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Abstract

Let G be a finite group, and C be an abelian group. We introduce the notions of
C-monomial G-sets and C-monomial G-posets, and state some of their categorical
properties. This gives in particular a new description of the C-monomial Burn-
side ring Bo(G). We also introduce Lefschetz invariants of C-monomial G-posets,
which are elements of Bo(G). These invariants allow for a definition of a gener-
alized tensor induction multiplicative map Ty x : Bo(G) — Be(H) associated to
any C-monomial (G, H)-biset (U, \), which in turn gives a group homomorphism
Beo(G)* — Be(H)™ between the unit groups of C-monomial Burnside rings.
AMS Classification: 06A11, 19A22, 20J15
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1 Introduction

Let GG be a finite group, and C' be an abelian group. In this work, we first introduce the
notion of C'-monomial G-set: this is a pair (X, ) consisting of a finite G-set X, together
with a functor from the transporter category X of X , to the the groupoid eo with one
object and automorphism group C. The C-monomial G-sets form a category oM G-set,
and we show that it is equivalent to the category o F'G-set of C-fibred GG-sets considered
by Barker ([1]). In particular, the C-monomial Burnside ring B¢ (G) introduced by Dress
([5]) is isomorphic to the Grothendieck ring of the category M G-set.

We extend these definitions to the notion of C'-monomial G-poset: this is a pair (X, [)
consisting of a finite G-poset X, and a functor [ from the transporter category X to oc.
We associate to each such pair (X,[) a Lefschetz invariant A(x lying in Bo(G). We
show that any element of B (G) is equal to the Lefschetz invariant of some (non unique)
C-monomial G-poset.

We also introduce the category ¢ M G-poset of C'-monomial G-posets, and show that
there are natural functors of induction Indg - oM H-poset — M G-poset and of restric-
tion Resg : cMG-poset — M H-poset, whenever H is a subgroup of G. These functors
are compatible with the construction of Lefschetz invariants.

We extend several classical properties of the Lefschetz invariants of G-posets to Lef-
schetz invariants of C-monomial G-posets (the classical case being the case where C' is
trivial).

We next turn to the construction of generalized tensor induction functors

Ty : cMG-poset — oM H-poset
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associated, for arbitrary finite groups G and H, to any C-monomial (G, H)-biset (U, \).
We show that these functors induce well defined tensor induction maps

7?]7)\ : Bc(G) — Bc(H>,

which are not additive in general, but multiplicative and preserve identity elements. In
particular, we get induced group homomorphisms between the corresponding unit groups
of monomial Burnside rings, similar to those obtained by Carman ([4]) for other usual
representation rings.

We show moreover that under an additional assumption, these tensor induction func-
tors and their associated tensor induction maps are well behaved for composition. This
yields to a (partial) fibred biset functor structure on the group of units of the monomial
Burnside ring.

2 The monomial Burnside ring

Let G be a finite group and C' be an abelian group which is noted multiplicatively. We
denote by G-set the category of finite G-sets (with G-equivariant maps as morphisms),
and B(G) the usual Burnside ring of G, i.e. the Grothendieck ring of G-set for relations
given by disjoint union decompositions of finite G-sets.

2.1 The category of C-fibred G-sets

A C-fibred G-set is defined to be a C-free (C' x G)-set with finitely many C-orbits. Let
o F'G-set denote the category of C-fibred G-sets where morphisms are (C'x G)-equivariant
maps. The coproduct of C-fibred G-sets X, Y is their coproduct X LY as sets, with the
obvious (C' x G)-action. If X and Y are C-fibred G-sets, there is a C-action on X x Y
defined by c(x,y) = (cx,c'y) for any ¢ € C and (z,y) € X x Y. The C-orbit of an
element (z,y) of X x Y is denoted by x ®y and the set of C-orbits is denoted by X ® Y.
Moreover C' x G acts on X ® Y by

(c,9)(r®Y) = cgr @ gy

for any (¢,9) € C x G and x @ y € X ® Y. One checks easily that X ® Y is again a
C-fibred G-set, called the tensor product of X and Y.

We denote the isomorphism class of a C-fibred G-set X by [X]. The C-monomial
Burnside ring Be(G), introduced by Dress ([5]), is defined as the Grothendieck group
of the category of C-fibred G-sets, for relations given by [X]+ [Y] = [X UY]. The ring
structure of B¢ (G) is induced by [X] - [Y] = [X ® Y]. The identity element is the set
C with trivial G-action and the zero element is the empty set. If C' is trivial we recover
the ordinary Burnside ring of the group G.

Given a C-fibred G-set X, we denote the set of C-orbits on X by C\ X. The group G
acts on C\ X, and X is (C x G)-transitive if and only if C\ X is G-transitive. If C\ X
is transitive as a G-set it is isomorphic to G/U for some U < G. There exists a group



homomorphism p : U — C' such that if U is the stabilizer of the orbit C'z, then ax =
p(a)z for all @ € U. Since the stabilizer (C' x G), of z in C' x G is equal to

(€% G)s = {(ula) " a) | a € U},

the C-fibred G-set X is determined up to isomorphism by the subgroup U and .

Conversely, let U be a subgroup of G, and y : U — C' be a group homomorphism.
Then we set U, = {(u(a)™,a) | @ € U}, and denote by [U, ule the C-fibred G-set
(C x G)/U,. The pair (U, p) is called a C-subcharacter of G. We denote the set of
C-subcharacters by ch(G). The group G acts on ch(G) by conjugation. The G-set
ch(G) is a poset with the relation < defined by

(U,p) < (V,v) & U < Vand Resjjv =

for any (U, ) and (V,v) in ch(G).
As an abelian group we have

Bo(G)= @ ZlU.ue

(U,u)€q ch(G)

where (V,v) runs over G-representatives of the C-subcharacters of G, details can be seen
in [1].

2.2 The category of C-monomial G-sets

Let GG be a finite group and C be an abelian group. Given a G-set X, we consider its
transporter category X whose objects are the elements of X and given z, y in X the set
of morphisms from x to y is

Homg(z,y) = {9 € G | gz = y}.

Let e denote the category with one object where morphisms are the elements of C' and
composition is multiplication in C'. Now we define C-monomial G-sets as follows.

Definition 1. A C-monomial G-set is a pair (X, ) consisting of a finite G-set X and
a functor [ : X — ec.

In otherwords, for each x,y € X and g € G such that gr = y, we have an element
[(g,z,y) of C, with the property that [(h,y, z2)l(g, z,y) = (hg,x, z) if h € G and hy = z,
and [(1,z,x2) =1 for any x € X.

Let (X,I) and (Y,m) be C-monomial G-sets. If f : X — Y is a map of G-sets,
we slightly abuse notation and also denote by f : X — Y the obvious functor induced
by f. Now a map (f,A) : (X, ) = (Y, m) of C-monomial G-sets is a pair consisting of
amap f: X — Y of G-sets and a natural transformation A : [ - mo f. We denote by
cMG-set the category whose objects are C-monomial G-sets, morphisms are the maps
of C-monomial G-sets, and composition is the obvious one.



Let (X,[) and (X’,I') be C-monomial G-sets. We define the disjoint union of C-
monomial G-sets as (X, [) L (X', ') = (X U X', TUl') where X U X" is the disjoint union
of G-sets and -

(Ul XUX — e¢

is the functor such that

: eX
(Tu ) (g, 21, 22) = (9,21,22) 21, 22
[,<gazl,22) 21, %o c X/

for any 21, zo € X U X’ such that gz; = 2, for some g € G.
The product of C-monomial G-sets (X, [), (X', ') is defined to be (X x X', [ x I')

where X x X’ is the product of G-sets and [ X I' : X X Y — e is the functor defined by

(tx ) (g, (x,2), (y,9) = Ug, =, y)l (g, 2",y

for g € G and (z,2'), (y,y') € X x X’ such that g(x,z’") = (y,9').

Our goal is to show that the categories ¢ M G-set and ¢ F'G-set are equivalent. For
this, we define a functor F' : c M G-set — ¢ F'G-set as follows: given a C-monomial G-set
(X, 1), we set

F(X,l)=C %X,

which is the direct product C'x X endowed with the (C'xG)-action defined by (k, g)(c,x) =
(kcl(g,z, gz), gz) for any (k,g) € C x G and (c,z) € C' x X.
Given a map (f,A) : (X,[) = (Y,m) of C-monomial G-sets, we define

F(f,A):Cx; X - CxpY

by F(f,A\)(c,z) = (cAs, f(z)) for any (c,x) € C' x{ X. Then F(f,\) is a (C' x G)-map:
indeed, given (k,g) € C' x G and (c,x) € C' x X, we have

(k, 9)F(f, N (¢, x) = (k, g)(cAa, f(2)) = (keham(g, f(2), f(g)), f(gz))
= (keAgl(g, 2, 92), f(gz)) = F(f, ) (kel(g, z, g), gx)
= F(f,0)((k g)(c, x)).

It is clear that F': o M G-set — «F'G-set is a functor.

Lemma 2. Let C' be an abelian group and G be a finite group. Then the above functor
F:cMG-set - ¢ FG-set is an equivalence of categories.

Proof. We prove that F' is fully faithful and essentially surjective. First we show that
F is essentially surjective. Given a C-fibred G-set X, let C'\ X be the set of C-orbits.

Clearly C\ X is a G-set. We define a functor [ : (7\?( — oc. Let Cx, Cy € C\ X such
that C'gx = C'y for some g € (G. Then there exists a unique ¢ € C such that gr = cy.
We set [(g,Cz,Cy) = c¢. We have F(C\X,[) = C x; (C\X). Now choose a set [C'\ X]
of G-representatives of the G-action on C'\ X. Then for any = € X, there exits a unique
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Co, € [C\X] such that x € Co,. Since X is C-free, there exists a unique ¢, € C such
that © = c,0,. We define a (C'xG)-map f : X — Cx;(C\X) such that f(x) = (¢;, Coy).
Then

(c,9)f(z) = (¢,9)(ce; Coz) = (cacl(g, Con, Cgos), Cgo,) = (coc, Cgoy)

= (cha:a Cg%) = f((C, g)x)

So fis a (C x G)-map and clearly an isomorphism. Thus, F' is essentially surjective.
Let (X,[) and (Y, m) be C-monomial G-sets. We need to show that the map

F : Hom((X,1),(Y,m)) - Hom(F(X,1), F(Y, m))

induced by F' is surjective and injective. Let ¢ : C' X X — C x5 Y be a (C x G)-
map. Given (1,z) € C x; X, let p(1,2) = (¢z, 2z) for (cz,2,) € C X Y. Since ¢ is a
(C x G)-map, we get
QP(C, l’) = (cha zx)
and
p(1,97) = (cam(g, 20, 92:)17 (9, 2, 9), 922
for any ¢ € C' and g € G. We define a map

(f;A): (X 1) = (Y,m)

such that f: X — Y is defined by f(z) =z, and A : [ - mo f is defined by A, = ¢, for
any r € X. Clearly, f is a G-set map. Let x € X and g € G. Then

m(g, f(z), f(g7))\e = m(g, f(2), f(92))ce = cam(g, f(2), f(92)) (g, z, g2)I(g, z, gx)

= [<gvxugx)cg93 = [(gvmugx))‘gw

So A:l— mo fis a natural transformation and (f, A) is a map of C-monomial G-sets.
Thus, F(f,\) = ¢ and F' is surjective. The injectivity is clear, so F' is fully faithful. [

Proposition 3. Let G be a finite group. Then Bo(G) is isomorphic to the Grothendieck
ring of the category c M G-set, for relations given by decomposition into disjoint unions
of C-monomial G-sets and multiplication induced by product of C-monomial G-sets.

Proof. We let BAL(G) denote the Grothendieck ring of the category ¢MG-set. The
equivalence
F: cMG-set = o F'G-set

induces a bijection R

such that R
F([(X, [)}) = [C % X]



for any C-monomial G-set (X,[). Now we show that F is a ring homomorphism. Let
(X1, 1) and (Xs, I3) be C-monomial G-sets. Then

ﬁ([(Xl, )] + [(X3, [1)]) - ﬁ([(Xl, L) U (X, [1)]> - ﬁ([(Xl U Xy, [ U [2)]>

= [C Xpu, (X1 UXo)] = [(X1,h) U (X2, )] = [C xq, Xa] + [C %y, Xo).

For multiplicativity of F we define a map
f:C xyu, (X5 x Xo) = (C xyy X7) Xo (C %y, Xo)

such that f(c,(z1,22)) = (¢,21) X¢ (L, 22). Let (k,g) € C x G and (c, (z1,22)) €
C X1y xly (Xl X XQ) Then

(k,9)f (¢, (z1,22)) = (k, 9)((c, 21) xo (1, 22)) = ((k, 9)(¢c, 21) X (1, 9)(1, 22))
(k:c[ (9,1, 971), g:z:l) X o (lg(g,xg,gxg),g:z;g)

= (keli(g, 21, g21)l2(g, 72, g72), g21) X (1, g2)

f(kC[l 971’1,9901 )a(g, 22, g2), 9(1’1,352))

f(( 951,902)))

So fis a (C' x G)-map and obviously, f is a (C' x G)-isomorphism. Using f we get
F\([Xl, [1]'[X2, [2]) = F\([Xl XXQ, [1X[2]) = [OX[QX[Q(XI XXQ):| = [(OX[le)Xc(CX[2X2>].

Thus, the desired result follows.
]

Remark 4. Let (X,[) be a C-monomial G-set. For all v € X, we get a character
[, : G, — C defined by I,(g9) = (g, x,x) for g € G,. On the other hand given a subgroup
U of G and a group homomorphism p : U — C we get a C-monomial G-set (G /U, [i)

where and i : G/U — e¢ is the functor such that given qU, kU € G/U if hgU = kU for
some g € G then [i(h, gU,kU) = u(k~'hg). Moreover, U, ulc and |G /U, 1] represents
the same element in Bo(G).

2.3 The Lefschetz invariant attached to a monomial G-poset

A G-poset X is a partially ordered set (X, <) with a compatible G-action (that is gz < gy
whenever g € G and z < y in X). A map of G-posets is a G-equivariant map of posets.
We denote by G-poset the category of finite G-posets obtained in this way.

There is an obvious functor ¢ : G-set — G-poset sending each finite G-set to the set
X ordered by the equality relation, and each G-equivariant map to itself.

The Lefschetz invariant attached to a finite G-poset, which is an element of the
Burnside ring of G has been introduced in [7] by Thévenaz. We will define similarly a
Lefschetz invariant attached to a C'-monomial G-poset as an element of the C-monomial
Burnside ring of G.



2.3.1 The category of C-monomial G-posets

Given a G-poset X, we consider the category X whose objects are the elements of X
and given z, y in X the set of morphisms from x to y is

Homg(z,y) ={g € G| gz < y}.
Now we define a C-monomial G-poset as follows.

Definition 5. A C-monomial G-poset is a pair (X, ) consisting of a G-poset X and a
functor 1 : X — ec.

In otherwords, for each x,y € X and g € G such that gxr < y, we have an element
[(g,z,y) of C, with the property that [(h,y, z)l(g,z,y) = (hg,x, z) if h € G and hy < z,
and [(1,z,x2) =1 for any x € X.

Let (X, ) and (Y, m) be C-monomial G-posets. A map of C-monomial G-posets from
(X, 1) to (Y,m) is a pair (f,A) : (X,[) = (Y,m), where f: X — Y is a map of G-posets
and A : [ — mo f is a natural transformation. We denote the category of C-monomial G-
posets by ¢« M G-poset. Product and disjoint union of C-monomial G-posets are defined
as for C-monomial G-sets. When C' is the trivial group, we will identify the category
cMG-poset with G-poset.

Remark 6. If (X,[) is a C-monomial G-poset, then for any x € X we get a character
[, : G, — C defined by I.(g) = (g, x,x). Moreover, if x <y, then

Gy _ Gy
rescing, le = resglng, by

because we have the following commutative diagram:

() 2 1(y)

f(g,mvx)l J[(g,%y)

Let H be a subgroup of G and (X,[) be a C-monomial H-set. We let G xg X to
be the quotient of G x X by the action of H. The set G Xy X is a G-set via the action
g(u,, x) = (gu,, =), for any g € G, and (u,,, ) € G xy X. We define an order relation
<onG xgX as

Y(u,, x), (v,,y) € G xy X, (u,, ) < (v,,y) < 3h€ H,u=vh, v <h 'y

Since we have

it’s enough to consider the chains of type (u,, x¢) < ... < (u,, ©,) in G x g X for some
u € G and a chain zy < ... < z,, in X for some n € N.
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Let (u,, x), (u,, y) € G xyg X and g € G such that g(u,, ) < (u,, y). Then there
exists h € H such that gu = uh and hx < y. We define the induced C-monomial G-poset
Ind% (X, [) of (X, 1) as the pair (G xy X,G xg) where Gxul: G xyg X — o¢ is defined
by

(G XH [) (g’ (U7H JZ), (U7H y)) = [(h> z, y)'

Now show that (G xg X, G x g [) is a C-monomial G-poset.
Let (u,, x), (u,, y), (u,, 2) € G xyg X such that
9(t,y ) < (U, y)

and
9ty y) < (uyy, 2)
for some g, ¢ € G. Then there exist some h, h’ € H such that

gu=uh, Ju=uh', hx <y, hy<z.
Then t = W'h € H. Moreover ¢'gu = uh’'h = ut and tz = h'hx < z. Now we get
(G xu1)(9'9, (u,y, @), (w,, 2)) = Wt 2, 2) = UR'h, 2, 2) = (W, y, 2) (R, 2, y)

- (G XH [) (glv (um Z‘), (um y))<G XH [) (97 (U7H y)? (U7H Z))
We also have (G x g 0)(1, (u,g ), (u,, z)) =1 for any (u,, z) € G xg X. Thus G Xy
is a functor. So Ind% (X, [) is a C-monomial G-poset.
Civen a C-monomial G-poset (Y, m), the restriction Res% (Y, m) of (Y, m) is the pair
(Res$Y, res$m) where Res$Y is the restriction of the G-poset Y to H-poset and resGm

—

is the restriction of the functor m from Y to Res%Y.
Proposition 7. Let G be a finite group.

1. If Y s a finite G-poset, denote by 1y : Y — o the trivial functor defined by
ly(g,z,y) =1 for any g € G and x,y € Y such that gx <y. Then the assignment
Y — (Y, 1y) is a functor 7o from G-poset to ¢ M G-poset.

2. Let H be a subgroup of G. The assignment (X,1) — Ind$(X,1) is a functor
Ind¥ : « M H-poset — ¢ MG-poset, and the assignment (Y, m) — Res% (Y, m) is a
functor Resg : cMG-poset — M H -poset.

3. Moreover the diagrams

Indg Resg
H-poset ———— G-poset and (G-poset ——— H -poset

Ind$ Res$

oM H -poset — o M G-poset MG -poset —2 .M H -poset

of categories and functors are commutative.



Proof. 1. Let f: X — Y be a map of G-posets. We set

a(f) = (f;1p) : (X, 1x) = (Y, 1y),

where 15 : 1x — 1y o f is defined by 1y = 1 for any x € X. Obviously (f,1y) is
a map of C-monomial G-posets and 7¢ is a functor.

2. Let (f,\): (X,[) = (Y,m) be a map of C-monomial H-posets. We set the pair
Ind% (f,\) = (G xy f,Gxg ) :(GxygX,Gxyl) = (GxpY,Gxym)
where
GXHf:GXHX%GXHY
is defined by (G xp f)(u,, z) = (u,, f(z)) and

GxuX:Gxpyl— (Gxgm)o(Gxyf)

is defined by (G xg )\)(%Hx) = A\, for any (u,,z) € G xg X. It’s clear that
G x g f is a map of C-monomial G-posets. Now we show that G x gz A is a natural
transformation. Let (u,, x), (u,,y) € G xg X such that g(u,, z) < (u,, y) for
some g € G. Then gu = uh and hx < y for some h € H. Since A: [ - mo fis a
natural transformation, we get

(G XH m) (g7 (u7H f(LE)), (u7H f(y))>(G XH A)(u,Hm) = m(h7 f(LE), f(y)))‘x

= /\y[(h,x,y) - (G XH A)(uq{y)(G XH [) (97 (U7H I)? (U7H y))

Now consider (idy, id;) : (X,[) — (X, [) where idx : X — X is the identity map
on the H-set X and id;: [ — l[o idy is the identity transformation. Then we get
Ind (idx, idy) = (idax,x, idax)-

Now let (f,A) : (X,I) — (Y,m) and (¢,5) : (Y,m) — (Z,t) be the maps of C-

monomial H-posets. We obviously have

(G XHt)O(G XHf) :GXH (tof)
and
(G XHﬁ)O(G XH)\):GXH(ﬁo)\)
Thus,
Indf (¢, 8) o Indf(f, ) = Ind5 ((t, 8) o (f,A)).
So Indg : ¢ M H-poset — « M G-poset is a functor.

Now let (f,A) : (X,I) — (Y, m) be a map of C-monomial G-posets. We set the
pair

ResS (f,\) = (fla, Mu) : (ResG X, resGl) — (ResGY, resém)
where f|z : Res&X — Res$Y is defined as the restriction of map of G-posets f
to map of H-posets and Az : res§l — res$mo f|y is defined as the restriction of
A. Clearly, we get that Resg - cMG-poset — M H-poset is a functor.
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3. Let X be an H-poset. Commmutativity of the first diagram follows from
Teo Ind5(X) = 10(Gxg X) = (Gxg X, lox,x) = nd5 (X, 1x) = Ind$ oy (X).
Now let Y be a G-poset. Commutativity of the second diagram follows from
71 0 Res&(Y) = 75(Res§Y) = (Res$Y, LResGiy )
= (Res$Y, res1y) = Res% (Y, 1y) = Res% o 7 (Y).
0

Proposition 8. Let G be a finite group and H be subgroup of G. Then the functor
Ind% : o M H-poset — ¢ MG-poset is left adjoint to the functor (Y,m) — Res$ (Y, m).

Proof. We prove that for any C-monomial H-poset (X, [) and any C-monomial G-poset
(Y, m) we have a bijection

Hom, are (Ind (X, 1), (Y, m)) = Homam ((X, 1), Resf (Y, m))

natural in (X, [) and (Y, m).
We define

¢+ Hom g (IndG (X, 1), (Y,m)) — Hom,aw ((X, 1), Res§ (Y, m))

where
v (F;N) = (o), V)

such that
o(f) : X — Res%(Y)

defined by ¢(f)(z) = f(1,, x) and

©(A) 1 I — resmo p(f)

defined by p(A). = A, ) for any z € X. Obviously, ¢(f) is a map of H-posets. We
need to show that

©(A) 1 I — resmo p(f)
is a natural transformation. Let z, y € X such that gz < y for some g € G. Then

m(ho(f)(@), (/)W) e(N)e =m(h, f(1,, 2), f(L, ¥) a0
= A(l,Hy)[(hv z,Y) QO(A)y(G X 1) (h’ (17H z), (L, y))

We define an inverse map to ¢ as

0 : Hom,nrm (X, 1), Res;(Y,m)) — Homg e (Ind% (X, 1), (Y,m))

10



where
0: (1, 8) > (0(1),0(3))
such that
0(1) G xy X =Y

defined as 0(¢)(u,,, x) = u(x) and
0(8): Gxugl—mob(y)

defined as

for any (u,, ) € G xy X. Obviously, the map 6() is a map of G-posets. We need to
show that 6(3) is a natural transformation. Let (u,, x), (u,, y) € G xg X such that
g(u,, ) < (u,, y) for some g € G. Then there exists some h € H such that gu = uh
and hx < y. Now, we have

m (g, 0(¥)(u,, ), () (w,, ¥))0(B) (w,, ) = m(g, wtb(x), up(y))m(u, ¥ (x), u(x)) e
= m(u, Y(y), up(y))m(h, ¥(x), ¥ (y)) B = m(u, ¥(y), ut’(y)) Byl(h, z, y)
= 0(8) (w00 (G X1 D) (D, (uy ), (1, ).

Clearly, ¢ and 6 are mutual inverse maps, and natural in (X, [) and (Y, m).

2.3.2 The Lefschetz invariant attached to a C'-monomial G-poset

Let (X,[) be a C-monomial G-poset. The Lefschetz invariant Axy of (X,I) is the
element of Bo(G) defined by

Axg= 3 (-1)"[Gayc Resg™ ()],

r0<...<xn€gX
where 2y < ... < x,, runs over G-representatives of the chains in X. The group G, .. .,
is the stabilizer of the set {xo, ..., z,}, that is G4, 2, = Nf_(G,,. Here Resgzo ()

,,,,,

denotes the restriction of the character [,, introduced in Remark 4. Observe that if
o < ... < x, is a chain in X for some n € N, by Remark 6 we have

for any 0 < i <n.
Let (X,I) be a C-monomial G-poset. Given n € N, let Sd,(X) denote the set of
chains in X with order n + 1. Obviously, the set Sd,,(X) is a G-set. Then (Sd,(X),[,)

is a C-monomial G-set where [, : Sd,,(X) — e¢ is the functor defined by

[n(g>$0 < < ZpyYo <o < yn) = [(g,l’o,yo)

11



for any zp < ... <z, and yo < ... < y, in Sd,(X) such that
9o < oo <Tp) =Yo < ... < Yn
for some g € G.

Remark 9. Given a C-monomial G-poset (X, 1), we have the following isomorphism of
monomial G-sets:

(Sda(X),1,) = | | (G/Gayon Res . (Iuy))
20<...<ZnEg Sdn (X)
for any n € N.

Proof. Let [G/Sd,(X)] be a set of representative of the G-action on Sd,(X). Let
xr =1y < ... < x, be a chain in Sd,(X) then there exist some g, € G and a unique
o, € [G/Sd,(X)] such that x = g,0, where 0, = 0,y < ... < 0,,. We define

(£ ) £ (Sdn(X), 1) — || (G/Gapcns Resg® . (Luy)

20<...<Tn€g Sdn (X)

where f(x) = ¢.G,, € G/G,, and A\, = (g, ', .04, 04,). Obviously,

fSda(X) — || G/Gaq,...on

20<...<TnEq Sdn(X)

is an isomorphism of G-sets. We show that

Al — |_| Resgzg (L) o f

20<...<TnEGSdn(X)

is a natural transformation. Let x = 2o < ... < x,,, and y = yp < ... < ¥y, be sequences
in Sd,(X) such that gz =y for some g € G. There exist a unique o,, 0, € [G/Sd,,(X)]
such that * = g¢,0, and y = g,0, for some g, and ¢, in G. Then zy = g,0,, and
Yo = GyOy, SO Yo = gTo = §Ygu0z,- Thus, by uniqueness o,, = oy, and so g, Y99, € G

—

Then setting r = Resgzo (L) (9, f(2), f(y)) Az, we have that

O';(;O’

7= Lo (9 92 Gons 0y G (95" 0200s Tag) = Luo (9, 90095 0oy Ty
= (g, ' 992, %0, 0)U(g, "+ YOo» Tay)
= U(gas Oa9s 9200 ) UG, 92020, 992020) UGy " 992020: 0a) (G5 s GaOags Oy )
= (g, 20, Y0) (9, " 9yOyo> Ty
= l(9, 7, 9) Ay

12



By Remark 9, the Lefschetz invariant of a C-monomial G-set (X, [) can be written as

Axp= Y (-1)%[@07,,‘%,3(35233 ()] =Y (=1)"(Sdn(X), 1)

,,,,,

0<...<xpn€aX neN

It follows that Ax = A;,(x), where Ax the Lefschetz invariant of the G-poset X intro-
duced in [2].
We define similarly the reduced Lefschetz invariant of (X, I)

Aixpy = Axpy — G, 1cla
where 14 is the trivial character of G.
Lemma 10. Let G be a finite group and C be an abelian group.

1. Let (X, 1) be a C-monomial G-set, viewed a a C-monomial G-poset ordered by the
equality relation on X. Then Axy = [C x; X] in Ba(G).

2. Let (X,1) and (Y,m) be C-monomial G-posets. Then Axuyy = Ax + Aym) @0
Bo(G).

3. Given C-monomial G-posets (X, 1) and (Y, m), we have Axxyxm) = Ax,nAym)
m Bc<G)

Proof. 1. and 2. are clear.
3. In the following proof using the inclusion

Beo(G) — Q ®z Be(G)

we identify the elements of Bo(G) with their image in Q ®z Be(G). We start with
rearranging the chains in X x Y as in the proof of Lemma 11.2.9 in [2]. Let n € N.
Given a chain z = zp < ... < 2z, in X X Y projection of z on X is denoted by zx and on
Y is denoted by zy. Then zx is a chain in X with order ¢ + 1 for some ¢ < n and zy is
a chain in Y with order j + 1 for some 5 < n such that ¢ + j = n. Let s, be the chain
sp < ... < s; and ¢; be the chain ¢y < ... <t;. Now

n Gz n |GZ| Gz
A(XXY,[xm) = Z (_1) [Gza ReSGZ(J([zo)]G = Z <_1) |_G|[Gza ReSGZO([zo)]G
neN, neN,
z€a Sdn (X xXY) 2€ Sdp (X XY)
- Z F§z‘¢j
4,jEN
5,€X
ﬁjEY
where
|G§i m G§| Gs Gy
P§i1tj = Z (—1>nTJ [Ggl n thv ReSG; ([50) RGSG;? (mt0>] G
neN

13



|G, NG| :
— *—EJ[G Gt s ReSG O([50> ReSG (mtO)}G Z (_1)n

|(;| neN
2€ Sdn (X XY ):zx=8;, 2y =t
Gy, NGy | o 8 N

Now,

G NGy .
Axxyixm) = Z (—1)wT (G, N Gy, ReSG 0([80) ReSG (mto)}g
2,
tjEY

On the other hand

AxpDym = D (—1)[Gap, Resg (1,)] Y (=1) [Gt,ResG (meo)]
§il€€§X EJ'JEECI:\]Y

7,+]|G§z G§j| g Gs,
— Z (—1) W[Géz N th, ReSGéi ([50) Rengt ( mto)}G
i,JEN
s, €X
Z;EY
GigG’t cG

G, | Gug
| [Géi NGy, ResGéi (Iso) Rengt (Y mto)]G

|G| . e
§i€X
t;eYy
geG

1,JEN
5,€X
§j€Y
geG

_ _1i+j|G§im—GG NG.. . Re 80[ Reg ot
Z( ) 2 [ gt;» NeSq,, (50) €8G, (mgto)}g
et G|

geG

NG
= Z —’ (G, N Gy, ResGSO([SO) ResG (mto)}G

1,7JEN
s,€X
Ej 2%

i+j |G§Z m QG£|

J G.s
P (G, N Gy, Resg O(ISO)ReSgG (gmto)]G

Thus, A(Xxy,txm) = A(X,[)A(Y,m)-
O

The first assertion of Lemma 10 tells us that every positive element of Bo(G) is
in of the form A(xy for some C-monomial G-poset (X,[). Now consider the poset
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X ={a,b,c,d, e} with the ordering {a < ¢,a < d,a <e,b<¢,b<db<e}. Consider
trivial G-action on X. Then A, (x) = —1p,(g). So as a consequence of Lemma 10 we
get the following corollary.

Corollary 11. Any element of the monomial Burnside ring can be expressed as the
Lefschetz invariant of some (non unique) monomial G-poset.

Proposition 12. Let H be a subgroup of G. Given a C-monomial H-poset (X, 1), we
have
Indg(A(X,l)) = AIndg(X,[)‘
Proof. Since
Indf; (Axg) = > (=1)"Ind§ (Sd,(X), L),

neN
we need to show that there exists a C-monomial G-set isomorphism between

(G Xy Sdn(X),G Xy [n)

and
(Sdn(G XHX)v (G XH [)n)

for any n € N.

We define

(fn, id) : (G Xpg Sd,(X),G xg In) — (Sdn(G Xg X), (G xy [)n)
where
fn -G X H Sdn(X) — Sdn(G XH X)

such that

Ja(Usy 2o < oo < 25) = ((U,, o) < ... < (Uyy, T0))
for any chain (u,, 7o < ... < x,) in G xg Sd,(X).
Let (ug,, o) < ... < (Un,, ;) be a chain in Sd,, (G x g X). There exist some h; € H
such that u;h; = u;4q and h;lxi < xiq1 forall 0 <i<n—1. Then

fn(anH Ty < hol’l < ... < ho...hn_lxn) = (UQ,H IL‘()) <. < (u’mH [En)

Obviously, f, is a map of G-sets and injective.
Now, we show that G xpz [,, = (G Xy ), o f,. We consider an element k € G, and
chains (u,, xo < ... < ) in G xg Sd,(X) such that

k(u,, xo < ... < xp) = (U, Yo < oo < Yn).
There exists some h € H such that ku = vh and hx; = y; for all 0 <7 < n. Then
(G xy [)n(k‘, oty To < oo <), fulv,, Yo < ... < yn))

= (G xy [)n(k, (U o) < oo < (Uypy Tn), (V5 Yo) < oo < (0, yn))
=l(h, 20 < ... <TpyYo < oo < Yn)

= (G xp L) (k, (uyy 2o < oo < @), (0, Yo < oo < Yn))-

15



Let (X,[) be a G-poset and let x € X. Then the pairs (|z,[x, ;) and (]-, z[x, [T¥)
are C-monomial G -posets where

. [x={yeX|z<y}, J,olx={yeX]|y<az}

which are G,-posets and I>, : |z, [x — oc and [<* : |- z[x — e¢ are the restrictions of
the functor I.

Lemma 13. Let (X,[) be a monomial G-poset. We have

A(X,() = — Z Indgl<[Gx, [x]Gz . K}x,-[x)-
z€[G/X]

Proof.

Ay = 3 (“1)"[Gryoe Resg™ ()],

20<..<Tn€ X

-y > (D [Gapns Rese? ()]

xQGGX x1<...<xn€GX:xo<x1

=3 mdf, Y ()" [Gages Resq? ()]

20€ X 1< <Tn€g, Jror[x

= Z Indgwo [Gxoa [960] Glag Z (—1)n [Gmo ..... Ty 1Gm0,..,zn:|G

Remark 14. We can define the opposite of a C-monomial G-poset (X, () as follows.
We consider the pair (X °P [°P) where X °P is the opposite G-poset with the order <°P
defined by

Vi,ye X, g€ G, gr <Py y<gx
and [Op:ﬁ%oc is defined by

[(P(g,z,y) ="' (g7 ", y,2)

for any x,y € X and g € G such that gr <°® y. Obviously, the pair (X °P [°P)
is a C-monomial G-poset. Moreover the assignment (X,[) — (X P, [°P) is a functor
cMG-poset — oMG-poset: if (f,\) : (X,[) = (Y,m) is a map of C-monomial G-
posets, then f : X°P — Y °P is a map of G-posets and for any gr <°P ', we get the
commutative diagram

[(x) —* imo f(z)

[Op(gvxfx/)‘/ ‘mOP(g,f(Z‘),f(x,))

(") ———mo f(a').

T

16



Observe that (1°P),(g) = 1" (g7, 2, 2) = (g, z,2) = l.(g), foranyz € X and g € G,.
It follows that A(x ) = A(xop (op).

Let (f,A\) : (X,) = (Y,m) be a map of C-monomial G-posets. Given y € Y,
following [3] we set

fPr=AzeX|fl@x)<y}, fy={zeX[flz)=y}

which are both Gy-posets. We denote by (fY,[sv) the C-monomial G,-poset where
[fv : fY — ¢ is the restriction of the functor [. Similarly, we denote by (f,,[,) to be
C-monomial G'y-poset where [y : f, — ¢ is the restriction of the functor [.

Example 15. Let (f, \) : (X, ) = (Y,m) be a map of C-monomial G-posets. We define
a G-poset X *;\ Y with underlying G-set X UY as follows: for z,2' € X UY, we set

2,2 e X and 2<z7z e X
2<Z ez ey and 2 <2 €Y
zeX,Z €Y and f(z)<z2 €Y

We define the functor [y, m: XUY - o by
(g, 2,7 if 2,2/ e X
([*f)A m)<g7z7'z/): m(gyz7zl) if Z, ,Z/GY
m(g, f(2),2)\, ifz€ X, 2 €Y.

forany z, 2 € X x5, Y and g € G such that gz < 2.

Now let 21, 20, z3 € X x5 Y and g, ¢ € G such that gz, < z, and g’z < z3. We
aim to show that

(Lkpam)(g'g, 21, 23) = (Lxpam) (g, 22, 23) (L m) (g, 21, 22).
We have four cases to consider:
® 2, 2,236 X
e 21, e X and z3 €Y
e 21 € X and 29, z3 €Y
® 21, 2, 23€Y.

In the first case we get

([ XA m)(glg, 21,2’3) = [(9/9, 21, 23) = [(9,,227 23)[(9, 2172’2)

= (Lxpam)(q, 20, z3) (L5 5 m) (g, 21, 22).
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In the second case, using the naturality of A we get

([ 1A m) (9/97 21, 23) = m(g/ga f(zl)v 23))\z1 = m(g/a f(ZZ)a 23)m(ga f(zl)7 f(z2>))\z1
= [(ga 21, ZZ)m(glv f(ZQ)a 23)>\z2 = <[ *fz)\ m)(g/7 292, 23)([ *f7A m) (97 21, ZQ)'
In the third case, we get
(ET m)(g’g, 21, 23) = m(g/g’ f(z1), Z3)>\z1 = m(g’, f(z2), z;;)m(g, f(z1), f(Zz)))\zl

- <[ *f7)‘ m)(g’ 21, Z?)([ >l<f,)\ m)<g/7 22, 23)'
In the fourth case

([ * £ m)(g,gv 21, 23) = m(.g,gv 21, 23) = m(glv 22, 2:3)m(g7 21 22)

= (Lxgam)(g', 20, 23) (Lx g2 m)(g, 21, 22).
Let z € X %4, Y then obviously we have ([ x5y m)(1,2,2) = 1. Thus, (X *7, Y, [, m)
1s a C-monomial G-poset.
Lemma 16. Let (f,\) : (X, ) — (Y,m) be a map of C-monomial G-posets. Then

A(X*f,AY»[*f,Am) = A(Yam)’

Proof. 1. Let z € Z = X %4, Y. If 2 € X consider the map ¢ :]z,-[z— [f(2), [y

defined by
ft) ifteX
t) = .
9() {t iftey

Let ¢ : [f(2), [ — ]z, [ defined by g'(s) = s. Then g and ¢’ are maps of G,-posets
such that go g = Id and Id < g’ o g. So if z € X using [[3], Lemma 4.2.4 and

Proposition 4.2.5], we get A]Z, [= A[f ()] = 0. Thus,

A(X*fy)\Y,[*fﬁ)\m — Z IHdG ]G A]z )
2€[G\X*5 Y]
= — Z IndG A]y [) A(y,m).
y€E[G\Y]

]

As a consequence, we give an analogue of Proposition 4.2.7. in [3], which in turn was
inspired by a much deeper theorem of Quillen in [6].

Proposition 17. Let (f,\) : (X,[) = (Y, m) be a map of C-monomial G-posets. Then

K(Y,rn) = K(X,[) +Zlndgy (Kfyx(}%.[y’mw)).
yeG\Y

Ay = Moy +Y_d@ (A, Ag ypymey):
yeG\Y
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Proof. We follow the proof of Proposition 4.2.7 in [3]. For any n € N, any chain z =
29 < ... < 2z € Sdp(X %4, Y) can be of two types, depending on z, € X or z, € Y. For
a sequence z of the first type we get

Now a sequence z of the second type has a smallest element y = z; in Y, thus, we can
write the sequence as

To < ... <ZTim1 <Y<Y < ... <Yp—i—1

such that zg < ... < x;_1 isin Sd;—1(fY), and yo < ... < Yp—i—1 isin Sd,,—;—1(Jy, -[v). We
get G
Gz 1
Rest0 zn([*ka m)nzn = ResGZ0 _(m).

Let z, , denote the chain z¢p < ... < z;_; and Yo i denote the chain yy < ... < yp_i_1.
Then, by Lemma 10 and Lemma 16 we get

Awm) = Axapaviepam = O (D" (Sda(X 572 V), (am),)

,,,,,,
neN
20<...<2n € Sdn (I xm)

neN
G
MG Y Y o, Rl m],
velG\Y] =0z, ,€Sdi_1(fY)
En i IGSdn i— 1(]2/1 [Gy)
Axpy + ZIDdG (f¥,1pv) A]y,-[y,m>y)>'

ye[G\Y]
For the second assertion we consider the opposite map
(f, ) (XPIP) — (Y P, m°P)
Since we have A(xy = A(xoror) by Remark 14, the result follows. O

Corollary 18. Let (f, ) : (X, [) = (Y, m) be a map of C-monomial G-posets. If Apy =0
forally €Y (resp. if Ay, =0 for ally € Y), then Ax; = Ayn.

Remark 19. The assumption of this corollary is fulfilled in particular if f : X =Y
admits a right adjoint g, in other words if there exists a map of posets g 1 Y — X such
that f(x) <y < x < g(y) forany x € X andy € Y, i.e. equivalently if fog(y) <y
and go f(z) <z for any x € X and anyy € Y.
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Now we set some notation. Given a C-monomial G-set (X,[), we can rewrite its
Lefschetz invariant as

Axy= Y (~1)*[Gupy.ns Resg?

0<...<xn€aX

,,,,,,

= 7\)/(:;[ [V7 V]G
(V)€ ch(G)

where

X! n 1 n
w2 w2 O

$O<~é<ﬂ7neGX x0<.é<InEX
(GIO ,,,,, zn,RBSGIO on [zo):G(V:V) (G(EO ..... znyReSGIO " [10):(‘/7'})

Given a C-monomial G-poset (X, [) we let the set (X, [)V* to be

(X, 09" = {x € XV | Resi*l, = pu}
where (U, i) is a subcharacter of G. Then given a C-subcharacter (U, u) € ch(G) we

have
Unu‘ — n _ X’[
X((Xv y ) = E (1" = my.,
neN (Vv)ech(G)
x0G< <zneXY ucv
T V.,
ResGIg ’’’’ on [IO =u RESU V=L
where
X0 § : n
mVl/ - (_]‘)
neN
ro<..<xn€X

ag)=(Viw)

Now |Ng(V,v) : V|m€,(”l£ = 7‘)}:’[. Using this fact we prove the following lemma.

Lemma 20. Let (X,[) and (Y, m) be C-monomial G-posets then Ax = Aym) if and
only if x((X,0U") = x((Y,m)"*) for every C-subcharacter (U, j1) of G.

Proof. Assume A(x) = A(y,;m)- Then

YalVivle =Y wilVivle
(Viv)€g ch(G) (Viv)€g ch(G)
ST vE =Vl = 0.
(Viv)€g ch(G)

S0 ’yf,(l,[ = 7521 and then mf,(,iu = m‘g:u for every C-subcharacter (V,v) of G. We get

X1 Y,m
m‘/’y — mvﬂl .

(Um<(Viv)ea ch(G)  (Up)<(Viv)eg ch(G)
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Thus, x((X, ") = x((Y,m)%*) for every C-subcharacter (U, u) of G.
Conversely, assume that x ((X,)"#) = x((Y, m)"*) for every C-subcharacter (U, p)
of G. Then

X0 Ym
mV,l/ - mV,l/’

(Um<(V)ech(@)  (Up)<(Vw)ech(G)
S mih - i) =0
(U <(Viv)€ ch(G)

Let 2 be the matrix with the coefficients

1t (U, p) < (Viv)

A pVor) = U = Viv)] = {O otherwise

for any C-subcharacters (U, ), (V,v). If we list the C-subcharacters in non-decreasing
order of size of the subgroups, the matrix z is upper triangular with nonzero diagonal

coefficients. Thus, z is nonsingular and so mf/(yr = m‘};‘; This implies 7‘)/(,/[ = 7‘1//::1 . We
get
Axy = YalVirle = D wirlVivle = Aym).
(Vv)eg ch(G) (Vv)eg ch(G)
This proves the lemma. O

3 Generalized tensor induction

Let G and H be finite groups. A set U is a (G, H)-biset if U is a left G-set and right
H-set such that the G-action and the H-action commute. Any (G, H)-biset U is a left
(G x H)-set with the following action:

YueU, (g,h) € Gx H (g,h)-u=guh™,

A C-monomial (G x H)-set (U, \) will be called a C-monomial (G, H)-biset, and usually
denoted by U, for simplicity.

Now let Uy, be a C-monomial (G x H)-set and u, u’ € U. Then the set of morphisms
from u to o’ in U is

Homg (u,u') = {(g,h) € G x H | gu = u'h}.
If (9,h) € Homp(u,u’), we denote the image of (g, h) under A by A(g, h,u,u’).
Let Uy be a C-monomial (G, H)-biset and V,, be a C-monomial (H, K)-biset. Con-
sider the set
UroV,={(u,v) e U xV |Yh e H,NH,, \(1,h,u,u)p(h,1,v,v) = 1}.

The set Uy oV, is an H-set with the action

V(u,v) € UyoV,, Vh € H, h(u,v) = (uh™", hv).
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Indeed, the condition that we impose on Uy o V,, amounts to saying that given (u,v) €
Uy o V,, the linear character &,, : h — (1, h,u,u)p(h,1,v,v) of H, N H, is trivial.
Moreover we have &, ,-1,(h) = &uo(zha™") =1 for x € H and h € H,, N H,-1,, Le.
zhae™' € H,N H,.

We let Uy o V, denote the set of H-orbits on Uy oV, and (u,, v) denote the H-orbit
containing (u,v). The set Uy oy V, is (G, K)-biset with the action

(u,; v) € Uxon Vy, (9.k) € G x K, g(u,, v)k = (gu,,, vk).

We obtain a C-monomial (G, K')-biset (Uyop V,, A X p), where A X p is defined as follows:
if (u,,, v) and (v, v") € UyoyV, and (g, k) € G x K are such that g(u,, v) = («,, V')k,
then there exists h € H such that gu = w'h and hv = v’k. This element h need not be
unique, but it is well defined up to multiplication on the right by an element of H, N H,.
We set

()‘ X P) (97 k, (um U)a (u/7H U/) = )‘(gv h,u, UI)ﬂ(ha kv, UI)a

which does not depend on the choice of h, by the defining property of Uy oV,. Note that
Uyxog V,=U xy V when V is a left free (H, K)-biset, or when X and p are both equal
to the trivial functor.

Given a C-monomial G-poset (X, [), we let ¢y, (X, ) be the set of G-equivariant maps
f U — X such that

(g, f(w), f(w)) = Ag. L, u,u)

forallu € U and g € G,,. Then ty (X, () is an H-poset with the action (hf)(u) = f(uh),
for any h € H, for any f € ty\(X, ), for any u € U. The order < is given as follows:

VE S € tua(X, 1), f < f e VueU f(u) < f'(u)inX.

Now we define a functor £¢ : tya(X,[) — ec. Let f, f' € ty\(X,[) and h € H
such that hf < f’. We choose a set [G\U] of representatives of G-orbits of U. Then for
all u € U there exist some g, € G and a unique op,(u) € [G\U] such that

uh = gpuon(u).

Since hf < f’, we get gh,uf(ah(u)) < f'(u), and we set

SU)\(h,f,fI)I H [(ghm,f(ah(u)),f’(u)))\*l(gh,u,h,ah(u),u).

u€[G\U]

Now we show that this definition does not depend on the choice of gy, ,,. Assume that
there exist g, gj,,, € G such that

uh = gh,udh(u) = g;v,,uo—h<u)'

So there exists w € Gy, () such that gy, = gﬁww. We get

[(w,f(ah(u)),f(ah(u))> = Mw, 1, 0p,(u), op(u)).
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Furthermore, we get the following commutative diagram:

O'h(u — O},

) — (u)
N

Thus,
Soalh, £, f) = g\m (g £ (00(0)), £ () ) A (10 0010, )
- LI\U] {(gh0, £ (o(0)), £ (1) ) A (gh 0, B, on (), )
= L_[\U][(gz,wf(crh(u)),f’(u))xl(g;w,h,ah(u),u).

Definition 21. The above construction Ty : (X, 1) — (tur(X,1),Lu) is called the
generalized tensor induction for C-monomial G-posets, associated to (U, \).

Lemma 22. Let G and K be finite groups and U be a (G, K)-biset. Then there exists a
bijection between the sets {(u,t) |u € [G\U/K], t € (K NG*)\K]} and [G\U].
Proof. Let v € [G\U/K] and t € [(K N G")\K] then there exist some g;,, € G and a
unique oy(u) € [G\U] such that
ut = 1,0 ().
We define ¢ : {(u,t) | u € [G\U/K], t € [(K N G*)\K]|} — [G\U] by ¢(u,t) = os(u).
[

Lemma 23. Let G and H be finite groups, (U, \) be a monomial (G, H)-biset and (X, )
be a C-monomial G-poset.

1. (tU,)\(X, ), £U7,\) is a C-monomial H-poset.

2. (tun(X,1), Lu) does not depend on the choice of representative set [G\U], up to
isomorphism.

—

Proof. 1. We show that £y : tya(X,[) — ec is a functor. Let h, b’ € H and
£ ' f" € tua(X, 1) such that hf < f" and A'f" < f”. Let u € [G\U]. Then
there exist some gnu, gn/u, grnu in G and unique elements oy, (u), op (u), opp(w)
in [G\U] such that

uh = gh,uah(u), uh' = gn’ wOn (U), uh'h = gh’h,uo_h/h(u)-
Also there exist some gp,,,(u) € G and a unique oy, (oh, (u)) € [G\U] such that
o (U)h = Gh.o, (u)Th (ah/ (u))
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Now we get
uh'h = In wIh,o,, (u)Oh (U h’(U))

and
ah/h(u) = Op (Uh/(u)) .

Then there exists w € G y such that

T (u
9n'hu = W uGh,op (u)W-

We have the following commutative diagram:

Uh/h 4> Uh/h
gh’h\‘ %’ugh oy ()
uh'h

On the other hand since w € G , we get

oprp(u

[(w, f(ah/h(u)), f(ah/h(u))) = )\(w, 1, O'h/h(u), Jh/h(u)).

Thus, setting L = Ly (h'h, f, f"), we have

L= H [(Qh'h,mf(Uh'h(U))»f”(u)>)\_1(9h/h,u,h/h,Uh'h(U)7U)

u€|G\U]

= H [(gh’,ugh,ah/(u)wa f (Uh’h(u>)7 f// (U)) )‘71 (gh’,ugh,ah/(u)w7 h/h, 0h’h<u>7 U)
u€[G\U]

=TT t(omatnoncor f@wnw), £(0) )N (Gt s B oaon (), )
u€[G\U]

= (W, f', fM)L(h, £, ).

Moreover, given f € Ty (X, [) we have
e 1) = [T 1 f@), f)A (1,1, u,u) = 1.
ue[G\U]

—

Thus, £y : tur (X, [) — e¢ is a functor.

. Let h € H and f, f" € tyA(X,[) such that hf < f'. Let S = [G\U] and let S’
be the another choice of representatives. If ' € S’ then there exist some a, € G,
and a unique u € S such that u’ = a,u. Then there exist some gp, 4yu; gnu € G, a
unique oy, (a,u) € S, and a unique op,(u) € S such that

ayuh = gh ayuor, (@)
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and
uh = gpuon(u).
Then
Ay uh = aygnuon(u) = augh,ua;hl(u)aah(u)gh(u)'

So op,(ayu) = ag, won(u). Note that a,, yon(u) € S’. We get the following com-
mutative diagram:

aug ,uagl w
Clah(u)f(O'h(U)) M} CLuf/ (u)

-1
anh (“‘)h Qo

f(on(w)) ——5— f(u).

Thus, setting L = £, ,(h, f, f'), we have

L TT (00005 (0000 0) ) (000 (0. 0,)

ayueS’

= Loalh, £ f) = Soalh. £, [agpar!
where
and

[
Proposition 24. Let G and H be finite groups and (U, X) be a C-monomial (G, H)-biset.

1. Let (X, 1), (X',1') be C-monomial G-posets then
Tux((X,0) x (X',1) = Tya(X, 1) x Ty (X', 1).
2. Ty : cMG-poset — M H-poset is a functor.

Proof. 1. is clear.

2. Let (¢, 0) : (X,I) = (Y, m) be a map of C-monomial G-posets. We define a map
of C-monomial G-posets

(TU7/\(90)7TU,)\(B)) : (tU7,\(X, [),2) — (tU7/\(K m),im)
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where
Tua(p) : tua(X, ) = tya(Y,m)

such that Ty (¢)(f) = ¢ o f and
Tua(B) : £(f) = Mo Tya(p)(f)

such that

TunB) = [ Brw

u€[G\U]

for any f € tyA(X,[). Clearly, oo f: U — X — Y is a map of G-posets. Since
given g € G, and u € U the map § : [ — mo ¢ is natural, we have the following
commutative diagram:

So
Braot(9: £ (), £ (w)) = m(g, 0 (F(), 0 (W) ) By

Since g € Gy, we have

[(g,f(u),f(u)) = Xg, 1, u,u).
Then we get
m(am(f(ﬂ))&(f(%))) = g, Lu,u).

Thus, po f € tU,)\(K m)
Now we show that
TU,)\(B) L= Mo TU,A(‘P)

is a natural transformation. Let f, f’ € ty\(X,[) and h € H such that hf < f'. We
show that the following diagram is commutative:

TU,\

2(f) 2D omo Ty (o))
£(h,f.f") lfm(h,wf,wf’)

£(f) 4“)3?0 Tux(p)(f').

Ty, A(B) 41
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Let u € [G\U]. Then there exist some g5, € G and a unique o,(u) € [G\U] such
that

uh = gpuon(u).

Since 8 : [ — mo ¢ is a natural transformation, we obtain the following commutative
diagram :
{((on(w)) =m0 o (o))
[(gh,u,f(ah(u>)7f'(u))J lm(ghw(f (on@)) (7 (U)))
[(f'(u)) mo p(f'(u)).

By )

Using the commutativity of the above diagram, and setting T" = Ty (3) po £(h, f, '),
we get

7= Ta8)y (T 1(omae £o0): £ @)A1 o n(00,1) )

ue[G\U]

=TT 8wt (gnae £ (@n(0), £/ (@) A" (ghas b rn (), )

ue[G\U]

= 1l ‘“(ghvu,so(f(ah(w))’90<f'(“)>)x1(9’““’h’“"(“)’uw 1(ontw)

ue[G\U]

M(h, 0o f, oo f)By.

So Ty(B) : £ = Mo Ty a(p) is a natural transformation. Thus,

(Toa(e), Tur(B)) : (tua(X, 1), £) = (tur(Y, m), M)
is a map of C'-monomial G-posets. O]

Lemma 25. Let G, H and K be finite groups. If U is a (G, H)-biset and V' is a left free
(H, K)-biset, then the map (u,v) € U x V +— (u,,v) € U xg V restricts to a bijection
m: [G\U] x [H\V] — [G\(U xg V)], where brackets denote sets of representatives of
orbits.

Proof. For (u,v) € U x V, there exists vy € [G\V] and h € H such that v = hvy. Then
there exists ug € [G\U] and g € G such that uh = guy. Then (u,, v) = g(ug,, Vo)
Hence 7 is surjective. Now if (ug,vp) and (uy,v;) are pairs in [G\U] x [H\V] which lie
in the same G-orbit, there exists g € G and h € H such that (gug,v9) = (urh™!, hvy).
Hence hvy = vy, so vg = v1 = hvy, and h = 1 since H act freely on V. Then guy = u,
so ug = uy, and 7 is injective. O
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Proposition 26. Let G, H and K be finite groups.

1. Let (o,1) be the C-monomial G-poset where o is G-poset with one element and
1: e — ec is the functor such that 1(g,e,e) = 1. Then Ty (e, 1) = (o,1).

2. Let (0, z) be the empty C-monomial (G, H)-poset. Then Ty , is the constant functor
with value (o, 1).

3. Let (U, \) and (U’, X') be C-monomial (G, H)-bisets and let (X, ) be a C-monomial
G-poset then
Tow auv (X, 1) = Ty (X, DT v (X, D).

4. Let idg stand for the identity (G,G)-biset. Then Tia,1(X, 1) = (X,I) for any
C-monomial G-poset (X, 1).

5. Let (V,p) be a C-monomial left free (H, K)-biset, and (U, \) be a C-monomial
(H,G)-biset. Then
Tv,oTux = Tux,vaxp-

Proof. 1., 2., 3. and 4. are clear.
5. Note that since V' is left free, we have Uy oy V, = U xg Vk. Let (X,I) be a
C-monomial G-poset. We need to show that

<tV,p(tU,)\(X7 0),Lu.), Ly, o 2U,A> = (tuxuvaxp(X, 0, Lusyviasy) -
We define a K-poset map ¢ : ty,, (tU’,\(X, ), SU,)\) — tux yvaxp(X, [) such that

P(f)(u, yov) = f(v)(w)

for any f € tv,(tua(X, 1), Lu) and (u, ,v) € U x g V. It’s clear that the map ¢(f) is a
map of G-posets.
Let g € G(u,,,v). Note that since V' is H-free, we have g € GG,. Then

1(9:0(F) (12 0): () (1 0)) = g, F(0) ), () (w))

= )‘(ga 1, u, u)p(l, 17U>U) = (/\ X /0) (ga L, (u> HU)7 (uv HU))'

and s0 ©(f) € tuxyvaxe(X, D).
Now we define a map

0 : tuxvaso(X, 1) = tv, (tua(X, 1), Lua)

such that 0(t)(v)(u) = t(u, ,v) for any ¢ € tyx,vax,(X, ), v € U and v € V. We show
that 6(t) € tv,(tua(X,1), Lu,). Indeed, the map 6(t) is clearly a map of H-sets and
moreover, since V is H-free, we have H, = 1 for any v € V. Then

Lua(1,0(8)(v),0(t)(v)) =1=p(1,1,v,v).
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Clearly, 0(t)(v) is a map of G-sets. Let g € G. Then g € Gy, +), and we get

[(g, 0(t)(v)(w), Q(t)(v)(u)) = [(g,t(u, 4V), t(u, Hv))
= MNg, L,u,u)p(1,1,v,v) = Xg, 1, u, u).

So 9(75) S tv,p(tU’)\(X, [),SU)\).

Now we show that £y,08p\ = Lux,vax, Let k€ K and f, f' € ty, (15(]7,\()(7 [),SUA)
such that kf < f'. Let v € [H\V]. Then there exist a unique o(v) € [H\V] and some
hi, € H such that

vk = hk’vO'k(U).
Let u € [G\U]. Then there exist a unique oy, ,(u) € [G\U] and some gy, , . € G such
that
Whi o = Ghy 0y, (W)

Then
(U, yv) = (Whpohro 0y V) = (WA, Pro V)
= (IhpuOhy, (W) Ok (O)ETY) = iy (O, (1), o0 (0)) BT
We get
(U, y)k = Gy o (ahk‘v(u),H ak(v)).
Then
(Jhm (w),, ok(v)) = ox(u, ,v)
and

Ghg,ouw = Gk, (u, )W

for some w € Gy, (y, Lv)- We get the followmg commutative diagram:

or(u, ,v) = or(u, ,v)
(u, )k

Using the commutativity of the above diagram and Lemma 25 we get

Lv,po Lurk, f, f) H 2UA<hkwf(0k( ), f’(U)>P_1(hk,u,k,Uk(U)’U)

ve[H\V]

H [<ghk vsU) Uk‘( )) (Uhk u( )) f’(v)(u)) )‘_1 (ghk,v7u7 hk,m Ohy o (u)’ u) p_l (hk’,v’ k’ Uk’(”)? U)
ue[G\U]
vE[H\V]

=TI (o £ (0 000D). £ (1040) )0 0) ™ (g1 e (0, (1), 0 (0)). (1 0)

(w, g 0)€[G\(Ux V)]
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= 11 [(gk,(u,Hv>w, f(on(u, 4v)), £ (u, HU)) (Axp)~! (gwu,Hv)wa ko (g, (1), yow(v)), (u, Hv)>

(w, g 0)E[G\(Ux V)]

- H [( G (u, ) f(ok(u, Hv)),f/(u, Hv)> (Axp)™? (g;<;7(u7HU)7 k, (O-hk,v (u), Hak(v)), (u, HU))

(u, g 0)E[G\(Ux V)]

= Luxyv(X, D).
[l

Remark 27. The following example shows that the assumption that V is left free seems
to be mecessary for Assertion 5. Suppose that H = N x K is a semidirect product of
a normal subgroup N with K. Let G be the group K, viewed as a subgroup of H. Let
moreover U be the set H, viewed as a (G, H)-biset by left and right multiplication, and
let V' be the set K, acted on by K on the right by multiplication, and by H on the left
by projection to K = H/N, followed by multiplication in K. Let moreover \ and p be
equal to the trivial functor on U and XA/, respectively.

Then UyogV, =UxgV, as XA and p are both trivial. Moreover U xgV = G xg K is
equal to the identity (K, K)-biset (this makes sense since G = K ), s0 Tux yvaxp = Tid 1
is the identity functor, by Assertion 4.

On the other hand G\U = K\(NK) = N, and H\V has cardinality 1. So in the
computation of the functor Ly appearing in Ty1(X, 1), we have a product of values of |,
indezed by N. So the composition Ty 1 o Ty cannot act in general as the identity on
(X, 1), if N is non trivial. Hence Ty, 0 Ty, # Tuxyvaxp i this situation.

Remark 28. Let G and H be finite groups, and U be a (finite) (G, H)-biset. Then one
can check that the diagram

G-poset —— M G-poset

lTU lTU, 1y

H-poset —* M H-poset

of categories and functors is commutative, up to isomorphism, where the functor Ty on
the left is the usual generalized tensor induction functor for G-posets.

Lemma 29. Let G and H be finite groups, and let (U, X) be a C-monomial (G, H)-biset.
Then there exists a unique map

Tox: Be(G) — Bo(H)

such that Tyx(Ax,y) = A1y, (x,p for any finite C-monomial G-poset (X, 1).
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Proof. We show that if (X,[) and (Y, m) are finite C-monomial G-posets such that if
Axy = Mym) in Be(G), then Aq,, (x,) = Az, (vm) in Be(H). So it’s enough to show

that X(TU,,\((X, [))K’H) = X(TU,)\((Y, m))K’e), by Lemma 20 for any (K, 0) of ch(G).

Let u € [G\U/K], k € K and t € [K N G"\ K] then there exist a unique oy (ut) €
[G\U] and some gy, € G such that

uth = grurox(ut).
Also there exist some ¢, € K N G" and a unique 7(¢) € [K N G*\ K] such that
thk = ¢ mi(t).
Since ¢ € K NG", there exists v, € G such that
UCkt = Vk,tuU-

Now
utk = uck 7k (t) = Vit (t) = Gruor(ut).

So o(ut) = uty(t) and there exists w € G, () such that gp .. = Yerw. We get the
following commutative diagram:

ut 4> ak ut

gk>\ %tu

Now let f € ty (X, 1)%? and k € K such that kf = f. Note that since f is K-fixed,
we have

flutk) = f(ut) = f(u) = vepuf (uri(t)) = Ypuf (W),
SO Vit € G- Hence

flon(ut)) = fumi(t)) = Yepuf (utk) = g f (W) = flu).

Let Y0 = IT  kiw and @y (k) = IT A '(Yetw K, on(ut),ut). Then
te[KNG¥\ K] te[KNGY\ K]
E(ka f7 f) - H [<gk,U7f(Uk(u))7f(u)>/\_1(gk,U7k7ak<u)au)

uE[G\U]

= H [(gk,uta f(ak (ut)) ’ f(ut)> )‘71 (gk,ut7 k? Ok (ut)v ut)
u€[G\U/K]
te[KNGY\ K]

— H [<%7t7uw, f(ak(ut)) f (ut)> A1 (7k7t7uw, k, oy (ut), ut)
u€[G\U/K]
te[KNGY\ K]
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— H [<%7t7u, f (ak(ut)) , f(ut) ) A1 (%,m, k, oy (ut), ut)

u€[G\U/K]
te[KNGU\ K]

= I bwbradsu®)
u€[G\U/K]

= 0(k).

Let = be the family of the sets § = {&u}uea\v/x) Where &, : “K — C'is a character

such that res,j; G (lfw)) = & and

€[G\U/K]

for all k € K and u € [G\U/K].
We claim that

Tux(X, DK |_| H (X, 1) F8,

€2 ue[G\U/K]
Let f € Tya(X, D&Y then f(guk) = gf(u) for all g € G, u € U, and k € K. So
to determine f, it’s enough to know f(u) for u € [G\U/K]. Let f(u) = x,. Then

res,i Lo, € {€u}ueic\uym) for some {€,}ueicvym € €.

Conversely, let us choose z,, € X for any u € [G\U/K]. Let v € V then v = guk for
some g € G, for some k € K and a unique u € [G\U/K]. We set f(v) = gx,. Now f
is well defined if and only if gz, = x, whenever g € “*K or equivalently z, € X" ¥. We
want that f € Ty (X, )50 If z, € (X, )54 then restz (I,,) = &, and

u€[G\U/K]
So f S TU)\(X, [)Kﬁ_
Now using [[2], Lemma 11.2.9] we get

W(Toax 0 ) =3 T x((xn %),

€2 ue[G\U/K]

Thus, if Ax ) = Ay,m) then ATU,)\( X0 = ATUy)\(y7m). So we can define a map
7;],)\ : Bc(G) — Bc(H)

such that Ty (a) = Aq,, (x; where (X, 1) is a C-monomial G-poset such that a = Ax ),
as in Corollary 11. O]

Proposition 30. Let G and H be finite groups, and let (U, \) be a C-monomial (G, H)-
biset.
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1' %,A([G7 1G}G> = [Hu 1H]H
2. To(ab) = Toa(a)Toa(b), for any a, b € Be(G).
In particular, the restriction of Ty to Bo(G)™ is a group homomorphism
U>,<)\ : Bc(G)X — Bc(H)X

Proof. 1. Consider the C-monomial G-poset (e, 1) then clearly A1) = [H, 1g]n. So
using the first assertion of Proposition 26 we get

Toa([G 1)) = Aryye0) = Moty = [H, 1u]n.

2. Let a, b € Bo(G) then by Corollary 11 there exist C-monomial G-posets (X, [)
and (Y, m) such that Axy = a and Ay, = b. Then

%,A(ab) = %,A(A(X,[)A(Y,m)) = %,A(AXxY,[xm) = ATUYA(XXY,[xm)

= Ay, (x 0 A1y (vim) = Tua(a) Toa (D)

Proposition 31. Let G, H, and K be finite groups.

1. Let idg stand for the identity (G,G)-biset. Then T;
Be(G).

is the identity map of

dg,1lc

2. Let (U, \) and (U, XN') be C-monomial (G, H)-bisets. Then for any a € Bc(G)
Touwr o (@) = Toa(a)Tor v (a).

3. Let (U,\) be a C-monomial (G, H)-biset and let (V,p) be a monomial left free
(H, K)-biset then
7;/,p o 7?],)\ = 7;]><HV,)\><p-

Proof. Let a € Bo(G) then by Corollary 11 there exists a C-monomial G-poset (X, [)
such that a = A(x ).

1. Using the third assertion of Proposition 26, we get

,Tidc,lc (a) = 7—idG,1G<A(X7[)) = Ar (x,n = A(le) =a

idg.la
2. Using the second assertion of Proposition 26, we get

,EJuU’,/\l_I)\’(a) = TUuU',,\u,\/(A(X,[)) = ATUUU/’M/\/(X,[)

= A1y, (x0xTyr (X)) = A1y (X0t (X0

= %,A(A(X,[))%’,X(A(X,K)) = %,A(a)%/,/\'(a)-
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3. Using the fourth assertion of Proposition 26, we get
7;/7P ° 7—U:)\<a/) = 7;/4’ © %9A(A(X1[)) = ATV,pOTU,)\(le)

= A1y v (X0 = Tuxavaxe(Axn) = Toxuvaxp(a).
]

Corollary 32. Let G and H be finite groups. The map (U, \) = Ti7\ of Proposition 50
extends to a bilinear map

Be(G, H) x Be(G)* — Be(H)*.

Proof. This follows from Assertion 2 of Proposition 26 and Assertion 2 of Proposition 31,
and from the fact that the map 7?] N depends only on the isomorphism class of (U, \). O

Remark 33. [t follows from Remark 28 that if U is a finite (G, H)-biset, the square

B(G) —~ Bu(G)
TU Tuay
t

B(H) — Bc(H)

of groups and multiplicative maps, is commutative, where Ty on the left is the usual
generalized tensor induction map for Burnside rings, and the horizontal maps tg and ty
are the ring homomorphisms induced by the functors ¢ and Tp.
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