of P1 defined by

fR =
∑

S∈OX

S⊇R

µOX
(R,S)S,

where µOX
is the Möbius function of the poset OX .

4.5. Theorem. [[BT16] Theorem 6.2]

(a) The elements fR, for R ∈ OX , are orthogonal idempotents of P1, and∑
R∈OX

fR = 1.

(b) Moreover P1fR = kfR, for any R ∈ OX .
(c) The algebra P1 is isomorphic to the product

∏
R∈OX

kfR ∼= k|OX |.

4.6. Notation. For R ∈ OX , let ΣX,R denote the stabilizer of R in ΣX , i.e.

ΣX,R = {σ ∈ ΣX | σR = R}.

Let moreover eR ∈ P1 be the orbit sum

eR =
∑

σ∈[ΣX/ΣX,R]

fσR.

We note that the group ΣX,R is isomorphic to the automorphism group Aut(X,R)
of the poset (X,R). We will generally identify those two groups.

4.7. Theorem. [[BT16] Lemma 7.4 and Theorem 7.5]

(a) The elements eR, for R in a set [ΣX\OX ] of representatives of ΣX-orbits
on OX , are central orthogonal idempotents of PX , and

∑
R∈[ΣX\OX ]

eR = 1.
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(b) The algebra PX is isomorphic to
∏

R∈[ΣX\OX ]

PXeR.

(c) For R ∈ OX , the algebra PXeR is isomorphic to the full matrix algebra
M|ΣX :ΣX,R|(kΣX,R).

Proof. (sketch) The proof relies on the fact that the set {∆σfR | σ ∈ ΣX , R ∈ OX}
is a k-basis of PX , and that the product of two of these basis elements is either zero
or another element of the basis (see [BT16] for details). �

5. The simple modules for the essential algebra

5.1. In this section we deal with the simple modules for the essential algebra EX
and the algebra of permuted orders PX = EX/NX on a finite set X. Theorems 4.2
and 4.7 allow for a description of the simple modules for these algebras.

Recall that ΣX is the group of permutations of X. The group ΣX acts on the
set OX of orders on X. For R ∈ OX , we denote by ΣX,R the stabilizer of R in ΣX ,
and by fR the idempotent associated to R in PX (see Notation 4.6).

5.2. Theorem. [[BT16] Theorem 7.5 and Theorem 8.1] Let X be a finite set.

(a) The surjection EX ։ PX induces a one to one correspondence between the
simple EX-modules and the simple PX-modules.

(b) Let R ∈ OX . Then PXfR has a k-basis {∆σfR | σ ∈ ΣX}, so PXfR ∼=
kΣX as a k-module. It is an (RX , kΣX,R)-bimodule, free as a right kΣX,R-
module.

(c) The simple PX-modules (up to isomorphism) are the modules of the form
PXfR⊗kΣX,R

W , where W is a simple kΣR,X-module (up to isomorphism).
(d) If k is a field with char(k) = 0 or char(k) > |X|, then PX is semisimple,

and NX is equal to the Jacobson radical of EX .

Proof. (a) follows from Theorem 4.2. Now (b) and (c) follow from Theorem 4.7,
and then (d) follows from the semisimplicity of all the group algebras kΣX,R, when
char(k) = 0 or char(k) > |X|. �

As the essential algebra EX is a quotient of the algebra RX = kC(X,X), we now
get a precise description of some simple RX -modules.

5.3. Proposition. [[BT16] Theorem 8.1 and Proposition 8.5] Let R be an order
on X. If S ∈ RX , define a k-endomorphism βR(S) of kΣX by

βR(S) : σ ∈ ΣX 7→

{
τσ if ∃τ ∈ ΣX , ∆ ⊆ ∆τ−1S ⊆ σR
0 if there is no such τ.

(a) The map βR(S) is well defined, and βR(S) ∈ EndkΣX,R
(kΣX).

(b) The map S 7→ βR(S) extends to an algebra homomorphism from RX to
EndkΣX,R

(kΣX), which makes kΣX a (RX , kΣX,R)-bimodule, isomorphic
to PXfR.

(c) For a kΣX,R-module W , let ΛR,W denote the RX-module PXfR⊗kΣX,R
W .

If W is a simple kΣX,R-module, then ΛR,W is a simple RX-module.
(d) If (R′,W ′) is another pair consisting of an order R′ on X and a simple

kΣX,R′-module W ′, then the RX-modules ΛR,W and ΛR′,W ′ are isomorphic
if and only if the pairs (R,W ) and (R′,W ′) are conjugate by ΣX .

Proof. (sketch) (a) and (b) follow from a precise description of the action of RX

on PXfR, using the basis {∆σfR | σ ∈ ΣX} of PXfR. Then (c) and (d) follow from
Theorem 4.7. �
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5.4. Remark. If G is a finite group, a simple kG-module is actually a (k/m)G-
module, where m is some maximal ideal of k. It follows that when dealing with
simple correspondence functors over k, one could always suppose that k is a field.

5.5. Examples. Let k be a field.

• If R = ∆X , then ΣX,R = ΣX , and RX maps surjectively to kΣX , by S 7→ σ
if S = ∆σ for σ ∈ ΣX , and S 7→ 0 is there is no such σ ∈ ΣX .

• IfR is a total order, then ΣX,R = {1}, and PXeR ∼=Mn!(k) (where n = |X|).
In this case kΣX becomes a simple RX -module.

5.6. Remark. Recall that for an order R on a finite set X, the group ΣX,R is
isomorphic to the group Aut(X,R) of automorphisms of the poset (X,R). One may
ask which finite groups can occur as automorphism group of some finite poset. The
answer is quite simple: every finite group can. This was first proved by Birkhoff
([Bir46]), and later simplified by Thornton ([Tho72]) and Barmak-Minian ([BM09])

6. Correspondence functors

6.1. Definition. Let k be a commutative ring. A correspondence functor over k
is a k-representation of the category kC introduced in Definition 3.2. The category
of correspondence functors Fk(kC, k-Mod) is denoted by Fk.

6.2. Remarks. The category kC has the following special important properties:

• The functor sending a finite set to itself and a correspondence to its opposite
(introduced in 3.6) induces a k-linear equivalence from kC to the opposite
category kCop.

• ([[BT18b] Lemma 3.4] Let X and Y be finite sets such that |X| ≤ |Y |. Let
i : X →֒ Y be an injective map, and set

i∗ =
{(
i(x), x

)
| x ∈ X

}
∈ C(Y,X),

i∗ =
{(
x, i(x)

)
| x ∈ X

}
∈ C(X,Y ).

Then i∗i∗ = ∆X . It follows that if F ∈ Fk, then F (i
∗)F (i∗) = idF (X), so

F (X) is isomorphic to a direct summand of F (Y ). In particular F (X) 6= 0
implies F (Y ) 6= 0.

6.3. Examples.

• Yoneda functors YE,k : X 7→ kC(X,E), where E is a fixed finite set, e.g.

* E = ∅: then Y∅,k(X) = kC(X, ∅) ∼= k, for any finite set X. The functor
Y∅,k is the constant functor with value k.

* E = {•}: then Y•,k(X) = kC(X, •) ∼= k(2X), for any finite set X.

Since HomFk
(YE,k,M) ∼= M(E) by the Yoneda Lemma, for any M ∈ Fk,

the functor YE,k is a projective object of Fk, for any E.
• In particular EndFk

(YE,k) ∼= kC(E,E). Let R be a preorder on E, i.e.
R ∈ C(E,E) such that ∆E ⊆ R = R2. Then YE,kR : X 7→ kC(X,E)R is a
projective object of Fk.
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6.4. Lemma. [[BT18b] Corollary 3.5 and Corollary 3.6] Let X and Y be finite
sets with |X| ≤ |Y |.

(a) The representable functor kC(−, X) is isomorphic to a direct summand of
the representable functor kC(−, Y ).

(b) The left kC(Y, Y )-module kC(Y,X) is projective.

Proof. (a) In the category kC, the object X is a retract of Y , by Remark 6.2.

(b) In particular kC(Y,X) is isomorphic to a direct summand of the free module
kC(Y, Y ), so it is projective. �

6.5. Definition. For F ∈ Fk, the dual F ♮ of F is defined by F ♮(X) =
Homk

(
F (X), k

)
for a finite set X, and by F ♮(S) = tF (Sop) for a correspondence

S from X to a finite set Y .

6.6. The results of Sections 2 and 5 yield a parametrization of simple correspon-
dence functors, as well as a rough description of their evaluations, which will be
enough for stating finiteness properties of correspondence functors in the next sec-
tion. We will give a more complete description of simple correspondence functors
in Section 11.

Let S be a simple correspondence functor (i.e. a simple object of Fk). If E is
a set of minimal cardinality such that V = S(E) 6= 0, then by Proposition 2.7 and
the comments in 2.8, the functor S is isomorphic to SE,V , and V is a simple module
for the essential algebra EE . So there exists a unique pair (R,W ) consisting of an
order R on E and a simple kAut(E,R)-module W such that V is isomorphic to
the module ΛR,W = PEfR ⊗kAut(E,R) W of Proposition 5.3.

Conversely, if (E,R,W ) is a triple consisting of a finite set E, an order R on E,
and a simple kAut(E,R)-module W , we denote by SE,R,W the simple correspon-
dence functor SE,ΛR,W

. The assignment (E,R,W ) 7→ SE,R,W is a parametrization
of the simple correspondence functors over k.

6.7. Theorem. [[BT18b] Theorem 4.7] Assume that k is a field. The set of
isomorphism classes of simple correspondence functors over k is parametrized by
the set of isomorphism classes of triples (E,R,W ), where E is a finite set, R is an
order on E, and W is a simple kAut(E,R)-module.

6.8. Examples. Let k be a field.

• The constant functor Y∅,k is simple, isomorphic to S∅,tot,k: here tot denotes
the unique (total) order on the empty set, and k is the trivial module for
the trivial group Aut(∅, tot).

• The Yoneda functor Y•,k is not simple, but splits as a direct sum of the
previous functor S∅,tot,k and the simple functor S•,tot,k, where tot is the
unique (total) order on a set • of cardinality 1, and k is the trivial module
for the trivial group Aut(•, tot).

As the Yoneda functors are projective, the simple functors S∅,tot,k and S•,tot,k are
also projective. These are two special cases of Theorem 11.2.

The following result is the first step in the description of simple correspondence
functors. It gives lower and upper estimates on the dimension of their evaluations.

6.9. Theorem. [[BT18b] Theorem 8.2] Suppose that k is a field and let SE,R,W

be a simple correspondence functor, where E is a finite set, R is an order on E,
and W is a simple kAut(E,R)-module. There exists a positive integer N and a
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positive real number c such that, for any finite set X of cardinality at least N , we
have

c|E||X| ≤ dim
(
SE,R,W (X)

)
≤

(
2|E|

)|X|
.

Proof. (sketch) The main tool is the fact that the simple functor SE,R,W is a quo-
tient of the representable functor kC(−, E). This readily gives the upper bound,
since dimk kC(X,E) = 2|E||X| for any finite set X.

The proof of the lower bound is harder. Let A be a set of representatives of the
action of the group ΣE on the set of surjections ϕ : X → E. For ϕ ∈ A, set

Λϕ = {(x, e) ∈ X × E |
(
ϕ(x), e

)
∈ R} ∈ C(X,E).

Then one can show that the images under the surjection kC(X,E) → SE,R,W (X)
of the elements Λϕ, for ϕ ∈ A, are linearly independent. The lower bound now
follows from an estimate of the cardinality of A (see [BT18b] for details). �

7. Finiteness properties

The notion of finitely generated module over an algebra splits in two different
notions in the realm of correspondence functors. Recall that k is a commutative
ring, and that Fk denotes the category of correspondence functors over k.

7.1. Definition. Let M ∈ Fk.

(a) Let (Ei)i∈I be a family of finite sets, and for each i ∈ I, let mi ∈ M(Ei).
We say that M is generated by (mi)i∈I , and write M = 〈mi〉i∈I , if for any
finite set X and any m ∈ M(X), there exists a finite subfamily J ⊆ I and
elements αj ∈ kC(X,Ej), for j ∈ J , such that m =

∑
j∈J

M(αj)(mj).

(b) M is finitely generated if M = 〈mi〉i∈I , where I is finite.
(c) M has bounded type if there is a finite set E such that M = 〈M(E)〉.

7.2. Examples.

• The Yoneda functor YE,k is finitely generated (by the single element ∆E of
YE,k(E) = kC(E,E)), for any finite set E.

• When E is a finite set, and V a kC(E,E)-module, the functor LE,V (see
Notation 2.3) has bounded type, generated by LE,V (E) ∼= V . It is finitely
generated if and only if V is finitely generated.

7.3. Proposition. [[BT18b] Proposition 6.4] Let k be a commutative ring, and
M be a correspondence functor over k. The following are equivalent:

(a) M is finitely generated.

(b) M is isomorphic to a quotient of a finite direct sum
n
⊕
i=1

YEi,k.

(c) M is isomorphic to a quotient of a finite direct sum (YE,k)
⊕n.

(d) There exists a finite set E and a finite subset B of M(E) such that M is
generated by B. In particular M has bounded type.

Proof. (a)⇒(b). If M is generated by the set {mi | i = 1, . . . , n}, where mi ∈
M(Ei), then each mi yields a morphism YEi,k → M , by Yoneda’s lemma. The
direct sum of these morphisms is surjective.

(b)⇒(c). If M is a quotient of a finite direct sum
n
⊕
i=1

YEi,k. If E is the largest of

the sets Ei, then each YEi,k is a direct summand, hence a quotient, of YE,k, so M
is a quotient of (YE,k)

⊕n.
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(c)⇒(d). Let M be a quotient of
(
kC(−, E)

)⊕n
. Since kC(−, E) is generated by

∆E ∈ kC(E,E), the functorM is generated by the images inM(E) of the elements
∆E of each of the n components of the direct sum.

(d)⇒(a). This is obvious. �

7.4. Lemma. [[BT18b] Lemma 9.1] Let k be a field and let M be a finitely
generated correspondence functor over k. Then M has a maximal subfunctor.

Proof. Since M is finitely generated, it is generated by M(E) for some finite set E,
by Proposition 7.3. Moreover M(E) is a finitely generated RE-module. Let N
be a maximal submodule of M(E) as an RE-module. Then M(E)/N is a simple
RE-module. By Proposition 2.9, there exist two subfunctors F ⊆ G ⊆M such that
G/F is simple, G(E) =M(E), and F (E) = N . SinceM is generated byM(E) and
G(E) =M(E), we have G =M . Therefore, F is a maximal subfunctor of M . �

The following result gives a characterization of the finitely generated correspon-
dence functors over a field. It shows that a correspondence functor over a field is
finitely generated if and only if it has finite length (i.e. it admits a finite compo-
sition series). It should be noted that this equivalence is false in general for other
categories of functors (e.g. biset functors).

7.5. Theorem. [[BT18b] Theorem 8.7 and Theorem 9.2] Let k be a field, and M
be a correspondence functor over k. The following conditions are equivalent:

(a) M is finitely generated.
(b) there exist positive real numbers a, b, r such that dimkM(X) ≤ ab|X| for

any finite set X with |X| ≥ r.
(c) M has finite length.

Proof. (sketch) (a)⇒(b). IfM is finitely generated, it is a quotient of a finite direct

sum
(
kC(−, E)

)⊕n
, by Proposition 7.3. Now dimkM(X) ≤ ndimk kC(X,E) =

n2|X||E|, for any finite set X, so (b) holds.

The proof that (b) implies (a) is harder. We first use Theorem 6.9 to show that if
SE,R,W is a simple subquotient ofM , then the cardinality of E is bounded above by
the number b appearing in (b). Then one builds a morphism π from a finite direct
sum L of representable functors to M , which is surjective on evaluations at any set
X of cardinality at most b. If now F is a finite set of minimal cardinality such that
Cokerπ(F ) is non-zero, then |F | > b. Moreover Cokerπ(F ) is a non-zero module for
the essential algebra EF , hence it admits a simple submodule V . By Proposition 2.9,
it follows that Cokerπ, hence M , admits a simple subquotient isomorphic to SF,V .
But then |F | ≤ b, a contradiction proving that π is surjective, and that (b) implies
(a). So (a) and (b) are equivalent, and in particular, any subfunctor of a finitely
generated correspondence functor over k is finitely generated.

(c)⇒(b). This follows from Theorem 6.9.

(b)⇒(c). By Lemma 7.4, we can build a filtration M = M0 ⊃ M1 ⊃ M2 . . . in
which every subquotientMi/Mi+1 is simple, isomorphic to SEi,Ri,Wi

for some triple
(Ei, Ri,Wi). Now (b) implies by Theorem 6.9 that |Ei| ≤ b for any i. In particular,
there is only a finite number of simple quotients SEi,Ri,Wi

in the filtration, up to
isomorphism. But since the dimension of M(X) is finite for any finite set X, each
of the simple quotients SEi,Ri,Wi

can only occur a finite number of times in the
filtration. This shows that the filtration is finite, so M has finite length. �



14 SERGE BOUC

The equivalence of (a) and (c) in Theorem 7.5 has been proved independently by
Gitlin [Git18] (for an infinite field k), using results of Wiltshire-Gordon on categories
of dimension 0 [WG19].

The following is a consequence of the adjunction of Lemma 2.4.

7.6. Proposition. [[BT18b] Lemma 7.3] Let M be a correspondence functor
over k, and E be a finite set.

(a) If M is projective in Fk, and M is generated by M(E), then M ∼= LF,M(F )

for any finite set F with |F | ≥ |E|, and M(F ) is a projective RF -module.
(b) The functor LE,V is projective (resp. indecomposable) if and only if V is a

projective (resp. indecomposable) RE-module.

We introduce next the notion of residue of a correspondence functor at a finite set,
which is an important tool to study finiteness conditions.

7.7. Definition. Let M be a correspondence functor over k, and E be a finite
set. The residue of M at E is the k-module defined by

M(E) =M(E)/
∑

|F |<|E|

kC(E,F )M(F ).

7.8. Theorem. [[BT18b] Theorem 11.4 and Corollary 11.5] Let k be a commuta-
tive noetherian ring. Let M be a subfunctor of a correspondence functor L over k,
and let E and F be finite sets.

(a) If L is generated by L(F ) and M(E) 6= 0, then |E| ≤ 2|F |.
(b) If L is generated by L(F ) and |E| ≥ 2|F |, then M is generated by M(E).
(c) If L has bounded type, then M has bounded type.
(d) If L is finitely generated, then M is finitely generated.

Proof. (sketch) (a) is proved by localization and Artin-Rees Lemma (Theorem 8.5
in [Mat89]). Then (b), (c), and (d) follow easily. �

7.9. Corollary. Functors of bounded type form an abelian subcategory Fb
k of Fk.

Finitely generated functors form an abelian subcategory Ff
k of Fb

k.

7.10. Proposition. [[BT18b] Proposition 6.6] Let k be a noetherian ring.

(a) For any a finitely generated correspondence functor M over k, the algebra
EndFk

(M) is a finitely generated k-module.
(b) For any two finitely generated correspondence functors M and N over k,

the k-module HomFk
(M,N) is finitely generated.

(c) If k is a field, then the Krull-Remak-Schmidt theorem holds for finitely gen-
erated correspondence functors over k.

Proof. (a) M is a quotient of a projective functor
n
⊕
i=1

kC(−, E), so EndFk
(M) is a

quotient of a k-submodule of the finitely generated k-module Mn

(
kC(E,E)

)
.

(b) HomFk
(M,N) is a direct summand of EndFk

(M ⊕N).

(c) Splitting M ∈ Fk amounts to splitting the identity as a sum of orthogonal
idempotents in the finite dimensional k-algebra EndFk

(M). �

The following three results show that when k is a field, the category Ff
k shares

many properties of the category of modules over a finite group algebra.
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7.11. Theorem. [[BT18b] Theorem 10.2 and Corollary 10.3] Let E be a finite
set.

(a) The representable functor YE,k = kC(−, E) is isomorphic to its dual.
(b) Let RE = kC(E,E) be the algebra of relations on E. Then RE is a sym-

metric k-algebra, in the sense of [Bro09]. More precisely, let tE : RE → k
be defined by

∀R ∈ C(E,E), tE(R) =

{
1 if R ∩∆E = ∅,
0 otherwise.

Then tE is a symmetrizing form for RE.
(c) If k is a field (or more generally if k is self injective), any finitely generated

projective correspondence functor over k is also injective. In particular Ff
k

has infinite global dimension.

Proof. (b) Let R,S ∈ C(E,E). Then tE(RS) = 1 ⇔ R ⊆ (E×E)−Sop. The matrix(
tE(RS)

)
R,S∈C(E,E)

is the product of a permutation matrix (S 7→ (E × E)− Sop)

with the matrix of an order (⊆), hence it is invertible (over Z).

(a) follows from a similar argument, and (c) is an easy consequence of (a). �

7.12. Theorem. [[BT18b] Theorem 10.6] Let k be a field, and M be a finitely
generated correspondence functor over k. The following are equivalent:

(a) M is projective and indecomposable.
(b) M is projective and admits a unique maximal proper subfunctor.
(c) M is projective and admits a unique minimal non-zero subfunctor.
(d) M is injective and indecomposable.
(e) M is injective and admits a unique maximal proper subfunctor.
(f) M is injective and admits a unique minimal non-zero subfunctor.

Proof. We first note that if M is finitely generated, it has finite length by Theo-
rem 7.5, hence (if it is non zero) it admits a maximal subfunctor and a minimal
subfunctor.

(a)⇒(b). If M is projective and indecomposable, and generated by its evaluation
at some finite set E, we can assume M = LE,V , where V is an indecomposable
projective RE-module, by Proposition 7.6. Since RE is a finite dimensional k-
algebra, the module V has a unique maximal submodule W . If N is a subfunctor
ofM , then N(E) is a submodule ofM(E) = V . If N(E) = V , then N =M , asM is
generated byM(E) = V . Hence N(E) ⊆W if N 6=M . So if N and N ′ are distinct
maximal subfunctors of M , then N +N ′ =M , which implies N(E) +N ′(E) = V ,
a contradiction since N(E) and N ′(E) are both contained in W .

(b)⇒(a). If M has a unique maximal subfunctor and M = M1 ⊕M2 for non zero
subfunctorsM1 andM2, thenM1 andM2 are finitely generated by Theorem 7.5, so
admit maximal subfunctors N1 and N2, respectively. Then M1 ⊕N2 and N1 ⊕M2

are distinct maximal subfunctors of M .

(a)⇒(d). If M is a finitely generated indecomposable projective functor, then M
is injective (and indecomposable) by Theorem 7.11.

(d)⇒(a). If M is finitely generated and injective, then M ♮ is projective and finitely
generated (as M and M ♮ both have finite length), hence injective, so M ∼= (M ♮)♮

is projective.

(a)⇒(c). For a finitely generated functor M , the duality between M and M ♮

induces an order reversing bijection between the subfunctors of M and the sub-
functors of M ♮. If M is projective and indecomposable, then so is M ♮, that is, (a)
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holds for M ♮. Thus (b) holds for M ♮ and the functor M ♮ has a unique maximal
subfunctor. Hence M has a unique minimal subfunctor.

(c)⇒(a). IfM is projective and admits a unique minimal subfunctor, thenM is also
injective, and its dual M ♮ is projective and admits a unique maximal subfunctor.
Hence M ♮ is indecomposable, so M is indecomposable.

It is now clear that (e) and (f) are both equivalent to (a), (b), (c) and (d). �

7.13. Theorem. [[BT18b] Theorem 10.7] Let k be a field.

(a) Let M be a finitely generated projective correspondence functor. Then

M/Rad(M) ∼= Soc(M).

(b) Let M and N be finitely generated correspondence functors over k. If M is
projective, then

dimk HomFk
(M,N) = dimk HomFk

(N,M) < +∞.

Proof. (sketch) The proof is a generalization of the proof of the similar result for
modules over a symmetric algebra ([Ben91] Theorem 1.6.3). It relies mainly on
Theorem 7.11 (see [BT18b] for details). �

8. Stability

When k is noetherian, the Hom-sets and more generally the Ext-groups from cor-
respondence functors of bounded type over k to arbitrary correspondence functors
over k are detected on their evaluations at large enough finite sets. More precisely:

8.1. Theorem. [[BT18b] Theorem 12.3] Let k be a noetherian ring, let M,N ∈
Fk, and let E,F be finite sets.

(a) If M is generated by M(E), then for |F | ≥ 2|E|, the evaluation map

HomFk
(M,N) → HomRF

(
M(F ), N(F )

)

is an isomorphism.
(b) If M has bounded type, then for any i ∈ N, there exists ni ∈ N such that if

|F | ≥ ni, the map

ExtiFk
(M,N) → ExtiRF

(
M(F ), N(F )

)

is an isomorphism.

When k is noetherian, this leads to the following alternative description of Fb
k, up

to equivalence of categories.

8.2. Definition. Let Gk be the following category:

• the objects of Gk are pairs (E,U), where E is a finite set, and U is an
RE-module.

• a morphism (E,U) → (F, V ) in Gk is a morphism of RE-modules

U → kC(E,F )⊗RF
V.

• the composition in Gk of f : (E,U) → (F, V ) and g : (F, V ) → (G,W ) given
respectively by

f : U → kC(E,F )⊗RF
V and g : V → kC(F,G)⊗RG

W

is the morphism (E,U) → (G,W ) given by the composition

U
f
// kC(E,F )⊗RF

V
h
// kC(E,F )⊗RF

kC(F,G)⊗RG
W

l
// kC(E,G)⊗RG

W
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where

{
h = idkC(E,F ) ⊗RF

g
l = µ⊗RG

idW
, and µ : kC(E,F )⊗RF

kC(F,G) → kC(E,G)

is the composition in kC.

• the identity morphism of (E,U) is U
∼=
→ kC(E,E)⊗RE

U .

8.3. Theorem. [[BT18b] Theorem 12.7]

(a) The assignment (E,U) 7→ LE,U is a fully faithful k-linear functor Gk → Fb
k.

(b) When k is noetherian, it is an equivalence of categories. In particular Gk is
abelian.

9. Correspondence functors and lattices

9.1. In this section, we consider finite lattices, and build important examples of
correspondence functors from them. Recall that a lattice (T,∨,∧) is a poset in
which any pair {x, y} of elements admits a least upper bound x∨ y, called the join
of x and y, and a largest lower bound x∧ y, called the meet of x and y.

If T is a lattice, and T op is the opposite poset, then (T op,∧,∨) is a lattice.
A lattice T is called distributive if x∧(y ∨ z) = (x∧ y)∨(x∧ z) for any x, y, and
z in T . One can show that T is distributive if and only if T op is, that is, if
x∨(y ∧ z) = (x∨ y)∧(x∨ z) for any x, y, and z in T .

A finite lattice T always admits a largest element (the join of all elements of T ),
denoted by 1T , and a smallest element (the meet of all elements of T ), denoted
by 0T .

9.2. Notation. Let T be a finite lattice.

• For a finite set X, we denote by FT (X) = k(TX) the free k-module with
basis the set TX of all maps from X to T .

• For a finite set Y and a correspondence S ∈ C(Y,X), we define a k-linear
map FT (S) : FT (X) → FT (Y ) by sending ϕ : X → T to Sϕ : Y → T
defined by

∀y ∈ Y, (Sϕ)(y) =
∨

(y,x)∈S

ϕ(x).

9.3. Theorem. [[BT19a] Proposition 4.2 and Theorem 4.12] Let k be a commu-
tative ring, and T be finite lattice.

(a) FT is a correspondence functor over k.
(b) FT is projective in Fk if and only if T is distributive.

In order to study the functorial aspects of the construction T 7→ FT , we introduce
the following category L and its k-linearization (see Definition 2.1):

9.4. Definition.

• Let T and T ′ be finite lattices. A map f : T → T ′ is called a join morphism
if f(

∨
t∈A

t) =
∨
t∈A

f(t), for any subset A of T .

• Let L denote the following category:

– the objects of L are the finite lattices.
– for finite lattices T and T ′, the set HomL(T, T

′) is the set of join
morphisms from T to T ′.

– the composition of morphisms in L is the composition of maps, and the
identity morphism of a finite lattice T is the identity map of T .

• Let kL be the k-linearization of L.
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Note that for finite lattices T and T ′, a join morphism f : T → T ′ always maps
0T to 0T ′ (this follows from the case A = ∅ in the definition). Conversely, if f is a
map from T to T ′ such that f(0T ) = 0T ′ and f(a∨ b) = f(a)∨ f(b) for any a and b
in T , then f is a join morphism.

For our next theorem, we need some notation. Let f : T → T ′ be a morphism
in the category L. For a finite set X, let Ff,X : FT (X) → FT ′(X) be the k-linear
map sending the function ϕ : X → T to the function f ◦ ϕ : X → T ′.

9.5. Theorem. [[BT19a] Theorem 4.8]

(a) Let f : T → T ′ be a morphism in the category L. Then the collection
of maps Ff,X : FT (X) → FT ′(X), for all finite sets X, yields a natural
transformation Ff : FT → FT ′ of correspondence functors.

(b) The assignment sending a lattice T to FT , and a morphism f : T → T ′ in L
to Ff : FT → FT ′ , yields a functor L → Fk. This functor extends uniquely
to a k-linear functor

F? : kL −→ Fk .

(c) The functor F? is fully faithful.

The functor F? is also well behaved with the duality F 7→ F ♮ of functors introduced
in Definition 6.5. To state this, we need the following notation:

9.6. Notation. For a morphism f : T → T ′ in L, let fop : T ′ → T be the map
defined by

∀t′ ∈ T ′, fop(t′) =
∨

x∈T
f(x)≤t′

x,

where the join is taken in T .

9.7. Theorem. [[BT19a] Lemma 8.1 and Theorem 8.9]

(a) Let T and T ′ be finite lattices. If f : T → T ′ is a morphism in L, then
fop : T ′op → T op is a morphism in L.

(b) The assignment T 7→ T op extends to an equivalence L → Lop and a k-linear
equivalence kL → kLop.

(c) The functors T 7→ (FT )
♮ and T 7→ FT op from kL to Fop

k are naturally
isomorphic.

10. Fundamental functors

10.1. Let (E,R) be a finite poset. In Proposition 5.3, we have introduced, for
any kAut(E,R)-module W , an RE-module ΛR,W = PEfR ⊗kAut(E,R) W . So
far we have used this construction only in the case where W is simple, in order
to parametrize the simple correspondence functors over k, by setting SE,R,W =
SE,ΛR,W

, where SE,ΛR,W
is the functor SX,V introduced in Notation 2.6, in the case

of the object X = E of the category D = C, and the kD(X,X) = RE-module
V = ΛR,W .

We will now consider the correspondence functor SE,ΛR,W
over k associated to

the free module W = kAut(E,R). Then ΛR,W = PEfR ⊗kAut(E,R) kAut(E,R) ∼=
PEfR.
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10.2. Definition. Let (E,R) be a finite poset. The fundamental correspondence
functor over k associated to (E,R) is the functor

SE,R = SE,PEfR .

We will see that the fundamental functors associated to finite posets allow for a
precise description of all the simple correspondence functors.

Our first observation is that SE,R is by definition a quotient of the functor
LE,PEfR = kC(−, E) ⊗RE

PEfR, which is itself a quotient of the representable
functor kC(−, E), since LE,PEfR is generated by the element ∆E ⊗RE

fR of its
evaluation LE,PEfR(E) = kC(E,E)⊗RE

PEfR ∼= PEfR.
Since R =

∑
S∈OE

S⊇R

fS in PE by definition of the idempotents fS , we have RfR = fR

in PE . Thus R(∆E ⊗RE
fR) = R ⊗RE

fR = ∆E ⊗RE
RfR = ∆E ⊗RE

fR, and
it follows that the direct summand kC(−, E)R of kC(−, E) maps surjectively onto
SE,R, so we get a canonical surjective morphism

πE,R : kC(−, E)R։ SE,R.

Before going further, we need to recall some classical definitions and results on
finite lattices.

10.3. Definition.

• Let T be a finite lattice. An element e of T is called join-irreducible if
whenever e can be written e =

∨
a∈A

a for some subset A of T , then e ∈ A.

We denote by Irr(T ) the set of join-irreducible elements of T , viewed as a
full subposet of T .

• Let (E,R) be a finite poset. For e ∈ E, set

]., e]E,R = Re = {x ∈ E | (x, e) ∈ R}.

A lower ideal of (E,R) is a closed downwards subset of E, i.e. a subset A
such that ]., x]E,R ⊆ A whenever x ∈ A. Let I↓(E,R) be the set of lower
ideals of (E,R), ordered by inclusion of subsets.

The poset I↓(E,R) is a distributive lattice, the join operation being union of subsets,
and the meet operation being intersection of subsets. It is easily seen moreover that

Irr(I↓(E,R)) = {]., e]E,R | e ∈ E}.

The map e ∈ E 7→]., e]E,R is an isomorphism of posets from (E,R) to Irr(I↓(E,R)).
We will freely abuse notation and identify these two posets.

When T is a finite lattice, and (E,R) = Irr(T ), the map

sT : A ∈ I↓(E,R) 7→
∨

a∈A

a ∈ T

is a surjective join-morphism of lattices. By standard theorems (see [Sta12] Theo-
rem 3.4.1 and Proposition 3.4.2, and also [Rom08] Theorem 6.2), it is a bijection if
and only if T is distributive, and then it is an isomorphism of lattices.

10.4. Proposition. [[BT19a] Proposition 4.5 and Theorem 6.5] Let T be a finite
lattice, and (E,R) = Irr(T ).

(a) There is a canonical isomorphism of functors FI↓(E,R)
∼= kC(−, E)Rop.

(b) The morphism FI↓(E,R)
∼= kC(−, E)Rop

πR,T
// // SE,Rop factors as

FI↓(E,R)

FsT
// // FT

ΘT
// // SE,Rop .
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10.5. Definition. Let T be a finite lattice, and (E,R) = Irr(T ).

• For t ∈ T , let r(t) =
∨

e∈E
e<t

e and σ(t) =
∧

e∈E
e>t

e. Define inductively rn(t) and

σn(t) by rn(t) = r
(
rn−1(t)

)
and σn(t) = σ

(
σn−1(t)

)
.

Then t ≥ r(t) ≥ . . . ≥ rn(t) = rn+1(t) for some n. Set r∞(t) = rn(t).
Similarly t ≤ σ(t) ≤ . . . σm(t) = σm+1(t) for some m. Set σ∞(t) = σm(t).

• Let GT = E ⊔ {t ∈ T | t = r∞σ∞(t)}, and G(E,R) = GI↓(E,R).

Note that the union in the definition of GT is disjoint because r(t) < t if (and only
if) t ∈ E.

10.6. Theorem. [[BT18a] Theorem 5.6] Let (E,R) be a finite poset, and T be a
finite lattice such that Irr(T ) ∼= (E,R).

(a) Let G(E,R) denote the image of G(E,R) by sT : I↓(E,R) // // T .

• The restriction of the map sT to G(E,R) is an isomorphism of posets
G(E,R) → G(E,R). Moreover G(E,R) = GT . In particular GT only
depends on the poset Irr(T ), up to isomorphism.

• For any finite set X, the set

{ϕ : X → T | E ⊆ ϕ(X) ⊆ G(E,R)} ⊆ FT (X)

is mapped by ΘT,X : FT (X) → SE,Rop(X) to a k-basis of SE,Rop(X).

(b) For any finite set X, the k-module SE,R(X) is free of rank

rkk SE,R(X) =

e∑

i=0

(−1)i
(
e

i

)
(g − i)|X|,

where e = |E| and g = |G(E,R)|.

10.7. Examples. (The black nodes of I↓(E,R) are the join-irreducible elements)

(E,R) I↓(E,R) G(E,R)

•

✂✂
✂✂ ❁❁

❁❁
•

✂✂
✂✂

• •

◦

⑧⑧
⑧⑧ ❄❄

❄❄

•
❄❄

❄❄ ◦

⑧⑧
⑧⑧ ❄❄

❄❄

◦

⑧⑧
⑧⑧ ❄❄

❄❄ •

⑧⑧
⑧⑧

•
❄❄

❄❄ •

⑧⑧
⑧⑧

◦

•

⑥⑥
⑥⑥

❇❇
❇❇

❇❇
❇❇

❇❇

•

❇❇
❇❇

❇❇
❇❇

❇❇ ·
❆❆

❆❆

·
❈❈

❈❈
•

⑥⑥
⑥⑥

•
❆❆

❆❆ •

④④
④④
④

•

rkkSE,R(X) = 6x − 4.5x + 6.4x − 4.3x + 2x, where x = |X|.

(E,R) I↓(E,R) G(E,R)

•

✆✆
✆✆
✆

✾✾
✾✾
✾

• •

•

◦
❄❄

❄❄

⑧⑧
⑧⑧

•
❄❄

❄❄ •

⑧⑧
⑧⑧

◦

•

•
❄❄

❄❄

⑧⑧
⑧⑧

•
❄❄

❄❄ •

⑧⑧
⑧⑧

•

rkkSE,R(X) = 5x − 3.4x + 3.3x − 2x, where x = |X|.
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11. The simple correspondence functors

11.1. Theorem. [[BT18a] Theorem 6.6 and Theorem 6.10] Let (E,R) be a finite
poset, and X be a finite set.

(a) SE,R(X) is a free right kAut(E,R)-module.
(b) Let k be a field, and W be a simple kAut(E,R)-module. Then

SE,R,W (X) ∼= SE,R(X)⊗kAut(E,R) W.

In particular

dimk SE,R,W (X) =
dimkW

|Aut(E,R)|

e∑

i=0

(−1)i
(
e

i

)
(g − i)|X|,

where e = |E| and g = |G(E,R)|.

In the case of a totally ordered poset, the previous result takes the following form.
Let n ∈ N. Set n = {0 < 1 < . . . < n}, and [n] = Irr(n) = n−{0}. Set Sn = S[n],tot,
where tot is the natural total order on [n]. Observe that ([n], tot) ∼= ([n], totop)

11.2. Theorem. [[BT19a] Proposition 10.2, Theorem 11.1, Theorem 11.6 and
Theorem 11.8]

(a) The surjection Fn → Sn splits. The functor Sn is projective.
(b) If X is a finite set, then Sn(X) is a free k-module of rank

n∑

i=0

(−1)n−i

(
n

i

)
(i+ 1)|X|.

(c) Fn
∼=

⊕
A⊆[n]

S|A|
∼=

n⊕
j=0

(Sj)
⊕(nj).

(d) EndkL(n) ∼= EndFk
(Fn) ∼=

n∏
j=0

M(nj)
(k).

(e) If k is a field, then Sn is simple (and projective, and injective), isomorphic
to S[n],tot,k.

The case of a total order raises the question of determining all simple projective
correspondence functors. The answer is as follows.

11.3. Definition.

• If X and Y are posets, let X ∗Y denote the set X⊔Y , ordered by the orders
of X and Y , and moreover x ≤ y for x ∈ X and y ∈ Y .

• A pole poset is a poset of the form E1 ∗ E2 ∗ . . . En, where Ei is a set of
cardinality 1 or 2, ordered by equality, for i = 1, . . . , n.

11.4. Theorem. [[BT19b] Theorem 4.5] Let k be a field, and SE,R,W be a sim-
ple correspondence functor, where (E,R) is a finite poset, and W is a simple
kAut(E,R)-module. The following conditions are equivalent:

(a) SE,R,W is projective.
(b) (E,R) is a pole poset, and W is a projective kAut(E,R)-module.
(c) Either (E,R) is totally ordered or (E,R) is a pole poset and char(k) 6= 2.
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11.5. Examples. [[BT18a] Example 8.9 and Example 8.10]

• Let D be the following lattice:

D =

◦

✝✝
✝✝
✝✝ ❑❑❑

❑❑

•

•

✽✽
✽✽

✽✽

•
sss
ss

◦

One can show that the functor FD splits as

FD
∼= S0 ⊕ 4S1 ⊕ 4S2 ⊕ S3 ⊕ 2S•• ⊕ S

•

•

•

,

where •• is a set of cardinality 2, ordered by equality, and •

•

•
is a poset of

cardinality 3 with 2 connected components.
In particular, when k is a field of characteristic different from 2, the

functor FD is semisimple. Since D is not distributive, the functor FD is
not projective, by Theorem 9.3. The only non projective direct summand
in the above decomposition is S

•

•

•

.

• Let T be the following lattice :

T =

•

②②
②②
②

❊❊
❊❊

❊

◦
❊❊

❊❊
❊ ◦ ◦

②②
②②
②

•

One can show that FT splits as

FT
∼= S0 ⊕ 4S1 ⊕ 3S2 ⊕ 3S•• ⊕ S••• ,

where ••• is a set of cardinality 3 ordered by equality. All the summands
in this decomposition of FT , except possibly S•••, are projective functors.
Since the lattice T is not distributive, the functor FT is not projective, thus
S••• is actually not projective either.

11.6. Remark. The sequence of multiplicities of Sn as a direct summand of FD is
1, 4, 4, 1, 0 for n = 0, 1, 2, 3, 4, and the number of chains 0D = x0 < x1 < . . . < xn in
D is equal to 1, 4, 4, 1, 0 for n = 0, 1, 2, 3, 4. Similarly, the sequence of multiplicities
of Sn as a direct summand of FT is 1, 4, 3, 0 for n = 0, 1, 2, 3, and the number of
chains 0T = x0 < x1 < . . . < xn in T is equal to 1, 4, 3, 0 for n = 0, 1, 2, 3. This is
not a coincidence. . . (see [BT19a] Section 10 and Section 11 for details).

11.7. Theorem. [[BT18a] Theorem 7.1 and Theorem 7.2] Let X be a finite set,
and RX = kC(X,X), where k is a field.

(a) The set of isomorphism classes of simple RX-modules is parametrized by the
set of isomorphism classes of triples (E,R,W ), where E is a finite set with
|E| ≤ |X|, R is an order relation on E, and W is a simple kAut(E,R)-
module.

(b) The simple RX-module parametrized by the triple (E,R,W ) is SE,R,W (X).
(c) In particular, the dimension of this simple module is equal to

dimk SE,R,W (X) =
dimkW

|Aut(E,R)|

|E|∑

i=0

(−1)i
(
|E|

i

)(
|G(E,R)| − i

)|X|
.
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11.8. Corollary. [[BT18a] Theorem 7.4] Let k be a field of characteristic 0.
Let X be a finite set, and J(RX) denote the Jacobson radical of RX = kC(X,X).
Set n = |X|. Then

dimk J(RX) = 2n
2

−
n∑

e=0

∑

R

1

|Aut(E,R)|

( e∑

i=0

(−1)i
(
e

i

)(
|G(E,R)| − i

)n)2

,

where R runs through a set of ΣE-conjugacy classes of order relations on E =
{1, . . . , e}, and E = ∅ if e = 0.
For small values of n, the dimension of J(RX) is given in the following table.
For n ≤ 2, this dimension is 0, so the algebra kRX is semisimple. For n = 3, the
dimension of J(RX) is 42, and follows from a computer calculation in [Bre14]. This
value can be confirmed by hand using the above formula. This value has also been
confirmed by a direct computation using the computer software GAP [GAP15].
For n ≥ 4, a direct computation using the algebra RX is not possible on current

computers, because the dimension 2n
2

of this algebra is too big. The table below
has been completed via a computer calculation using GAP and the above formula.

n dimk J(RX)
≤ 2 0
3 42
4 32, 616
5 29, 446, 050
6 67, 860, 904, 320
7 562, 649, 705, 679, 642
8 18, 446, 568, 932, 288, 588, 616
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